An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
25165520
PubMed Central
PMC4130440
DOI
10.1002/ece3.1087
Knihovny.cz E-resources
- Keywords
- Brownian model, Ornstein–Uhlenbeck model, functional trait, phenotypic evolution,
- Publication type
- Journal Article MeSH
In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.
Centre for Functional Ecology University of Coimbra Coimbra Portugal
Centro Flora Autoctona c o Consorzio Parco Monte Barro via Bertarelli 11 1 23851 Galbiate Italy
Community and Conservation Ecology Group PO Box 14 9750 AA Haren The Netherlands
DBSF Università degli Studi dell'Insubria Via J H Dunant 3 1 21100 Varese Italy
Department of Archaeology The University Sheffield S1 4ET UK
Department of Biological Sciences Macquarie University New South Wales 2109 Australia
Department of Botany Stockholm University Stockholm 106 91 Sweden
Department of Plant Production University of Milan via Celoria 2 1 20133 Milan Italy
INRA UMR 1248 AGIR Equipe ORPHEE BP 52627 Auzeville 31326 Castanet Tolosan France
James Hutton Institute Craigiebuckler Aberdeen AB15 8QH UK
Laboratoire d'Écologie Alpine Université Joseph Fourier BP 53 F 38042 Grenoble Cedex 09 France
Laboratory of Rangeland Ecology Aristotle University of Thessaloniki 54124 Thessaloniki Greece
Norwegian Institute for Nature Research Tungasletta 2 7485 Trondheim Norway
UR B and SEF CIRAD TA C 105 D Campus International de Baillarguet 34398 Montpellier Cedex 5 France
See more in PubMed
Ackerly DD, Nyffeler R. Evolutionary diversification of continuous traits: phylogenetic tests and application to seed size in the california flora. Evol. Ecol. 2004;18:249–272.
Anderson CL, Bremer K, Friis EM. Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. Am. J. Bot. 2005;92:1737–1748. PubMed
Angiosperm Phylogeny Group III. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009;161:105–121.
Bell CD, Soltis DE, Soltis PS. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 2010;97:1296–1303. PubMed
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B. 1995;57:289.
Bininda-Emonds ORP. The evolution of supertrees. Trends Ecol. Evol. 2004;19:315–322. PubMed
Blomberg SP, Garland T, Ives AI. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–745. PubMed
Bremer K, Friis EM, Bremer B. Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification. Syst. Biol. 2004;53:496–505. PubMed
Bromham L, Woolfit M, Lee MSY, Rambaut A. Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution. 2002;56:1921–1930. PubMed
Butler MA, King AA. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 2004;164:683–695. PubMed
Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, et al. Towards a phylogenetic nomenclature of Tracheophyta. Taxon. 2007;56:822–846.
Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl Acad. Sci. 2000;97:4086–4091. PubMed PMC
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003;51:335–380.
Cornwell WK, Westoby M, Falster DS, FitzJohn RG, O'Meara BC, Pennell MW, et al. Functional distinctiveness of major plant lineages. J. Ecol. 2014;102:345–356.
Díaz S, Hodgson J, Thompson K, Cabido M, Cornelissen J, Jalili A, et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 2004;15:295–304.
Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V. Darwin's abominable mystery: insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. 2004;101:1904–1909. PubMed PMC
Davies J, Wolkovich EM, Kraft NJB, Salamin N, Allen JM, Ault TR, et al. Phylogenetic conservatism in plant phenology. J. Ecol. 2013;101:1520–1530.
Diniz-Filho JA. Phylogenetic autocorrelation under distinct evolutionary processes. Evolution. 2001;55:1104–1109. PubMed
Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H. The evolution of the worldwide leaf economics spectrum. Trends Ecol. Evol. 2011;26:88–95. PubMed
Felsenstein J. Phylogenies and the comparative method. Am. Nat. 1985;125:1–15.
Freckleton RP, Harvey PH, Pagel M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 2002;160:712–726. PubMed
Garland T, Diaz-Uriarte R. Polytomies and phylogenetically independent contrasts: examination of the bounded degrees of freedom approach. Syst. Biol. 1999;48:547–558. PubMed
Garnier E, Laurent G. Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytol. 1994;128:725–736.
Gittleman J, Kot M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 1990;39:227–241.
Grime J. Plant strategies, vegetation processes, and ecosystem properties. Chichester and New York: John Wiley and Sons; 2001.
Grime J, Thompson K, Hunt R, Hodgson J, Cornelissen J, Rorison I, et al. Integrated screening validates primary axes of specialisation in plants. Oikos. 1997;79:259–281.
Hansen T. Stabilizing selection and the comparative analysis of adaptation. Evolution. 1997;51:1341–1351. PubMed
Hansen TF, Martins EP. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution. 1996;50:1404–1417. PubMed
IPNI. 2008. International Plant Names Index. Available at http://www.ipni.org/index.html. (accessed 8 December 2008)
Jacobs BF, Kingston JD, Jacobs LL. The origin of grass-dominated ecosystems. Ann. Missouri Botanical Garden. 1999;86:590–643.
Janssen T, Bremer K. The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc. 2004;146:385–398.
Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY – a global database of plant traits. Glob. Change Biol. 2011;17:2905–2935.
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 2006;168:E103–E122. PubMed
Kraft NJB, Cornwell WK, Webb CO, Ackerly DD. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 2007;170:271–283. PubMed
Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 1992;23:187–261.
Lanfear R, Ho SYW, Davies JT, Moles AT, Aarssen L, Swenson NG, et al. Taller plants have lower rates of molecular evolution. Nat. Comm. 2013;4:1879. PubMed
Leebens-Mack J, Vision T, Brenner E, Bowers JE, Cannon S, Clement MJ, et al. Taking the first steps towards a standard for reporting on phylogenies: minimum information about a phylogenetic analysis (MIAPA) OMICS. 2006;10:231–237. PubMed PMC
Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 2008;11:995–1003. PubMed
Moles AT, Ackerly DD, Webb C, Tweddle J, Dickie J, Westoby M. A brief history of seed size. Science. 2005;307:576–580. PubMed
Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, et al. Global patterns in plant height. J. Ecol. 2009;97:923–932.
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. PubMed
Paradis E, Claude J. Analysis of comparative data using generalized estimating equations. J. Theor. Biol. 2002;218:175–185. PubMed
Pierce S, Brusa G, Vagge I, Cerabolini BEL. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 2013;27:1002–1010.
Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 2009;182:565–588. PubMed
Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. 1997;94:13730–13734. PubMed PMC
Reich PB, Wright IJ, Lusk CH. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 2007;17:1982–1988. PubMed
Ricklefs RE, Renner SS. Species richness within families of flowering plants. Evolution. 1994;48:1619–1636. PubMed
Rothwell GW, Grauvogel-Stamm L, Mapes G. An herbaceous fossil conifer: gymnospermous ruderals in the evolution of Mesozoic vegetation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000;156:139–145.
Smith SA, Donoghue MJ. Rates of molecular evolution are linked to life history in flowering plants. Science. 2008;322:86–89. PubMed
Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PC. A classification for extant ferns. Taxon. 2006;55:705–731.
Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. Understanding angiosperm diversification using small and large phylogenetic trees. Am. J. Bot. 2011;98:404–414. PubMed
Stebbins GL. Flowering plants: evolution above species level. Cambridge, MA: Harvard Univ. Press; 1974.
Stevens PF. 2001. Angiosperm Phylogeny Website. Version 7, May 2006.
Webb C, Ackerly D, Kembel S. 2007. Phylocom. Version 3.41. Available at http://www.phylodiversity.net/phylocom/. (accessed 17 February 2009)
Westoby M, Falster D, Moles AT, Vesk P, Wright IJ. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002;33:125–159.
Wikström N, Kenrick P. Evolution of lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol. Phylogenet. Evol. 2001;19:177–186. PubMed
Wikström N, Savolainen V, W. Chase M. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. London B Biol. Sci. 2001;268:2211–2220. PubMed PMC
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. PubMed
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2013 doi: 10.1038/nature12872. PubMed DOI
Shoot apical meristem and plant body organization: a cross-species comparative study