Genome size is strongly linked to carbohydrate storage and weakly linked to root sprouting ability in herbs
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
22-10897S
Czech Science Foundation
RVO 67985939
Czech Academy of Sciences
PubMed
37823724
PubMed Central
PMC10808013
DOI
10.1093/aob/mcad158
PII: 7308718
Knihovny.cz E-zdroje
- Klíčová slova
- Below-ground organ, carbon storage, cell size, fructan, genome size, root sprouting,
- MeSH
- délka genomu MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- kořeny rostlin MeSH
- metabolismus sacharidů MeSH
- rostliny MeSH
- sacharidy * analýza MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sacharidy * MeSH
- voda MeSH
BACKGROUND AND AIMS: Several lines of evidence indicate that carbohydrate storage in plant below-ground organs might be positively related to genome size because both these plant properties represent resource sinks and can affect cell size, cell cycle time, water-use efficiency and plant growth. However, plants adapted to disturbance, such as root sprouters, could be an exception because their strategy would require higher carbohydrate reserves to fuel biomass production but small genomes to complete their cell cycles faster. METHODS: We used data from a field survey to test the relationship between genome size and the probability of root sprouting ability in 172 Central European herbaceous species. Additionally, we conducted a pot experiment with 19 herbaceous species with different sprouting ability (nine congeneric pairs plus one species), and measured root non-structural carbohydrate concentrations and pools at the end of a growing season. KEY RESULTS: In the Central European flora, the probability of root sprouting ability was lower in large-genome species but this pattern was weak. In the pot experiment, both total non-structural and water-soluble carbohydrates (mainly fructans) were positively and non-linearly related to genome size, regardless of sprouting strategy. The concentrations of mono- and disaccharides and all carbohydrate pools showed no link to genome size, and starch was absent in large-genome species. The link between genome size and carbohydrate storage was less apparent at a small phylogenetic scale because we only observed a higher carbohydrate concentration in species with larger genomes for four of the species pairs. CONCLUSIONS: Root sprouters may have smaller genomes because of their frequent occurrence in dry and open habitats. Large-genome species with presumably large cells and vacuoles could accumulate more water-soluble carbohydrates at the end of the growing season to fuel their growth and perhaps protect vulnerable organs from freezing early in the next season.
Department of Botany Charles University Benátská 2 128 01 Prague Czech Republic
Institute of Botany of the Czech Academy of Sciences Dukelská 135 379 01 Třeboň Czech Republic
Zobrazit více v PubMed
Almeida VO, Di-Medeiros MC, Batista KA, Moraes MG, Fernandes KF.. 2021. Morphological and physicochemical characterization of starches from underground stems of Trimezia juncifolia collected in different phenological stages. International Journal of Biological Macromolecules 166: 127–137. doi:10.1016/j.ijbiomac.2020.10.109. PubMed DOI
Bartušková A, Filartiga AL, Herben T, Qian J, Klimešová J.. 2021. Comparative analysis of root sprouting and its vigour in temperate herbs: anatomical correlates and environmental predictors. Annals of Botany 127: 931–941. doi:10.1093/aob/mcab030. PubMed DOI PMC
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA.. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986. doi:10.1111/j.1469-8137.2008.02528.x. PubMed DOI
Bennett MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106: 177–200. doi:10.1111/j.1469-8137.1987.tb04689.x. DOI
Bennett MD, Leitch IJ, Hanson L.. 1998. DNA amounts in two samples of angiosperm weeds. Annals of Botany 82: 121–134. doi:10.1006/anbo.1998.0785 DOI
[dataset] Bitomský M, Martínková J, Lubbe FC, Marešová I, Klimešová J.. 2023. Genome size is strongly linked to carbohydrate storage and weakly linked to root sprouting ability in herbs. doi: 10.17632/t8zwb7dxyb.2 PubMed DOI PMC
Blumstein M, Sala A, Weston DJ, Holbrook NM, Hopkins R.. 2022. Plant carbohydrate storage: intra- and inter-specific trade-offs reveal a major life history trait. New Phytologist 235: 2211–2222. doi:10.1111/nph.18213. PubMed DOI
Brocklebank KJ, Hendry GAF.. 1989. Characteristics of plant species which store different types of reserve carbohydrates. New Phytologist 112: 255–260. doi:10.1111/j.1469-8137.1989.tb02381.x. DOI
Chapin FS III, Schulze ED, Mooney HA.. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21: 423–447.
Chevan A, Sutherland M.. 1991. Hierarchical partitioning. American Statistician 45: 90–96. doi:10.2307/2684366. DOI
Chlumská Z, Liancourt P, Hartmann H, et al. . 2022. Species- and compound-specific dynamics of nonstructural carbohydrates toward the world’s upper distribution of vascular plants. Environmental and Experimental Botany 201: 104985. doi:10.1016/j.envexpbot.2022.104985. DOI
Chytrý M, Danihelka J, Kaplan Z, et al. . 2021. Pladias database of the Czech flora and vegetation. Preslia 93: 1–87.
Cseri A, Borbély P, Poór P, et al. . 2020. Increased adaptation of an energy willow cultivar to soil salinity by duplication of its genome size. Biomass and Bioenergy 140: 105655. doi:10.1016/j.biombioe.2020.105655. DOI
de Moraes MG, de Carvalho MAM, Franco AC, Pollock CJ, Figueiredo-Ribeiro RCL.. 2016. Fire and drought: soluble carbohydrate storage and survival mechanisms in herbaceous plants from the Cerrado. BioScience 66: 107–117.
Dias-Tagliacozzo GM, Itaya NM, de Carvalho MAM, Figueiredo-Ribeiro RDL, Dietrich SMC.. 2004. Fructans and water suppression on intact and fragmented rhizophores of Vernonia herbacea. Brazilian Archives of Biology and Technology 47: 363–373.
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ.. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26: 1039–1049. doi:10.1016/j.tplants.2021.06.001. PubMed DOI
Francis D, Davies MS, Barlow PW.. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747–757. doi:10.1093/aob/mcn038. PubMed DOI PMC
Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF. eds. Plant genome diversity, Vol. 2. Vienna: Springer, 323–344.
Grime JP, Mowforth MA.. 1982. Variation in genome size—an ecological interpretation. Nature 299: 151–153. doi:10.1038/299151a0. DOI
Gruner A, Hoverter N, Smith T, Knight CA.. 2010. Genome size is a strong predictor of root meristem growth rate. Journal of Botany 2010: 1–4. doi:10.1155/2010/390414. DOI
Hartmann H, Trumbore S.. 2016. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytologist 211: 386–403. doi:10.1111/nph.13955. PubMed DOI
Hendry G. 1987. The ecological significance of fructan in a contemporary flora. New Phytologist 106: 201–216. doi:10.1111/j.1469-8137.1987.tb04690.x. DOI
Herben T, Klimešová J, Chytrý M.. 2018. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Functional Ecology 32: 799–808. doi:10.1111/1365-2435.13011. DOI
Hincha DK, Zuther E, Hellwege EM, Heyer AG.. 2002. Specific effects of fructo- and gluco- oligosaccharides in the preservation of liposomes during drying. Glycobiology 12: 103–110. doi:10.1093/glycob/12.2.103. PubMed DOI
Ho LST, Ané C.. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63: 397–408. doi:10.1093/sysbio/syu005. PubMed DOI
Janeček S, Lanta V, Klimešová J, Doležal J.. 2011. Effect of abandonment and plant classification on carbohydrate reserves of meadow plants. Plant Biology 13: 243–251. doi:10.1111/j.1438-8677.2010.00352.x. PubMed DOI
Jensen KH, Berg-Sørensen K, Bruus H, et al. . 2016. Sap flow and sugar transport in plants. Reviews of Modern Physics 88: 035007.
Jin Y, Qian H.. 2022. VPhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity 44: 335–339. doi:10.1016/j.pld.2022.05.005. PubMed DOI PMC
Klimešová J, de Bello F.. 2009. CLO-PLA: the database of clonal and bud bank traits of Central European flora. Journal of Vegetation Science 20: 511–516. doi:10.1111/j.1654-1103.2009.01050.x. DOI
Klimešová J, Martínková J.. 2022. Clonal growth, resprouting and vegetative propagation of weeds. In: Upadhyaya MK, Clements DR, Shrestha A. eds. Persistence strategies of weeds. Oxford: Wiley-Blackwell, 200–218.
Klimešová J, Martínková J, Pausas JG, et al. . 2019. Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics 40: 125485. doi:10.1016/j.ppees.2019.125485. DOI
Knight CA, Molinari NA, Petrov DA.. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. doi:10.1093/aob/mci011. PubMed DOI PMC
Lai J, Zou Y, Zhang J, Peres-Neto P.. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdaccahp R package. Methods in Ecology and Evolution 13: 782–788. doi:10.1111/2041-210X.13800 DOI
Leitch IJ, Chase MW, Bennett MD.. 1998. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Annals of Botany 82: 85–94. doi:10.1006/anbo.1998.0783 DOI
Liu DD, Chao WM, Turgeon R.. 2012. Transport of sucrose, not hexose, in the phloem. Journal of Experimental Botany 63: 4315–4320. doi:10.1093/jxb/ers127. PubMed DOI PMC
Livingston DP, Premakumar R, Tallury SP.. 2006. Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. Cryobiology 52: 200–208. doi:10.1016/j.cryobiol.2005.11.001. PubMed DOI
Livingston DP, Hincha DK, Heyer AG.. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences 66: 2007–2023. doi:10.1007/s00018-009-0002-x. PubMed DOI PMC
Lubbe FC, Bitomský M, Hájek T, et al. . 2021a. A tale of two grasslands: how belowground storage organs coordinate their traits with water-use traits. Plant and Soil 465: 533–548. doi:10.1007/s11104-021-05031-7. DOI
Lubbe FC, Klimeš A, Doležal J, et al. . 2021b. Carbohydrate storage in herbs: the forgotten functional dimension of the plant economic spectrum. Annals of Botany 127: 813–825. doi:10.1093/aob/mcab014. PubMed DOI PMC
Martinez-Vilalta J, Sala A, Asensio D, et al. . 2016. Dynamics of nonstructural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs 86: 495–516. doi:10.1002/ecm.1231 DOI
Martínková J, Klimeš A, Motyka V, et al. . 2023. Why is root sprouting not more common among plants? Phytohormonal clues and ecological correlates. Environmental and Experimental Botany 205: 105147. doi:10.1016/j.envexpbot.2022.105147. DOI
Orthen B. 2001. Sprouting of the fructan- and starch-storing geophyte Lachenalia minima: effects on carbohydrate and water content within the bulbs. Physiologia Plantarum 113: 308–314. doi:10.1034/j.1399-3054.2001.1130302.x. PubMed DOI
Orthen B, Wehrmeyer A.. 2004. Seasonal dynamics of non-structural carbohydrates in bulbs and shoots of the geophyte Galanthus nivalis. Physiologia Plantarum 120: 529–536. doi:10.1111/j.0031-9317.2004.0284.x. PubMed DOI
Owens T, Poole RJ.. 1979. Regulation of cytoplasmic and vacuolar volumes by plant cells in suspension culture. Plant Physiology 64: 900–904. doi:10.1104/pp.64.5.900. PubMed DOI PMC
Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ.. 2007. Differences in freeze tolerance of Zoysiagrasses: II Carbohydrate and proline accumulation. Crop Science 47: 2170–2181. doi:10.2135/cropsci2006.12.0784. DOI
Pinheiro J, Bates D, R Core Team. 2022. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-157. https://CRAN.R-project.org/package=nlme
R Core Team. 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.r-project.org
Ray-Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M.. 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution 5: 320–328. doi:10.1111/2041-210X.12166 DOI
Schnáblová R, Huang L, Klimešová J, Šmarda P, Herben T.. 2021. Inflorescence preformation prior to winter: a surprisingly widespread strategy that drives phenology of temperate perennial herbs. New Phytologist 229: 620–630. doi:10.1111/nph.16880. PubMed DOI
Šímová I, Herben T.. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 279: 867–875. doi:10.1098/rspb.2011.1284. PubMed DOI PMC
Sklenář P, Ptáček J, Klimeš A.. 2022. Genome size of alpine plants does not predict temperature resistance. Planta 256: 18. doi:10.1007/s00425-022-03935-x. PubMed DOI
Šmarda P, Knápek O, Březinová A, et al. . 2019. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91: 117–142. doi:10.23855/preslia.2019.117. DOI
Van den Ende W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science 4: 247. doi:10.3389/fpls.2013.00247. PubMed DOI PMC
Veselý P, Bureš P, Šmarda P, Pavlíček T.. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65–75. doi:10.1093/aob/mcr267. PubMed DOI PMC
Vijn I, Smeekens S.. 1999. Fructan: more than a reserve carbohydrate? Plant Physiology 120: 351–360. doi:10.1104/pp.120.2.351. PubMed DOI PMC
Wang Y, Naumann U, Wright ST, Warton DI.. 2012. mvabund – an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution 3: 471–474. doi:10.1111/j.2041-210x.2012.00190.x. DOI
Warton DI. 2008. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. Journal of the American Statistical Association 103: 340–349. doi:10.1198/016214508000000021. DOI
White AC, Rogers A, Rees M, Osborne CP.. 2016. How can we make plants grow faster? A source–sink perspective on growth rate. Journal of Experimental Botany 67: 31–45. doi:10.1093/jxb/erv447. PubMed DOI
Wickham H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer.
Wood SN 2017. Generalized additive models: an introduction with R. New York: Chapman & Hall/CRC.
Yu G, Smith DK, Zhu H, Guan Y, Lam TT.. 2017. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8: 28–36. doi:10.1111/2041-210x.12628. DOI