Genome size of alpine plants does not predict temperature resistance

. 2022 Jun 24 ; 256 (1) : 18. [epub] 20220624

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35748952

Grantová podpora
17-12420S Grantová Agentura České Republiky

Odkazy

PubMed 35748952
DOI 10.1007/s00425-022-03935-x
PII: 10.1007/s00425-022-03935-x
Knihovny.cz E-zdroje

Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.

Zobrazit více v PubMed

Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora alpina. Haupt Verlag Bern, Switzerland

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x PubMed DOI

Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200 DOI

Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225. https://doi.org/10.3389/fpls.2019.00225 PubMed DOI PMC

Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273 PubMed DOI PMC

Curtis EM, Leigh A, Rayburg S (2012) Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust J Bot 60:471–483. https://doi.org/10.1071/BT11284 DOI

Denver Botanic Gardens (2018) Wild flowers of the Rocky Mountain region. Timber Press, Portland

Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35:73–78 DOI

Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310 PubMed DOI

Faizullah L, Morton JA, Hersch-Green EI et al (2021) Exploring environmental selection on genome size in angiosperms. Trends Plant Sci 26:1039–1049. https://doi.org/10.1016/j.tplants.2021.06.001 PubMed DOI

Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Amer Nat 160:712–726 DOI

García-Varela S, Rada F (2003) Freezing avoidance mechanism in juveniles of giant rosette plants of the genus Espeletia. Acta Oecol 24:165–167 DOI

Grime JP (1998) Plant classification for ecological purposes: is there a role for genome size? Ann Bot 82:117–120 DOI

Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153 DOI

Grime JP, Shacklock JML, Band SR (1985) Nuclear DNA content, shoot phenology and species co-existence in a limestone grassland community. New Phytol 100:435–445 DOI

Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908. https://doi.org/10.1038/nature01843 PubMed DOI

Hidalgo O, Garcia S, Garnatje T et al (2015) Genome size in aquatic and wetland plants: fitting with the large genome constraint hypothesis with a few relevant exceptions. Plant Syst Evol 301:1927–1936. https://doi.org/10.1007/s00606-015-1205-2 DOI

Hodgson JG, Sharafi M, Jalili A et al (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584. https://doi.org/10.1093/aob/mcq011 PubMed DOI PMC

Janáček J, Prášil I (1991) Quantification of plant frost injury by nonlinear fitting of an S-shaped function. CryoLetters 12:47–52

Jin Y, Qian H (2019) V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42:1353–1359 DOI

Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76 DOI

Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766 DOI

Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190. https://doi.org/10.1093/aob/mci011 PubMed DOI PMC

Körner C (2003) Alpine plant life Functional plant ecology of high mountain ecosystems. Springer, Berlin

Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82:85–94 DOI

Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217. https://doi.org/10.1093/aob/mci014 PubMed DOI PMC

Leon-García IV, Lasso E (2019) High heat tolerance in plants from the Andean highlands: implications for paramos in a warmer world. PLoS ONE 14:e0224218 DOI

Luteyn JL (1999) Páramos: a cheklist of plant diversity, geographical distribution, and botanical literature. Mem NY Bot Gard 84:1–278

MacGillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants. Implications for rates of vegetation response to global warming. Funct Ecol 9:320–325 DOI

Marcante S, Sierra-Almeia A, Spindelböck JP et al (2012) Frost as a limiting factor for recruitment and establishment of early developing stages in an alpine glacier foreland? J Veg Sci 23:858–868 DOI

Meyerson LA, Pyšek P, Lučanová M et al (2020) Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11:e03145. https://doi.org/10.1002/ecs2.3145 DOI

Morgan HW, Westoby M (2005) The relationship between nuclear DNA content and leaf strategy in seed plants. Ann Bot 96:1321–1330 DOI

Orme D, Freckleton R, Thomas G et al (2013) The caper package: comparative analyses of phylogenetics and evolution in R. R Package Version 5(2):1–36

Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884 DOI

Pellicer J, Leitch IJ (2020) Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytol 226:301–305. https://doi.org/10.1111/nph.16261 PubMed DOI

Pellicer J, Powell RF, Leitch IJ (2021) The application of flow cytometry for estimating genome size, ploidy level endopolyploidy, and reproductive modes in plants. In: Besse P (ed) Molecular plant taxonomy Methods in molecular biology, vol 2222. Humana, New York, pp 325–361 DOI

Prášil I, Zámečník J (1998) The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ Exp Bot 40:1–10 DOI

R Core Team (2021) R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org

Ramsay PM, Oxley ERB (1997) The growth form composition of plant communities in the Ecuadorian paramos. Plant Ecol 131:173–192 DOI

Reich PB, Wright IJ, Cavender-Bares J et al (2003) The evolution of plant functional variation: Traits, spectra, and strategies. Intern J Plant Sci 164:S143–S164. https://doi.org/10.1086/374368 DOI

Rosbakh S, Margreiter V, Jelcic B (2020) Seedlings of alpine species do not have better frost-tolerance than their lowland counterparts. Alp Bot 130:179–185 DOI

Sakai A, Larcher W (1987) Frost survival of plant. Responses and adaptations to freezing stress. Springer, Berlin

Sklenář P (2017) Seasonal variation of freezing resistance mechanisms in north-temperate alpine plants. Alp Bot 127:31–39 DOI

Sklenář P, Kučerová A, Macek P, Macková J (2010) Does plant height determine the freezing resistance in the páramo plants? Austral Ecol 35:929–934. https://doi.org/10.1111/j.1442-9993.2009.02104.x DOI

Temsch EM, Koutecký P, Urfus T, Šmarda P, Doležel J (2021) Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytom Part A. https://doi.org/10.1002/cyto.a.24495 DOI

Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature (a review). Cryobiology 41:2710–3279 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace