• This record comes from PubMed

The global distribution of angiosperm genome size is shaped by climate

. 2024 Apr ; 242 (2) : 744-759. [epub] 20240124

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
GA20-15989S Grantová Agentura České Republiky

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.

See more in PubMed

Atkinson D, Ciotti BJ, Montagnes DJ. 2003. Protists decrease in size linearly with temperature: ca. 2.5% degrees C(−1). Proceedings of the Royal Society B: Biological Sciences 270: 2605–2611.

Avdulov NP. 1931. Karyo‐systematische Untersuchungen der Familie Gramineen. Bulletin of Applied Botany, of Genetics and Plant Breeding, Leningrad 44: 1–428. (Russian with German summary).

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986.

Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422–437.

Becher H, Powell RF, Brown MR, Metherell C, Pellicer J, Leitch IJ, Twyford AD. 2021. The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Annals of Botany 128: 639–651.

Beckmann M, Václavík T, Manceur AM, Šprtová L, von Wehrden H, Welk E, Cord AF. 2014. glUV: a global UV‐B radiation data set for macroecological studies. Methods in Ecology and Evolution 5: 372–383.

Belling J. 1925. The origin of chromosomal mutations in Uvularia. Journal of Genetics 15: 245–266.

Bennett MD. 1971. The duration of meiosis. Proceedings of the Royal Society B: Biological Sciences 178: 277–299.

Bennett MD. 1976. DNA amount, latitude, and crop plant distribution. Environmental and Experimental Botany 16: 93–108.

Bennett MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106: 177–200.

Bennett MD, Leitch IJ. 2012. Plant DNA C‐values Database (Release 8.0). [WWW document] URL https://cvalues.science.kew.org/ [accessed 1 February 2016].

Bennett MD, Smith JB, Lewis‐Smith RI. 1982. DNA amounts of angiosperms from the Antarctic and South Georgia. Environmental and Experimental Botany 22: 307–318.

Bennetzen JL, Ma J, Devos KM. 2005. Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95: 127–132.

Bennetzen JL, Wang H. 2014. The contributions of transposable elements to the structure, function and evolution of plant genomes. Annual Review of Plant Biology 65: 505–530.

Bhadra S, Leitch IJ, Onstein RE. 2023. From genome size to trait evolution during angiosperm radiation. Trends in Genetics 39: 728–735.

Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross‐Ibarra J. 2018. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genetics 14: e1007162.

Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L. 2000. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Annals of Botany 86: 565–573.

Bowers JE, Chapman BA, Rong JK, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438.

Bretagnolle F, Thompson JD. 1995. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytologist 129: 1–22.

Brown JH. 1984. On the relationship between abundance and distribution of species. American Naturalist 124: 255–279.

Brummitt RK, Pando F, Hollis S, Brummitt N. 2001. World geographical scheme for recording plant distributions. Pittsburgh, PA, USA: Hunt Institute for Botanical Documentation, Carnegie‐Mellon University.

Bureš P, Ozcan M, Šmerda J, Michálková E, Horová L, Plačková K, Šmarda P, Elliott TL, Veselý P, Ćato S et al. 2023. Evolution of genome size and GC content in the tribe Carduinae (Asteraceae): rare descending dysploidy and polyploidy, limited environmental control and strong phylogenetic signal. Preslia 95: 185–213.

Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. 2021. Genome size evolution is associated with climate seasonality and glucosinolates, but not life history, soil nutrients or range size, across a clade of mustards. Annals of Botany 127: 887–902.

Carta A, Mattana E, Dickie J, Vandelook F. 2022. Correlated evolution of seed mass and genome size varies among life forms in flowering plants. Seed Science Research 32: 46–52.

Casacuberta E, González J. 2013. The impact of transposable elements in environmental adaptation. Molecular Ecology 22: 1503–1517.

Cavalier‐Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147–175.

Choi IY, Kwon EC, Kim NS. 2020. The C‐ and G‐value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes & Genomics 42: 699–714.

Clark JW, Donoghue PCJ. 2017. Constraining the timing of whole genome duplication in plant evolutionary history. Proceedings of the Royal Society B: Biological Sciences 284: 20170912.

Cobos ME, Barve V, Barve N, Jiménez‐Valverde A, Nuñez‐Penichet C. 2022. Rangemap: an R package to explore species' geographic ranges. Biodiversity Informatics 17: 59–66.

Corbett‐Detig RB, Hartl DL, Sackton TB. 2015. Natural selection constrains neutral diversity across a wide range of species. PLoS Biology 13: e1002112.

Deniz Ö, Frost JM, Branco MR. 2019. Regulation of transposable elements by DNA modifications. Nature Reviews Genetics 20: 417–431.

Díez CM, Gaut BS, Meca E, Scheinvar E, Montes‐Hernandez S, Eguiarte LE, Tenaillon MI. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist 199: 264–276.

Doležel J, Bartoš J, Voglmayr H, Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51: 127–128.

Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495–505.

Drovetski SV, Aghayan SA, Mata VA, Lopes RJ, Mode NA, Harvey JA, Voelker G. 2014. Does the niche breadth or trade‐off hypothesis explain the abundance‐occupancy relationship in avian Haemosporidia? Molecular Ecology 23: 3322–3329.

Du YP, Bi Y, Zhang MF, Yang FP, Jia GX, Zhang XH. 2017. Genome size diversity in Lilium (Liliaceae) is correlated with karyotype and environmental traits. Frontiers in Plant Science 8: 1303.

Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K. 2010. Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82: 127–148.

Elliott TL, Zedek F, Barrett B, Bruhl J, Escudero M, Hroudová Z, Joly S, Larridon I, Luceño M, Márquez‐Corro JI et al. 2022. Chromosome size matters: genome evolution in the cyperid clade. Annals of Botany 130: 999–1014.

Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, Roehrdanz PR, Thiers BM, Burger JR, Corlett RT et al. 2019. The commonness of rarity: global and future distribution of rarity across land plants. Science Advances 5: eaaz0414.

Environmental Systems Research Institute (ESRI). 2014. ArcGIS Release 10. Redlands, CA USA: ESRI.

Faizullah L, Morton JA, Hersch‐Green EI, Walczyk AM, Leitch AR, Leitch IJ. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26: 1039–1049.

Forest F. 2023. Species‐level phylogenetic trees of all angiosperm species (100 trees). [WWW document] URL https://zenodo.org/record/7600341 [accessed 1 June 2023].

Francis D, Barlow PW. 1988. Temperature and the cell cycle. Symposia of the Society for Experimental Biology 42: 181–201.

Francis D, Davies MS, Barlow PW. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747–757.

Freckleton R, Harvey P, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160: 712–726.

Garcia S, Leitch IJ, Anadon‐Rosell A, Canela MÁ, Gálvez F, Garnatje T, Gras A, Hidalgo O, Johnston E, Mas de Xaxars G et al. 2014. Recent updates and developments to plant genome size databases. Nucleic Acids Research 42(D1): D1159–D1166.

Gaston KJ. 2003. The Structure and Dynamics of Geographic Ranges. New York, NY, USA: Oxford University Press.

Gaston KJ, Blackburn TM, Greenwood JJ, Gregory RD, Quinn RM, Lawton JH. 2002. Abundance–occupancy relationships. Journal of Applied Ecology 37: 39–59.

Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8: 215.

Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype. In: Greilhuber J, Doležel J, Wendel JF, eds. Plant genome diversity, Vol. 2: physical structure, behaviour and evolution of plant genomes. Wien, Austria: Springer, 323–344.

Greimler J, Temsch EM, Xue Z, Weiss‐Schneeweiss H, Volkova P, Peintinger M, Wasowicz P, Shang H, Schanzer I, Chiapella JO. 2022. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Systematics and Evolution 308: 9.

Grime JP, Mowforth MA. 1982. Variation in genome size – an ecological interpretation. Nature 299: 151–153.

Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL. 2004. Evolution of genome size in pines (Pinus) and its life‐history correlates: supertree analyses. Evolution 58: 1705–1729.

Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila CA, Trimmer M, Leitch IJ, Leitch AR. 2016. Genome size and ploidy influence angiosperm species' biomass under nitrogen and phosphorus limitation. New Phytologist 210: 1195–1206.

Guo Q, Qian H, Zhang J. 2022. On the relationship between species diversity and range size. Journal of Biogeography 49: 1911–1919.

Hagerup O. 1932. Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie. Hereditas 16: 19–40.

Hassler M. 2022. World plants. Synonymic checklist and distribution of the World Flora. Version 13.2; last update July 2nd, 2022. [WWW document] URL www.worldplants.de [accessed 6 August 2022].

Heilborn O. 1930. Temperature und Chromosomenkonjugation. Svensk Botanisk Tidskrift 24: 12–24.

Hessen DO, Daufresne M, Leinaas HP. 2013. Temperature‐size relations from the cellular‐genomic perspective. Biological Reviews of the Cambridge Philosophical Society 88: 476–489.

Ho LST, Ane C. 2014. A linear‐time algorithm for Gaussian and non‐Gaussian trait evolution models. Systematic Biology 63: 397–408.

Johnson C. 1998. Species extinction and the relationship between distribution and abundance. Nature 394: 272–274.

Jovani R, Lascelles B, Garamszegi LZ, Mavor R, Thaxter CB, Oro D. 2016. Colony size and foraging range in seabirds. Oikos 125: 968–974.

Kang M, Tao J, Wang J, Ren C, Qi Q, Xiang QY, Huang H. 2014. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. New Phytologist 202: 1371–1381.

Kardiman R, Ræbild A. 2018. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiology 38: 696–705.

Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria‐Auza RW, Zimmermann NE, Linder P, Kessler M. 2017. Climatologies at high resolution for the Earth land surface areas. Scientific Data 4: 170122.

Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria‐Auza RW, Zimmermann NE, Linder P, Kessler M s.a. Data from: Climatologies at high resolution for the earth's land surface areas. Dryad Digital Repository. doi: 10.5061/dryad.kd1d4.

Knight CA, Ackerly DD. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66–76.

Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190.

Koenker R, Portnoy S, Ng PT, Melly B, Zeileis A, Grosjean P, Moler C, Saad Y, Chernozhukov V, Fernandez‐Val I et al. 2022. Package ‘quantreg’. WWW document] URL https://r-project.org [accessed 6 August 2022].

Kreiner JM, Kron P, Husband BC. 2017. Evolutionary dynamics of unreduced gametes. Trends in Genetics 33: 583–593.

Lawson T, Matthews J. 2020. Guard cell metabolism and stomatal function. Annual Review of Plant Biology 71: 273–302.

Leitch AR, Leitch IJ. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481–483.

Leitch IJ, Johnston E, Pellicer J, Hidalgo O, Bennett MD. 2019. Angiosperm DNA C‐values Database (Release 9.0). [WWW document] URL https://cvalues.science.kew.org/ [accessed 15 June 2019].

Levin DA. 2002. The role of chromosomal change in plant evolution. Oxford, UK: Oxford University Press.

Levin DA, Funderburg SW. 1979. Genome size in angiosperms: temperate vs tropical species. American Naturalist 114: 784–795.

Lisch D. 2013. How important are transposons for plant evolution? Nature Reviews. Genetics 14: 49–61.

Lwin AK, Bertolini E, Pè ME, Zuccolo A. 2017. Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii. Molecular Genetics and Genomics 292: 157–171.

Lynch M. 2007. The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences, USA 104: 8597–8604.

Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302: 1401–1404.

MacGillivray CW, Grime JP. 1995. Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Functional Ecology 9: 320.

Mandáková T, Lysak MA. 2018. Post‐polyploid diploidization and diversification through dysploid changes. Current Opinion in Plant Biology 42: 55–65.

Mason AS, Pires CJ. 2015. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends in Genetics 31: 5–10.

Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran CT, Cronin JT. 2020. Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 11: e03145.

de Mol WE. 1928. The originating of diploid and tetraploid pollen‐grains in Duc van Thol‐Tulips (Tulipa suaveolens) dependent on the method of culture applied. Genetica 11: 119–212.

Müntzing A. 1936. The evolutionary significance of autopolyploidy. Hereditas 21: 263–378.

Orme D. 2013. The caper package: comparative analysis of phylogenetics and evolution in R. [WWW document] URL https://cran.r‐project.org/web/packages/caper/index.html.

Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401–437.

Paterson AH, Bowers JE, Chapman BA. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences, USA 101: 9903–9908.

Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018. Genome size diversity and its impact on the evolution of land plants. Genes 9: 88.

Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X, Jiang Y et al. 2022. Plant genome size modulates grassland community responses to multi‐nutrient additions. New Phytologist 236: 2091–2102.

QGIS Development Team. 2022. QGIS geographic information system. Beaverton, OR, USA: QGIS Association. [WWW document] URL http://qgis.osgeo.org [accessed 2 July 2020].

Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467–501.

Rayburn AL, Auger JA. 1990. Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theoretical and Applied Genetics 79: 470–474.

Rice A, Glick G, Abadi S, Einhorn M, Kopelman NM, Salman‐Minkov A, Mayzel J, Chay O, Mayrose I. 2015. The chromosome counts database (CCDB) – a community resource of plant chromosome numbers. New Phytologist 206: 16–26.

Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I. 2019. The global biogeography of polyploid plants. Nature Ecology & Evolution 3: 265–273.

Roddy AB, Théroux‐Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro S, Gilbride AB, Jensen B, Jiang G‐F et al. 2020. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences 181: 75–87.

Roskov Y, Ower G, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, Van Nieukerken E et al., eds. 2019. Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. Leiden, the Netherlands: Species 2000: Naturalis. [WWW document] URL www.catalogueoflife.org/annual‐checklist/2019 [accessed 6 August 2022].

Rosseel Y. 2012. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software 48: 1–36.

Sabath N, Ferrada E, Barve A, Wagner A. 2013. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biology and Evolution 5: 966–977.

Sakamura T, Stow I. 1926. Über die experimentell veranlasste Entstehung von keimfähigen Pollenkörnern mit abweichenden Chromosomenzahlen. The Journal of Japanese Botany 3: 111–137.

Schrader L, Schmitz J. 2019. The impact of transposable elements in adaptive evolution. Molecular Ecology 28: 1537–1549.

Schubert I, Vu GTH. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Science 21: 749–757.

Sheth SN, Morueta‐Holme N, Angert AL. 2020. Determinants of geographic range size in plants. New Phytologist 226: 650–665.

Šímová I, Herben T. 2012. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 279: 867–875.

Sklenář P, Ptáček J, Klimeš A. 2022. Genome size of alpine plants does not predict temperature resistance. Planta 256: 18.

Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long‐term grassland fertilization experiment. New Phytologist 200: 911–921.

Šmarda P, Klem K, Knápek O, Veselá B, Veselá K, Holub P, Kuchař V, Šilerová A, Horová L, Bureš P. 2023. Growth, physiology, and stomatal parameters of plant polyploids grown under ice age, present‐day, and future CO2 concentrations. New Phytologist 239: 399–414.

Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, Veselý P, Šmerda J, Rotreklová O, Bureš P. 2019. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91: 117–142.

Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. 2015. Polyploidy and genome evolution in plants. Current Opinion in Genetics and Development 35: 119–125.

Sonkoly J, Deák B, Valkó O, Molnár VA, Tóthmérész B, Török P. 2017. Do large‐seeded herbs have a small range size? The seed mass–distribution range trade‐off hypothesis. Ecology and Evolution 7: 11204–11212.

Soto Gomez M, Brown MJM, Pironon S, Veselý P, Bureš P, Elliott TL, Zedek F, Pellicer J, Forest F, Nic Lughadha E et al. 2023. Genome size is positively correlated with extinction risk in herbaceous angiosperms. Preprint. doi: 10.1101/2023.09.10.557053.

Souza G, Costa L, Guignard MS, Van‐Lume B, Pellicer J, Gagnon E, Leitch IJ, Lewis GP. 2019. Do tropical plants have smaller genomes? Correlation between genome size and climatic variables in the Caesalpinia Group (Caesalpinioideae, Leguminosae). Perspectives in Plant Ecology, Evolution and Systematics 38: 13–23.

Sparrow AH, Underbrink AG, Sparrow RC. 1967. Chromosomes and cellular radiosensitivity. I. The relationship of D0 to chromosome volume and complexity in seventy‐nine different organisms. Radiation Research 32: 915–945.

Spence ES, Fant JB, Gailing O, Griffith MP, Havens K, Hipp AL, Kadav P, Kramer A, Thompson P, Toppila R et al. 2021. Comparing genetic diversity in three threatened oaks. Forests 12: 561.

Stebbins GL. 1940. The significance of polyploidy in plant evolution. American Naturalist 74: 54–66.

Stebbins GL. 1966. Chromosomal variation and evolution: polyploidy and chromosome size and number shed light on evolutionary processes in higher plants. Science 152: 1463–1469.

Taylor A, Weigelt P, Denelle P, Cai L, Kreft H. 2023. The contribution of plant life and growth forms to global gradients of vascular plant diversity. New Phytologist 240: 1548–1560.

Ten Caten C, Holian LA, Dallas T. 2022. Effects of occupancy estimation on abundance‐occupancy relationships. Biology Letters 18: 20220137.

Tenaillon MI, Hollister JD, Gaut BS. 2010. A triptych of the evolution of plant transposable elements. Trends in Plant Science 15: 471–478.

Théroux‐Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK, Tholen D, McElrone AJ, Simonin KA, Brodersen CR. 2021. Maximum CO2 diffusion inside leaves is limited by the scaling of cell size and genome size. Proceedings of the Royal Society B: Biological Sciences 288: 20203145.

Trabucco A, Zomer RJ. 2018. Global aridity index and potential evapo‐transpiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information (CGIAR‐CSI). [WWW document] URL https://cgiarcsi.community [accessed 5 May 2022].

Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. 2019. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life‐history traits and climatic conditions. New Phytologist 224: 1642–1656.

Vasconcelos T. 2022. Discovering the rules of plant biogeography using a trait‐based approach, preprint. doi: 10.32942/osf.io/azytc.

Veleba A, Zedek F, Horová L, Veselý P, Srba M, Šmarda P, Bureš P. 2020. Is the evolution of carnivory connected with genome size reduction? American Journal of Botany 107: 1253–1259.

Veselý P, Bureš P, Šmarda P. 2013. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non‐geophytic relatives. Annals of Botany 112: 1193–1200.

Veselý P, Bureš P, Šmarda P, Pavlíček T. 2012. Genome size and DNA base composition of geophytes: The mirror of phenology and ecology? Annals of Botany 109: 65–75.

Veselý P, Šmarda P, Bureš P, Stirton C, Muasya AM, Mucina L, Horová L, Veselá K, Šilerová A, Šmerda J et al. 2020. Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. Annals of Botany 126: 323–330.

Vidal‐Russell R, Tadey M, Urfusová R, Urfus T, Souto CP. 2022. Evolutionary importance of the relationship between cytogeography and climate: new insights on creosote bushes from North and South America. Plant Diversity 44: 492–498.

Vinogradov AE. 2003. Selfish DNA is maladaptive: evidence from the plant Red list. Trends in Genetics 19: 609–614.

Vitousek PM, Border S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20: 5–15.

Wang X, Wang J, Jin D, Guo H, Lee T‐H, Liu T, Paterson AH. 2015. Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events. Molecular Plant 8: 885–898.

WCSP. 2017. WCSP: world checklist of selected plant families. Kew, UK: Royal Botanic Gardens. [WWW document] URL http://apps.kew.org/wcsp/home.do [accessed 6 February 2017].

Webb TJ, Freckleton RP, Gaston KJ. 2012. Characterizing abundance–occupancy relationships: there is no artefact. Global Ecology and Biogeography 21: 952–957.

Wendel JF. 2000. Genome evolution in polyploids. Plant Molecular Biology 42: 225–249.

Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756.

Wendel JF, Jackson SA, Meyers BC, Wing RA. 2016. Evolution of plant genome architecture. Genome Biology 17: 37.

Werren JH. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences, USA 108: 10863–10870.

Yu J, Li D, Lou Y, Guo S. 2018. Nuclear DNA content variation of herbaceous angiosperm species on 10 global latitudinal transects. Journal of the Torrey Botanical Society 145: 340–352.

Zedek F, Bureš P. 2019. Pest arthropods with holocentric chromosomes are more resistant to sterilizing ionizing radiation. Radiation Research 191: 255–261.

Zedek F, Plačková K, Veselý P, Šmerda J, Šmarda P, Horová L, Bureš P. 2020. Endopolyploidy is a common response to UV‐B stress in natural plant populations, but its magnitude may be affected by chromosome type. Annals of Botany 126: 883–889.

Zedek F, Šmerda J, Veselý P, Horová L, Kocmanová J, Bureš P. 2021. Elevation‐dependent endopolyploid response suggests that plants with holocentric chromosomes are less stressed by UV‐B. Botanical Journal of the Linnean Society 195: 106–113.

Zedek F, Veselý P, Tichý L, Elliott TL, Garbolino E, de Ruffray P, Bureš P. 2022. Holocentric plants are more competitive under higher UV‐B doses. New Phytologist 233: 15–21.

Zenil-Ferguson R, Ponciano JM, Burleigh JG. 2017. Testing the association of phenotypes with polyploidy: an example using herbaceous and woody eudicots. Evolution 71: 1138–1148.

Zonneveld BJM. 2019. The DNA weights per nucleus (genome size) of more than 2350 species of the Flora of The Netherlands, of which 1370 are new to science, including the pattern of their DNA peaks. Forum Geobotanicum 8: 24–78.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...