Genome size of alpine plants does not predict temperature resistance
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-12420S
Grantová Agentura České Republiky
PubMed
35748952
DOI
10.1007/s00425-022-03935-x
PII: 10.1007/s00425-022-03935-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cellular DNA content, Freezing resistance, Functional traits, Heat resistance, Tropical and temperate mountains,
- MeSH
- délka genomu MeSH
- klimatické změny * MeSH
- roční období MeSH
- rostliny * genetika MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.
Zobrazit více v PubMed
Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora alpina. Haupt Verlag Bern, Switzerland
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x PubMed DOI
Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200 DOI
Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225. https://doi.org/10.3389/fpls.2019.00225 PubMed DOI PMC
Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273 PubMed DOI PMC
Curtis EM, Leigh A, Rayburg S (2012) Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust J Bot 60:471–483. https://doi.org/10.1071/BT11284 DOI
Denver Botanic Gardens (2018) Wild flowers of the Rocky Mountain region. Timber Press, Portland
Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35:73–78 DOI
Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310 PubMed DOI
Faizullah L, Morton JA, Hersch-Green EI et al (2021) Exploring environmental selection on genome size in angiosperms. Trends Plant Sci 26:1039–1049. https://doi.org/10.1016/j.tplants.2021.06.001 PubMed DOI
Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Amer Nat 160:712–726 DOI
García-Varela S, Rada F (2003) Freezing avoidance mechanism in juveniles of giant rosette plants of the genus Espeletia. Acta Oecol 24:165–167 DOI
Grime JP (1998) Plant classification for ecological purposes: is there a role for genome size? Ann Bot 82:117–120 DOI
Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153 DOI
Grime JP, Shacklock JML, Band SR (1985) Nuclear DNA content, shoot phenology and species co-existence in a limestone grassland community. New Phytol 100:435–445 DOI
Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908. https://doi.org/10.1038/nature01843 PubMed DOI
Hidalgo O, Garcia S, Garnatje T et al (2015) Genome size in aquatic and wetland plants: fitting with the large genome constraint hypothesis with a few relevant exceptions. Plant Syst Evol 301:1927–1936. https://doi.org/10.1007/s00606-015-1205-2 DOI
Hodgson JG, Sharafi M, Jalili A et al (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584. https://doi.org/10.1093/aob/mcq011 PubMed DOI PMC
Janáček J, Prášil I (1991) Quantification of plant frost injury by nonlinear fitting of an S-shaped function. CryoLetters 12:47–52
Jin Y, Qian H (2019) V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42:1353–1359 DOI
Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76 DOI
Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766 DOI
Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190. https://doi.org/10.1093/aob/mci011 PubMed DOI PMC
Körner C (2003) Alpine plant life Functional plant ecology of high mountain ecosystems. Springer, Berlin
Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82:85–94 DOI
Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217. https://doi.org/10.1093/aob/mci014 PubMed DOI PMC
Leon-García IV, Lasso E (2019) High heat tolerance in plants from the Andean highlands: implications for paramos in a warmer world. PLoS ONE 14:e0224218 DOI
Luteyn JL (1999) Páramos: a cheklist of plant diversity, geographical distribution, and botanical literature. Mem NY Bot Gard 84:1–278
MacGillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants. Implications for rates of vegetation response to global warming. Funct Ecol 9:320–325 DOI
Marcante S, Sierra-Almeia A, Spindelböck JP et al (2012) Frost as a limiting factor for recruitment and establishment of early developing stages in an alpine glacier foreland? J Veg Sci 23:858–868 DOI
Meyerson LA, Pyšek P, Lučanová M et al (2020) Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11:e03145. https://doi.org/10.1002/ecs2.3145 DOI
Morgan HW, Westoby M (2005) The relationship between nuclear DNA content and leaf strategy in seed plants. Ann Bot 96:1321–1330 DOI
Orme D, Freckleton R, Thomas G et al (2013) The caper package: comparative analyses of phylogenetics and evolution in R. R Package Version 5(2):1–36
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884 DOI
Pellicer J, Leitch IJ (2020) Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol 226:301–305. https://doi.org/10.1111/nph.16261 PubMed DOI
Pellicer J, Powell RF, Leitch IJ (2021) The application of flow cytometry for estimating genome size, ploidy level endopolyploidy, and reproductive modes in plants. In: Besse P (ed) Molecular plant taxonomy Methods in molecular biology, vol 2222. Humana, New York, pp 325–361 DOI
Prášil I, Zámečník J (1998) The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ Exp Bot 40:1–10 DOI
R Core Team (2021) R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org
Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the Ecuadorian paramos. Plant Ecol 131:173–192 DOI
Reich PB, Wright IJ, Cavender-Bares J et al (2003) The evolution of plant functional variation: Traits, spectra, and strategies. Intern J Plant Sci 164:S143–S164. https://doi.org/10.1086/374368 DOI
Rosbakh S, Margreiter V, Jelcic B (2020) Seedlings of alpine species do not have better frost-tolerance than their lowland counterparts. Alp Bot 130:179–185 DOI
Sakai A, Larcher W (1987) Frost survival of plant. Responses and adaptations to freezing stress. Springer, Berlin
Sklenář P (2017) Seasonal variation of freezing resistance mechanisms in north-temperate alpine plants. Alp Bot 127:31–39 DOI
Sklenář P, Kučerová A, Macek P, Macková J (2010) Does plant height determine the freezing resistance in the páramo plants? Austral Ecol 35:929–934. https://doi.org/10.1111/j.1442-9993.2009.02104.x DOI
Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J (2021) Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytom Part A. https://doi.org/10.1002/cyto.a.24495 DOI
Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature (a review). Cryobiology 41:2710–3279 DOI