The glycoprotein clusterin (CLU) is involved in cell proliferation and DNA damage repair and is highly expressed in tumor cells. Here, we aimed to investigate the effects of CLU dysregulation on two human astrocytic cell lines: CCF-STTG1 astrocytoma cells and SV-40 immortalized normal human astrocytes. We observed that suppression of CLU expression by RNA interference inhibited cell proliferation, triggered the DNA damage response, and resulted in cellular senescence in both cell types tested. To further investigate the underlying mechanism behind these changes, we measured reactive oxygen species, assessed mitochondrial function, and determined selected markers of the senescence-associated secretory phenotype. Our results suggest that CLU deficiency triggers oxidative stress-mediated cellular senescence associated with pronounced alterations in mitochondrial membrane potential, mitochondrial mass, and expression levels of OXPHOS complex I, II, III and IV, indicating mitochondrial dysfunction. This report shows the important role of CLU in cell cycle maintenance in astrocytes. Based on these data, targeting CLU may serve as a potential therapeutic approach valuable for treating gliomas.
- MeSH
- Astrocytes * metabolism pathology MeSH
- Clusterin * metabolism genetics MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial * physiology MeSH
- Mitochondria * metabolism MeSH
- Cell Line, Tumor MeSH
- Oxidative Stress physiology MeSH
- Oxidative Phosphorylation MeSH
- DNA Damage MeSH
- Cell Proliferation * MeSH
- Reactive Oxygen Species metabolism MeSH
- Cellular Senescence * physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.
- MeSH
- Semen Analysis methods MeSH
- Apoptosis MeSH
- Ejaculation MeSH
- Glycodelin metabolism MeSH
- Glycoproteins metabolism MeSH
- Clusterin metabolism MeSH
- Sialic Acids metabolism MeSH
- Lactoferrin metabolism MeSH
- Lectins metabolism chemistry MeSH
- Humans MeSH
- Sperm Motility MeSH
- Seminal Plasma Proteins metabolism MeSH
- Seminal Vesicle Secretory Proteins metabolism MeSH
- Semen * metabolism chemistry MeSH
- Spermatozoa * metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of upper and lower motor neurons. A definitive diagnostic test or biomarker for ALS is currently unavailable, leading to a diagnostic delay following the onset of initial symptoms. Our study focused on cerebrospinal fluid (CSF) concentrations of clusterin, tau protein, phosphorylated tau protein, and beta-amyloid1-42 in ALS patients and a control group. METHODS: Our study involved 54 ALS patients and 58 control subjects. Among the ALS patients, 14 presented with bulbar-onset ALS, and 40 with limb-onset ALS. We quantified biomarker levels using enzyme-linked immunosorbent assay (ELISA) and compared the results using the Mann-Whitney U-test. RESULTS: Significant elevations in neurodegenerative markers, including tau protein (p < 0.0001), phosphorylated tau protein (p < 0.0001), and clusterin (p = 0.038), were observed in ALS patients compared to controls. Elevated levels of tau protein and phosphorylated tau protein were also noted in both bulbar and limb-onset ALS patients. However, no significant difference was observed for beta-amyloid1-42. ROC analysis identified tau protein (AUC = 0.767) and p-tau protein (AUC = 0.719) as statistically significant predictors for ALS. CONCLUSION: Our study demonstrates that neurodegenerative marker levels indicate an ongoing neurodegenerative process in ALS. Nonetheless, the progression of ALS cannot be predicted solely based on these markers. The discovery of a specific biomarker could potentially complement existing diagnostic criteria for ALS.
- MeSH
- Amyotrophic Lateral Sclerosis * diagnosis MeSH
- Biomarkers MeSH
- Clusterin MeSH
- Humans MeSH
- Delayed Diagnosis MeSH
- tau Proteins MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
This mini-review aims to introduce the association between Secretory clusterin/apolipoprotein J (sCLU) and diverse musculoskeletal diseases. A comprehensive review of the literature was performed to identify basic science and clinical studies, which implied the therapeutic and prognostic role of sCLU in diverse musculoskeletal diseases. sCLU is a multifunctional glycoprotein that is ubiquitously expressed in various tissues and is implicated in many pathophysiological processes. Dysregulated expression of sCLU had been reported to be assocaited with proliferative or apoptotic molecular processes and inflammatory responses, which participated in many pathophysiological processes such as degenerative musculoskeletal diseases including ischemic osteonecrosis, osteoarthritis (OA) and degenerative cervical myelopathy (spinal cord injury), neoplastic musculoskeletal diseases, inflammatory and autoimmune musculoskeletal diseases including Rheumatoid arthritis (RA), joint damage induced by Brucella abortus, Sjogren's syndrome, idiopathic inflammatory myopathies, muscle glucose metabolism, insulin sensitivity and traumatic musculoskeletal diseases. Recent findings of sCLU in these musculoskeletal diseases provides insights on the therapeutic and prognostic role of sCLU in these musculoskeletal diseases. sCLU may serve as a promising therapeutic target for ischemic osteonecrosis, OA and spinal cord injury as well as a potential prognostic biomarker for OA and RA. Moreover, sCLU could act as a prognostic biomarker for osteosarcoma (OS) and a promising therapeutic target for OS resistance. Although many studies support the potential therapeutic and prognostic role of sCLU in some inflammatory and autoimmune-mediated musculoskeletal diseases, more future researches are needed to explore the molecular pathogenic mechanism mediated by sCLU implied in these musculoskeletal diseases.
- MeSH
- Biomarkers metabolism MeSH
- Clusterin metabolism MeSH
- Humans MeSH
- Musculoskeletal Diseases * diagnosis therapy MeSH
- Cell Line, Tumor MeSH
- Osteonecrosis * MeSH
- Spinal Cord Injuries * MeSH
- Prognosis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Clusterin (CLU; also known as apolipoprotein J, ApoJ) is a protein of inconstant structure known to be involved in diverse processes inside and outside of brain cells. CLU can act as a protein chaperon or protein solubilizer, lipid transporter as well as redox sensor and be anti- or proapoptotic, depending on context. Primary structure of CLU is encoded by CLU gene which contains single nucleotide polymorphisms (SNP's) associated with the risk of late-onset Alzheimer's disease (LOAD). Studying a sample of Czech population and using the case-control association approach we identified C allele of the SNP rs11136000 as conferring a reduced risk of LOAD, more so in females than in males. Additionally, data from two smaller subsets of the population sample suggested a possible association of rs11136000 with diabetes mellitus. In a parallel study, we found no association between rs11136000 and mild cognitive impairment (MCI). Our findings on rs11136000 and LOAD contradict those of some previous studies done elsewhere. We discuss the multiple roles of CLU in a broad range of molecular mechanisms that may contribute to the variability of genetic studies of CLU in various ethnic groups. The above discordance notwithstanding, our conclusions support the association of rs1113600 with the risk of LOAD.
- MeSH
- Alzheimer Disease etiology genetics MeSH
- Genetic Predisposition to Disease MeSH
- Polymorphism, Single Nucleotide MeSH
- Clusterin genetics MeSH
- Cognitive Dysfunction etiology genetics MeSH
- Humans MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
OBJECTIVES: The aim of this cross-sectional study was to explore the circulating and skeletal muscle expression of clusterin (CLU) in inflammatory myopathies (IIM) and its potential implication in pathogenetic mechanisms of the disease. METHODS: A total of 85 IIM patients and 86 healthy controls (HC) were recruited. In addition, 20 IIM patients and 21 HC underwent a muscle biopsy. Circulating CLU was measured by ELISA. Serum cytokine profile of patients and HC was assessed by Cytokine 27-plex Assay. Immunohistochemical localisation of CLU was assessed in 10 IIM and 4 control muscle tissue specimens. The expression of CLU and myositis related cytokines in muscle was determined by qPCR. RESULTS: Serum levels of CLU were significantly increased in IIM patients compared to controls (86.2 (71.6-99.0) vs. 59.6 (52.6-68.4) μg/mL, p<0.0001) and positively correlated with myositis disease activity assessment (MYOACT) (r=0.337, p=0.008), myositis intention-to-treat activity index (MITAX) (r=0.357, p=0.004) and global disease assessment evaluated by physician (r=0.309, p=0.015). Moreover, serum CLU correlated with cytokines and chemokines involved in IIM and their combined effect on disease activity was revealed by multivariate redundancy analysis. In muscle tissue, CLU mRNA was increased in IIM patients compared to controls (p=0.032) and CLU accumulated in the cytoplasm of regenerating myofibres. CONCLUSIONS: We suggest that the up-regulation of clusterin in circulation and skeletal muscle of IIM patients may be an inflammation and atrophy induced response of the organism intended to limit the environment, favouring further muscle damage.
- MeSH
- Cytokines MeSH
- Clusterin * genetics MeSH
- Muscle, Skeletal MeSH
- Humans MeSH
- Myositis * MeSH
- Cross-Sectional Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Clusterin (CLU) is a molecular chaperone that participates in a variety of biological processes. Recent studies indicate its possible involvement in the development of bone erosions and autoimmunity. The aim of this study was to investigate its serum concentrations in patients with early rheumatoid arthritis (RA) and to explore their potential relationship with disease activity and treatment response. Serum levels of CLU were measured in 52 patients before and 3 months after the initiation of treatment and in 52 healthy individuals. CLU levels at baseline were significantly increased in patients with early RA compared with healthy subjects (p < 0.0001). After 3 months of treatment, the levels of CLU decreased and reached concentrations comparable to those in controls. Even though there was no relationship between CLU levels and disease activity at baseline, CLU levels positively correlated with disease activity at months 3, 6 and 12 after treatment initiation. Using ROC analysis, lower CLU baseline levels predicted achieving the therapeutic target of low disease activity and remission at months 3, 6 and 12. In summary, we found increased serum concentrations of clusterin in treatment-naïve patients with early rheumatoid arthritis, and we suggest clusterin as a predictive biomarker of disease activity and treatment response.
- MeSH
- Biomarkers blood MeSH
- Adult MeSH
- Clusterin blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Arthritis, Rheumatoid blood therapy MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Apolipoprotein J (clusterin) is a component of high-density lipoproteins, the high level of which is reversely correlated with the risk of coronary heart disease. In addition, it exerts anti-inflammatory and anti-apoptotic effects on endothelial cells and inhibits smooth muscle cell migration and proliferation, indicating that it may play a protective role in cardiovascular disease. However, the exact mechanisms by which this occurs remain unclear. This study aimed to clarify these underlying protective mechanisms by researching the inhibitory effects of apolipoprotein J via the NOD-like receptor protein 3 pathway on the inflammation induced by cholesterol crystals in THP‐1 macrophages. In culture, THP-1 macrophages were infected with adenoviral vectors containing apolipoprotein J genes and subsequently treated with cholesterol crystals. The inflammatory cytokines interleukin‐1β, interleukin 18 and tumour necrosis factor α were quantitatively measured with ELISA kits. NOD-like receptor protein 3, cysteinyl aspartate specific proteinase 1 and interleukin 1β were evaluated by Western blot and PCR analysis. As a result, apolipoprotein J expression was found to remarkably decrease the levels of inflammatory cytokines, including tumour necrosis factor α, interleukin 18 and interleukin 1β, secreted by THP‐1 macrophages. It was also found capable of inhibiting the levels of NOD-like receptor protein 3, cysteinyl aspartate-specific proteinase 1 and interleukin 1β both at the protein and mRNA levels. In the current study, we revealed that over-expression of apolipoprotein J attenuated the inflammation induced by cholesterol crystals through inhibition of the NOD-like receptor protein 3 inflammasome pathway.
- MeSH
- Cholesterol metabolism MeSH
- Cytokines metabolism MeSH
- Endothelial Cells metabolism pathology MeSH
- Inflammasomes * metabolism pharmacology MeSH
- Interleukin-18 metabolism MeSH
- Interleukin-1beta metabolism MeSH
- Clusterin metabolism pharmacology MeSH
- Aspartic Acid metabolism pharmacology MeSH
- Humans MeSH
- Macrophages metabolism MeSH
- Peptide Hydrolases metabolism pharmacology MeSH
- NLR Family, Pyrin Domain-Containing 3 Protein * metabolism MeSH
- Tumor Necrosis Factor-alpha metabolism MeSH
- Inflammation pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Psoriasis is a pathological condition characterized by immune system dysfunction and inflammation. Patients with psoriasis are more likely to develop a wide range of disorders associated with inflammation. Serum levels of various substances and their combinations have been associated with the presence of the disease (psoriasis) and have shown the potential to reflect its activity. The aim of the present study is to contribute to the elucidation of pathophysiological links between psoriasis, its pro-inflammatory comorbidity metabolic syndrome (MetS), and the expression of clusterin and elafin, which are reflected in the pathophysiological "portfolio" of both diseases. MATERIAL AND METHODS: Clinical examinations (PASI score), ELISA (clusterin, elafin), and biochemical analyses (parameters of MetS) were performed. RESULTS: We found that patients with psoriasis were more often afflicted by MetS, compared to the healthy controls. Clusterin and elafin levels were higher in the patients than in the controls but did not correlate to the severity of psoriasis. CONCLUSION: Our data suggest that patients with psoriasis are more susceptible to developing other systemic inflammatory diseases, such as MetS. The levels of clusterin and elafin, which are tightly linked to inflammation, were significantly increased in the patients, compared to the controls, but the presence of MetS in patients did not further increase these levels.
- MeSH
- Adult MeSH
- Elafin genetics MeSH
- Body Mass Index MeSH
- Clusterin genetics MeSH
- Comorbidity MeSH
- Middle Aged MeSH
- Humans MeSH
- Metabolic Syndrome complications genetics metabolism pathology MeSH
- Psoriasis complications genetics metabolism pathology MeSH
- Gene Expression Regulation genetics MeSH
- Case-Control Studies MeSH
- Severity of Illness Index MeSH
- Inflammation genetics metabolism pathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The aims of this study were to analyse the serum concentrations of clusterin (CLU) in patients with hand osteoarthritis (OA) and in healthy controls, to compare CLU levels between patients with erosive and non-erosive disease, and to examine the association of CLU levels with clinical and laboratory parameters. METHODS: A total of 135 patients with hand OA (81 with erosive and 54 with non-erosive disease) and 53 healthy individuals were included in this study. All patients underwent clinical and hand joint ultrasound examination. The Australian/Canadian (AUSCAN) hand osteoarthritis index, algofunctional index and a visual analogue scale (VAS) for the measurement of pain were assessed. Serum levels of CLU were measured by an enzyme-linked immunosorbent assay (ELISA). RESULTS: Serum levels of CLU were significantly lower in patients with hand OA than in control subjects (p < 0.0001). In addition, patients with erosive hand OA had significantly lower CLU levels than those with non-erosive disease (p = 0.044). Negative correlations between CLU levels and pain as assessed by the AUSCAN score and the VAS were found in patients with erosive hand OA (r = - 0.275; p = 0.013 and r = - 0.220; p = 0.049, respectively). CONCLUSION: The present study demonstrates that lower concentrations of CLU are found in hand OA patients than in healthy individuals, especially in those with erosive disease, and that CLU concentrations have a negative association with hand pain.
- MeSH
- Arthralgia blood diagnostic imaging physiopathology MeSH
- Biomarkers blood MeSH
- Down-Regulation MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Hand Joints diagnostic imaging metabolism physiopathology MeSH
- Clusterin blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Pain Measurement MeSH
- Osteoarthritis blood diagnostic imaging physiopathology MeSH
- Predictive Value of Tests MeSH
- Cross-Sectional Studies MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Ultrasonography MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH