Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
- MeSH
- Induced Pluripotent Stem Cells metabolism MeSH
- Humans MeSH
- Mutation, Missense * MeSH
- Mutation MeSH
- Vesicular Transport Proteins * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Lenvatinib plus pembrolizumab significantly improved efficacy versus sunitinib in treatment of advanced renal cell carcinoma (aRCC) in the phase 3 CLEAR study. We report results of an exploratory post hoc analysis of tumor response data based on baseline metastatic characteristics of patients who received lenvatinib plus pembrolizumab versus sunitinib, at the final overall survival analysis time point of CLEAR (cutoff: July 31, 2022). Treatment-naïve adults with aRCC were randomized to: lenvatinib (20 mg PO QD in 21-day cycles) plus pembrolizumab (n = 355; 200 mg IV Q3W); lenvatinib plus everolimus (not reported here); or sunitinib (n = 357; 50 mg PO QD; 4 weeks on/2 weeks off). The most common (lenvatinib plus pembrolizumab; sunitinib, respectively) metastatic site was lung (71.0%; 63.9%), followed by lymph node (45.6%; 43.7%), bone (22.5%; 24.9%), and liver (17.7%; 19.6%). Across treatment arms, ≥65% had two or more metastatic organs/sites involved, >80% of patients had nontarget lesions, and ~45% had baseline sums of diameters of target lesions ≥60 mm. Lenvatinib plus pembrolizumab demonstrated greater progression-free survival, objective response rate, and duration of response versus sunitinib across evaluable subgroups regardless of site or size of baseline metastasis or number of metastatic sites at baseline. Overall survival generally trended to favor lenvatinib plus pembrolizumab versus sunitinib; and tumor shrinkage was greater across sites (lung, lymph node, liver, and bone) for patients in the lenvatinib-plus-pembrolizumab arm versus the sunitinib arm. These results further support lenvatinib plus pembrolizumab as a standard-of-care in patients with aRCC regardless of site or size of baseline metastasis or the number of metastatic sites.
- MeSH
- Quinolines * administration & dosage therapeutic use MeSH
- Adult MeSH
- Phenylurea Compounds * administration & dosage therapeutic use MeSH
- Antibodies, Monoclonal, Humanized * administration & dosage therapeutic use MeSH
- Carcinoma, Renal Cell * drug therapy pathology mortality secondary MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Metastasis MeSH
- Kidney Neoplasms * drug therapy pathology mortality MeSH
- Antineoplastic Combined Chemotherapy Protocols * therapeutic use MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Sunitinib * administration & dosage therapeutic use MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
Crude oil contamination has been shown to impair reproduction in aquatic animals through carcinogenic and genotoxic properties. Here, we assessed the endocrine-disrupting function of crude oil on male reproductive system based on testicular histology, sex steroid hormones, and fertility endpoints in adult male goldfish (Carassius auratus), which were exposed to 0.02- to 2-mg/L crude oil for 21 days (Experiment #1) or to 5- to 250-mg/L crude oil for 9 days (Experiment #2). The crude oil contained 0.22-mg/L nickel (Ni), 1.10-mg/L vanadium (V), and 12.87-mg/L polycyclic aromatic hydrocarbons (PAHs). Twenty-four hours after adding crude oil, the sum of PAHs ranged from 0.30 to 2.28 μg/L in the aquaria containing 0.02- and 250-mg/L crude oil, respectively. Water analyses for heavy metals in Experiment #2 showed high concentrations (mg/L) of Ni (0.07-0-09) and V (0.10-0.21). For both experiments, exposure to crude oil did not impact gonadosomatic index; however, testes showed histopathological defects including hyperplasia or hypertrophy of Sertoli cells, depletion of the Leydig cells, necrosis of germ cells, and fibrosis of lobular wall. In Experiment #1, sperm production and motility, testosterone (T), and 17β-estradiol (E2) were not significantly different among treatments. In Experiment #2, the number of spermiating males decreased by ~50% following exposure to 250-mg/L crude oil. Sperm production, motility kinematics, T, and the T/E2 ratio significantly decreased in males exposed to ≥ 50-mg/L crude oil; however, E2 remained unchanged. Results show crude oil-induced imbalance of sex steroid hormones disrupts spermatogenesis resulting in diminished sperm production and motility.
- MeSH
- Water Pollutants, Chemical * toxicity MeSH
- Endocrine Disruptors * toxicity MeSH
- Goldfish * physiology MeSH
- Sperm Motility * drug effects MeSH
- Gonadal Steroid Hormones * metabolism blood MeSH
- Petroleum * toxicity MeSH
- Reproduction drug effects MeSH
- Spermatozoa * drug effects pathology MeSH
- Testis * drug effects pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Pathogenic alterations, namely, fusions and amplifications, of the GLI1 gene have been identified in various mesenchymal tumors, including pericytoma with t(7;12), plexiform fibromyxoma, gastroblastoma, and other malignant mesenchymal neoplasms arising in the soft tissues, as well as in various visceral organs. However, only three cases of GLI1-rearranged renal tumors have been reported to date, comprising two low-grade spindle cell tumors with GLI1::FOXO4 fusion along with one GLI1-rearranged case with an unknown fusion partner. In this study, we analyzed three cases with GLI1::FOXO4 fusion and overlapping morphology. One of the cases was reported previously, but an extended clinical and immunohistochemical information is provided. The studied cases occurred in 2 female and 1 male patients aged 35, 55, and 62 years (mean 51 years). All three tumors affected the renal parenchyma and grew as unencapsulated but well-circumscribed solid masses containing occasional entrapped and dilated renal tubules. The tumor cells were organized in cords, nests, or fascicles, had a round to spindled shape, and exhibited only mild nuclear atypia and minimal mitotic activity. They had a sparse eosinophilic to clear cytoplasm and were embedded in myxocollagenous stroma. Immunohistochemically, all cases expressed GLI1 (albeit with variable intensity) and harbored GLI1::FOXO4 fusion. All three patients were treated solely by complete surgical excision. Case 1 was alive with unknown disease status, case 2 was alive without evidence of disease, and case 3 died of unrelated causes. Our study doubles the number of reported cases with GLI1::FOXO4 fusion. The so far absolute predilection of this fusion for renal tumors, coupled with the absence of reports of other GLI1 fusions in tumors of the kidney, might indicate the potential existence of a distinct renal subtype with morphological features similar to other GLI1-altered tumors. All four reported cases had an uneventful follow-up which, together with their low-grade morphological features, suggests that these tumors might have a favorable prognosis.
- MeSH
- Adult MeSH
- Forkhead Transcription Factors * genetics MeSH
- Gene Rearrangement * MeSH
- Immunohistochemistry MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor * genetics analysis MeSH
- Kidney Neoplasms * genetics pathology MeSH
- Zinc Finger Protein GLI1 * genetics MeSH
- Cell Cycle Proteins * genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Olaparib treatment significantly improved objective response rate (primary end point) and progression-free survival versus nonplatinum chemotherapy in patients with BRCA-mutated platinum-sensitive relapsed ovarian cancer in the open-label phase III SOLO3 trial (ClinicalTrials.gov identifier: NCT02282020). We report final overall survival (OS; prespecified secondary end point), post hoc OS analysis by number of previous chemotherapy lines, and exploratory BRCA reversion mutation analysis. Two hundred sixty-six patients were randomly assigned 2:1 to olaparib tablets (300 mg twice daily; n = 178) or physician's choice of single-agent nonplatinum chemotherapy (pegylated liposomal doxorubicin, paclitaxel, gemcitabine, or topotecan; n = 88). OS was similar with olaparib versus chemotherapy (hazard ratio [HR], 1.07 [95% CI, 0.76 to 1.49]; P = .71, median 34.9 and 32.9 months, respectively, full analysis set). OS with olaparib was favorable in patients with two previous chemotherapy lines (HR, 0.83 [olaparib v chemotherapy] [95% CI, 0.51 to 1.38]; median 37.9 v 28.8 months); however, a potential detrimental effect was seen in patients with at least three previous chemotherapy lines (HR, 1.33 [95% CI, 0.84 to 2.18]; median 29.9 v 39.4 months). BRCA reversion mutations might have contributed to this finding. No patient randomly assigned to olaparib with a BRCA reversion mutation detected at baseline (6 of 170 [3.5%]) achieved an objective tumor response.
- MeSH
- Deoxycytidine analogs & derivatives administration & dosage MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- Doxorubicin analogs & derivatives administration & dosage MeSH
- Phthalazines * therapeutic use adverse effects administration & dosage MeSH
- Gemcitabine MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local * drug therapy MeSH
- Ovarian Neoplasms * drug therapy genetics mortality pathology MeSH
- Paclitaxel administration & dosage MeSH
- Poly(ADP-ribose) Polymerase Inhibitors * therapeutic use adverse effects MeSH
- Piperazines * therapeutic use adverse effects administration & dosage MeSH
- Polyethylene Glycols administration & dosage MeSH
- BRCA1 Protein genetics MeSH
- BRCA2 Protein genetics MeSH
- Antineoplastic Combined Chemotherapy Protocols * therapeutic use adverse effects MeSH
- Aged MeSH
- Topotecan administration & dosage MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis. A total of 150 missense, 19 stop-gain, 22 frameshift and 13 canonical splice site variants fulfilled our filtering criteria. The STRING analysis identified 20 DNA repair/cell cycle proteins as the main cluster, related to genes CHEK2, EXO1, FAAP24, FANCI, MCPH1, POLL, PRC1, RECQL, RECQL5, RRM2, SHCBP1, SMC2, XRCC1, in addition to CDK18, ENDOV, ZW10 and the known mismatch repair genes. Another STRING network included extracellular matrix genes and TGFβ signaling genes. In the nine whole-exome sequenced patients, eight harbored at least two candidate DNA repair/cell cycle/TGFβ signaling gene variants. The number of families is too small to provide evidence for individual variants but, considering the known role of DNA repair/cell cycle genes in CRC, the clustering of multiple deleterious variants in the present families suggests that these, perhaps jointly, contributed to CRC development in these families.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease * MeSH
- Colorectal Neoplasms * genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Repair genetics MeSH
- Pedigree MeSH
- Exome Sequencing * methods MeSH
- Aged MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Daratumumab, an anti-CD38 monoclonal antibody, has been approved for the treatment of multiple myeloma. Data are needed regarding the use of daratumumab for high-risk smoldering multiple myeloma, a precursor disease of active multiple myeloma for which no treatments have been approved. METHODS: In this phase 3 trial, we randomly assigned patients with high-risk smoldering multiple myeloma to receive either subcutaneous daratumumab monotherapy or active monitoring. Treatment was continued for 39 cycles, for 36 months, or until confirmation of disease progression, whichever occurred first. The primary end point was progression-free survival; progression to active multiple myeloma was assessed by an independent review committee in accordance with International Myeloma Working Group diagnostic criteria. RESULTS: Among the 390 enrolled patients, 194 were assigned to the daratumumab group and 196 to the active-monitoring group. With a median follow-up of 65.2 months, the risk of disease progression or death was 51% lower with daratumumab than with active monitoring (hazard ratio, 0.49; 95% confidence interval [CI], 0.36 to 0.67; P<0.001). Progression-free survival at 5 years was 63.1% with daratumumab and 40.8% with active monitoring. A total of 15 patients (7.7%) in the daratumumab group and 26 patients (13.3%) in the active-monitoring group died (hazard ratio, 0.52; 95% CI, 0.27 to 0.98). Overall survival at 5 years was 93.0% with daratumumab and 86.9% with active monitoring. The most common grade 3 or 4 adverse event was hypertension, which occurred in 5.7% and 4.6% of the patients in the daratumumab group and the active-monitoring group, respectively. Adverse events led to treatment discontinuation in 5.7% of the patients in the daratumumab group, and no new safety concerns were identified. CONCLUSIONS: Among patients with high-risk smoldering multiple myeloma, subcutaneous daratumumab monotherapy was associated with a significantly lower risk of progression to active multiple myeloma or death and with higher overall survival than active monitoring. No unexpected safety concerns were identified. (Funded by Janssen Research and Development; AQUILA ClinicalTrials.gov number, NCT03301220.).
- MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- Smoldering Multiple Myeloma * diagnosis mortality therapy MeSH
- Injections, Subcutaneous MeSH
- Kaplan-Meier Estimate MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiple Myeloma * diagnosis epidemiology prevention & control MeSH
- Antibodies, Monoclonal * administration & dosage adverse effects MeSH
- Watchful Waiting * statistics & numerical data MeSH
- Disease Progression MeSH
- Antineoplastic Agents * administration & dosage adverse effects MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
- Comparative Study MeSH
The glycoprotein clusterin (CLU) is involved in cell proliferation and DNA damage repair and is highly expressed in tumor cells. Here, we aimed to investigate the effects of CLU dysregulation on two human astrocytic cell lines: CCF-STTG1 astrocytoma cells and SV-40 immortalized normal human astrocytes. We observed that suppression of CLU expression by RNA interference inhibited cell proliferation, triggered the DNA damage response, and resulted in cellular senescence in both cell types tested. To further investigate the underlying mechanism behind these changes, we measured reactive oxygen species, assessed mitochondrial function, and determined selected markers of the senescence-associated secretory phenotype. Our results suggest that CLU deficiency triggers oxidative stress-mediated cellular senescence associated with pronounced alterations in mitochondrial membrane potential, mitochondrial mass, and expression levels of OXPHOS complex I, II, III and IV, indicating mitochondrial dysfunction. This report shows the important role of CLU in cell cycle maintenance in astrocytes. Based on these data, targeting CLU may serve as a potential therapeutic approach valuable for treating gliomas.
- MeSH
- Astrocytes * metabolism pathology MeSH
- Clusterin * metabolism genetics MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial * physiology MeSH
- Mitochondria * metabolism MeSH
- Cell Line, Tumor MeSH
- Oxidative Stress physiology MeSH
- Oxidative Phosphorylation MeSH
- DNA Damage MeSH
- Cell Proliferation * MeSH
- Reactive Oxygen Species metabolism MeSH
- Cellular Senescence * physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- MeSH
- Immunotherapy * methods MeSH
- Papillomavirus Infections immunology virology MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mutation * MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Tumor Microenvironment * immunology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Exome Sequencing MeSH
- Tumor Escape genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Cell cycle progression and leukemia development are tightly regulated processes in which even a small imbalance in the expression of cell cycle regulatory molecules and microRNAs (miRNAs) can lead to an increased risk of cancer/leukemia development. Here, we focus on the study of a ubiquitous, multifunctional, and oncogenic miRNA-hsa-miR-155-5p (miR-155, MIR155HG), which is overexpressed in malignancies including chronic lymphocytic leukemia (CLL). Nonetheless, the precise mechanism of how miR-155 regulates the cell cycle in leukemic cells remains the subject of extensive research. METHODS: We edited the CLL cell line MEC-1 by CRISPR/Cas9 to introduce a short deletion within the MIR155HG gene. To describe changes at the transcriptome and miRNome level in miR-155-deficient cells, we performed mRNA-seq/miRNA-seq and validated changes by qRT-PCR. Flow cytometry was used to measure cell cycle kinetics. A WST-1 assay, hemocytometer, and Annexin V/PI staining assessed cell viability and proliferation. RESULTS: The limited but phenotypically robust miR-155 modification impaired cell proliferation, cell cycle, and cell ploidy. This was accompanied by overexpression of the negative cell cycle regulator p21/CDKN1A and Cyclin D1 (CCND1). We confirmed the overexpression of canonical miR-155 targets such as PU.1, FOS, SHIP-1, TP53INP1 and revealed new potential targets (FCRL5, ISG15, and MX1). CONCLUSIONS: We demonstrate that miR-155 deficiency impairs cell proliferation, cell cycle, transcriptome, and miRNome via deregulation of the MIR155HG/TP53INP1/CDKN1A/CCND1 axis. Our CLL model is valuable for further studies to manipulate miRNA levels to revert highly aggressive leukemic cells to nearly benign or non-leukemic types.
- MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell * genetics pathology MeSH
- Cyclin D1 genetics metabolism MeSH
- Cyclin-Dependent Kinase Inhibitor p21 * genetics metabolism MeSH
- Cell Cycle Checkpoints * genetics MeSH
- Humans MeSH
- MicroRNAs * genetics metabolism MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation genetics MeSH
- Heat-Shock Proteins MeSH
- Gene Expression Regulation, Leukemic MeSH
- Carrier Proteins genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH