Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
109508 and 76555
National Research Foundation, South Africa - International
PubMed
32842660
PubMed Central
PMC7563339
DOI
10.3390/biom10091222
PII: biom10091222
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, biotechnology, food security, micropropagation, phytohormones, plant growth regulators, postharvest, quality attributes, shoot proliferation, somatic embryogenesis,
- MeSH
- cytokininy chemie metabolismus farmakologie MeSH
- molekulární struktura MeSH
- ovoce účinky léků růst a vývoj metabolismus MeSH
- regulátory růstu rostlin chemie metabolismus farmakologie MeSH
- rostliny účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- regulátory růstu rostlin MeSH
Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.
Zobrazit více v PubMed
Kaminek M. Tracking the story of cytokinin research. J. Plant Growth Regul. 2015;34:723–739. doi: 10.1007/s00344-015-9543-4. DOI
Merchant S.S., Gruissem W., Ort D. Annual review of plant biology 2017. Curr. Sci. 2018;115:431–449. doi: 10.18520/cs/v115/i6/1204-1207. DOI
Srivastava L.M. Introduction to Some Special Aspects of Plant Growth and Development. Elsevier BV; Amsterdam, The Netherlands: 2002. p. 1.
Stirk W.A., Van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI
Jameson P.E., Song J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2015;67:593–606. doi: 10.1093/jxb/erv461. PubMed DOI
Kinet J., Lejeune P., Bernier G. Shoot-root interactions during floral transition: A possible role for cytokinins. Environ. Exp. Bot. 1993;33:459–469. doi: 10.1016/0098-8472(93)90019-C. DOI
Kumar R., Khurana A., Sharma A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2013;65:4561–4575. doi: 10.1093/jxb/eru277. PubMed DOI
Kunikowska A., Byczkowska A., Doniak M., Kaźmierczak A. Cytokinins résumé: Their signaling and role in programmed cell death in plants. Plant Cell Rep. 2013;32:771–780. doi: 10.1007/s00299-013-1436-z. PubMed DOI PMC
Schmülling T. New insights into the functions of cytokinins in plant development. J. Plant Growth Regul. 2002;21:40–49. doi: 10.1007/s003440010046. PubMed DOI
Šmehilová M., Spíchal L. The Plant Plasma Membrane. Volume 22. Springer Science and Business Media LLC; Berlin, Germany: 2013. The biotechnological potential of cytokinin status manipulation; pp. 103–130.
Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015;34:845–872. doi: 10.1007/s00344-015-9541-6. DOI
Spíchal L. Cytokinins—Recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267. doi: 10.1071/FP11276. PubMed DOI
Khush G. Green revolution: The way forward. Nat. Rev. Genet. 2001;2:815–822. doi: 10.1038/35093585. PubMed DOI
Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorganic Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI
Bapat V.A., Trivedi P.K., Ghosh A., Sane V.A., Ganapathi T.R., Nath P. Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol. Adv. 2010;28:94–107. doi: 10.1016/j.biotechadv.2009.10.002. PubMed DOI
Cherian S., Figueroa C.R., Nair H. ‘Movers and shakers’ in the regulation of fruit ripening: A cross-dissection of climacteric versus non-climacteric fruit. J. Exp. Bot. 2014;65:4705–4722. doi: 10.1093/jxb/eru280. PubMed DOI
Debnath S.C. Somatic Embryogenesis in Woody Plants. Springer Science and Business Media LLC; Berlin, Germany: 2003. Micropropagation of small fruits; pp. 465–506.
Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014;32:429–448. doi: 10.1016/j.biotechadv.2013.12.005. PubMed DOI
Pauls K. Plant biotechnology for crop improvement. Biotechnol. Adv. 1995;13:673–693. doi: 10.1016/0734-9750(95)02010-1. PubMed DOI
Rai M.K., Asthana P., Singh S.K., Jaiswal V., Jaiswal U. The encapsulation technology in fruit plants—A review. Biotechnol. Adv. 2009;27:671–679. doi: 10.1016/j.biotechadv.2009.04.025. PubMed DOI
Sharma H., Crouch J., Sharma K., Seetharama N., Hash C. Applications of biotechnology for crop improvement: Prospects and constraints. Plant Sci. 2002;163:381–395. doi: 10.1016/S0168-9452(02)00133-4. DOI
Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnol. Adv. 2013;31:97–117. doi: 10.1016/j.biotechadv.2011.12.003. PubMed DOI
Ma Q.-H. Genetic engineering of cytokinins and their application to agriculture. Crit. Rev. Biotechnol. 2008;28:213–232. doi: 10.1080/07388550802262205. PubMed DOI
Rai M.K., Shekhawat N.S. Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tissue Organ Cult. 2013;116:1–15. doi: 10.1007/s11240-013-0389-9. DOI
Sonah H., Deshmukh R., Singh V.P., Gupta D.K., Singh N.K., Sharma T.R. Genomic resources in horticultural crops: Status, utility and challenges. Biotechnol. Adv. 2011;29:199–209. doi: 10.1016/j.biotechadv.2010.11.002. PubMed DOI
Karkute S.G., Singh A.K., Gupta O.P., Singh P.M., Singh B. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front. Plant Sci. 2017;8:8. doi: 10.3389/fpls.2017.01635. PubMed DOI PMC
Gururani M.A., Ganesan M., Song P.-S. Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnol. Adv. 2015;33:53–63. doi: 10.1016/j.biotechadv.2014.12.005. PubMed DOI
Manjunatha G., Lokesh V., Neelwarne B. Nitric oxide in fruit ripening: Trends and opportunities. Biotechnol. Adv. 2010;28:489–499. doi: 10.1016/j.biotechadv.2010.03.001. PubMed DOI
Watkins C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006;24:389–409. doi: 10.1016/j.biotechadv.2006.01.005. PubMed DOI
Sharma H.S.S., Fleming C., Selby C., Rao J.R., Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Environ. Biol. Fishes. 2013;26:465–490. doi: 10.1007/s10811-013-0101-9. DOI
Albacete A., Martínez-Andújar C., Pérez-Alfocea F. Hormonal and metabolic regulation of source-sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnol. Adv. 2014;32:12–30. doi: 10.1016/j.biotechadv.2013.10.005. PubMed DOI
Argueso C.T., Ferreira F.J., Kieber J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI
Shigenaga A.M., Argueso C.T. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 2016;56:174–189. doi: 10.1016/j.semcdb.2016.06.005. PubMed DOI
Wolters H., Jürgens G. Survival of the flexible: Hormonal growth control and adaptation in plant development. Nat. Rev. Genet. 2009;10:305–317. doi: 10.1038/nrg2558. PubMed DOI
Pacifici E., Polverari L., Sabatini S. Plant hormone cross-talk: The pivot of root growth. J. Exp. Bot. 2015;66:1113–1121. doi: 10.1093/jxb/eru534. PubMed DOI
Vanková R., Petrášek J., Zažímalová E., Kamínek M., Motyka V., Ludwig-Müller J. Auxins and cytokinins in plant development and interactions with other phytohormones 2014. J. Plant Growth Regul. 2014;33:709–714. doi: 10.1007/s00344-014-9449-6. DOI
Bubán T. The use of benzyladenine in orchard fruit growing: A mini review. Plant Growth Regul. 2000;32:381–390. doi: 10.1023/A:1010785604339. DOI
Kakimoto T. Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 2003;54:605–627. doi: 10.1146/annurev.arplant.54.031902.134802. PubMed DOI
Hwang I., Sheen J., Muller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012;63:353–380. doi: 10.1146/annurev-arplant-042811-105503. PubMed DOI
Steklov M.Y., Lomin S.N., Osolodkin D.I., Romanov G.A. Structural basis for cytokinin receptor signaling: An evolutionary approach. Plant Cell Rep. 2013;32:781–793. doi: 10.1007/s00299-013-1408-3. PubMed DOI
Bergougnoux V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014;32:170–189. doi: 10.1016/j.biotechadv.2013.11.003. PubMed DOI
Gillaspy G.E., Ben-David H., Gruissem W. Fruits: A developmental perspective. Plant Cell. 1993;5:1439–1451. doi: 10.2307/3869794. PubMed DOI PMC
Matsuo S., Kikuchi K., Fukuda M., Honda I., Imanishi S. Roles and regulation of cytokinins in tomato fruit development. J. Exp. Bot. 2012;63:5569–5579. doi: 10.1093/jxb/ers207. PubMed DOI PMC
Schaller G.E., Bishopp A., Kieber J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC
Hosek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2019;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI
Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI
Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145:dev149344. doi: 10.1242/dev.149344. PubMed DOI
Kieber J.J., Schaller G.E. Cytokinins. Arab. Book. 2014;12:e0168. doi: 10.1199/tab.0168. PubMed DOI PMC
Šmehilová M., Dobrůšková J., Novak O., Takáč T., Galuszka P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01264. PubMed DOI PMC
Argueso C.T., Ferreira F.J., Epple P., To J.P., Hutchison C.E., Schaller G.E., Dangl J.L., Kieber J.J. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 2012;8:e1002448. doi: 10.1371/journal.pgen.1002448. PubMed DOI PMC
Shi X., Gupta S., Lindquist I.E., Cameron C.T., Mudge J., Rashotte A.M. Transcriptome analysis of cytokinin response in tomato leaves. PLoS ONE. 2013;8:e55090. doi: 10.1371/journal.pone.0055090. PubMed DOI PMC
Shi X., Gupta S., Rashotte A.M. Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. Plant Cell Rep. 2013;33:35–45. doi: 10.1007/s00299-013-1510-6. PubMed DOI
Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI
Ni J., Bai S., Gao L., Qian M., Zhong L., Teng Y. Identification, classification, and transcription profiles of the B-type response regulator family in pear. PLoS ONE. 2017;12:e0171523. doi: 10.1371/journal.pone.0171523. PubMed DOI PMC
Li L., Li N., Luo Z., Huang X., Li X. Proteomic response and quality maintenance in postharvest fruit of strawberry (Fragaria × ananassa) to exogenous cytokinin. Sci. Rep. 2016;6:27094. doi: 10.1038/srep27094. PubMed DOI PMC
Nardozza S., Boldingh H.L., Wohlers M., Gleave A.P., Luo Z., Costa G., A Macrae E., Clearwater M.J., Richardson A.C. Exogenous cytokinin application to Actinidia chinensis var. deliciosa ‘Hayward’ fruit promotes fruit expansion through water uptake. Hortic. Res. 2017;4:17043. doi: 10.1038/hortres.2017.43. PubMed DOI PMC
Tan M., Li G., Qi S., Liu X., Chen X., Ma J., Zhang N., Han M. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.) Gene. 2018;651:106–117. doi: 10.1016/j.gene.2018.01.101. PubMed DOI
Li Y., Zhang N., Xing L., Zhang S., Zhao C., Han M. Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in ‘Fuji’ apple (Malus domestica Borkh.) Plant Growth Regul. 2015;79:65–70. doi: 10.1007/s10725-015-0111-5. DOI
Li Y., Zhang N., Zhang L., Zuo X., Fan S., Zhang X., Shalmani A., Han M. Identification and expression analysis of cytokinin response-regulator genes during floral induction in apple (Malus domestica Borkh.) Plant Growth Regul. 2017;83:455–464. doi: 10.1007/s10725-017-0311-2. DOI
Tian S., Jiang L., Zhang J., Zong M., Ren Y., Guo S., Gong G., Liu F., Xu Y., Gao Q. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep. 2016;36:399–406. doi: 10.1007/s00299-016-2089-5. PubMed DOI
Hajari E. Molecular and related approaches to litchi improvement—Historical perspective and future trends. J. Hortic. Sci. Biotechnol. 2019;94:693–702. doi: 10.1080/14620316.2019.1624202. DOI
Wang T., Zhang H., Zhu H.-L. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic. Res. 2019;6:77. doi: 10.1038/s41438-019-0159-x. PubMed DOI PMC
Chai P., Dong S., Chai L., Chen S., Flaishman M., Ma H. Cytokinin-induced parthenocarpy of San Pedro type fig (Ficus carica L.) main crop: Explained by phytohormone assay and transcriptomic network comparison. Plant Mol. Biol. 2019;99:329–346. doi: 10.1007/s11103-019-00820-2. PubMed DOI
Zheng J., Cao M., Zhang Z., Zheng Z.-L. Expression analysis suggests potential roles for PH-LIKE(PHL) genes in diploid strawberry Fragaria vesca L. seedling hormone response and fruit development. J. Hortic. Sci. Biotechnol. 2018;94:151–159. doi: 10.1080/14620316.2018.1499424. DOI
Joshi M., Baghel R.S., Fogelman E., Stern R.A., Ginzberg I. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4 + 7 and the cytokinin 6-benzyladenine. Plant Physiol. Biochem. 2018;127:436–445. doi: 10.1016/j.plaphy.2018.04.015. PubMed DOI
Luo J., Guo L., Huang Y., Wang C., Qiao C., Pang R., Li J., Pang T., Wang R., Xie H., et al. Transcriptome analysis reveals the effect of pre-harvest CPPU treatment on the volatile compounds emitted by kiwifruit stored at room temperature. Food Res. Int. 2017;102:666–673. doi: 10.1016/j.foodres.2017.09.051. PubMed DOI
Hu B., Li J., Wang D., Qin Y., Zhao J. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid. Plant Growth Regul. 2017;84:437–450. doi: 10.1007/s10725-017-0351-7. DOI
Hu B., Zhao J., Lai B., Qin Y., Wang H., Hu G. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep. 2016;35:831–843. doi: 10.1007/s00299-015-1924-4. PubMed DOI
Nakajima I., Ban Y., Azuma A., Onoue N., Moriguchi T., Yamamoto T., Toki S., Endo M. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE. 2017;12:e0177966. doi: 10.1371/journal.pone.0177966. PubMed DOI PMC
Jia H., Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE. 2014;9:e93806. doi: 10.1371/journal.pone.0093806. PubMed DOI PMC
Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017;15:1509–1519. doi: 10.1111/pbi.12733. PubMed DOI PMC
Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC
Liu P., Wang S., Wang X., Yang X., Li Q., Wang C., Chen C., Shi Q., Ren Z., Wang L. Genome-wide characterization of two-component system (TCS) genes in melon (Cucumis melo L.) Plant Physiol. Biochem. 2020;151:197–213. doi: 10.1016/j.plaphy.2020.03.017. PubMed DOI
Altman A., Ziv M. Introduction: Horticultural biotechnology: A historical perspective and future prospects. Acta Hortic. 1997;447:31–38. doi: 10.17660/ActaHortic.1997.447.1. DOI
Dobránszki J., Da Silva J.A.T. Micropropagation of apple—A review. Biotechnol. Adv. 2010;28:462–488. doi: 10.1016/j.biotechadv.2010.02.008. PubMed DOI
Bhatti S., Jha G. Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep. 2010;29:1215–1225. doi: 10.1007/s00299-010-0907-8. PubMed DOI
Krishna H., Alizadeh M., Singh D., Singh U., Chauhan N., Eftekhari M., Sadh R.K. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016;6:54. doi: 10.1007/s13205-016-0389-7. PubMed DOI PMC
Omar A.A., Dutt M., Gmitter F.G., Grosser J.W. Advanced Structural Safety Studies. Volume 1359. Springer Science and Business Media LLC; Berlin, Germany: 2016. Somatic embryogenesis: Still a relevant technique in citrus improvement; pp. 289–327. PubMed
Maillot P., Deglène-Benbrahim L., Walter B. Efficient somatic embryogenesis from meristematic explants in grapevine (Vitis vinifera L.) cv. Chardonnay: An improved protocol. Trees. 2016;30:1377–1387. doi: 10.1007/s00468-016-1374-9. DOI
Rai M.K., Asthana P., Jaiswal V.S., Jaiswal U. Biotechnological advances in guava (Psidium guajava L.): Recent developments and prospects for further research. Trees. 2009;24:1–12. doi: 10.1007/s00468-009-0384-2. DOI
Chauhan R.D., Kanwar K. Biotechnological advances in pomegranate (Punica granatum L) In Vitro Cell. Dev. Biol.-Plant. 2012;48:579–594. doi: 10.1007/s11627-012-9467-7. DOI
Kamle M., Baek K.-H. Somatic embryogenesis in guava (Psidium guajava L.): Current status and future perspectives. 3 Biotech. 2017;7 doi: 10.1007/s13205-017-0844-0. PubMed DOI PMC
Paul H., Belaizi M., Sangwan-Norreel B. Somatic embryogenesis in apple. J. Plant Physiol. 1994;143:78–86. doi: 10.1016/S0176-1617(11)82100-0. DOI
Wang G.-F., Qin H.-Y., Sun D., Fan S.-T., Yang Y.-M., Wang Z.-X., Xu P.-L., Zhao Y., Liu Y.-X., Jun A. Haploid plant regeneration from hardy kiwifruit (Actinidia arguta Planch.) anther culture. Plant Cell Tissue Organ Cult. 2018;134:15–28. doi: 10.1007/s11240-018-1396-7. DOI
Pruski K., Nowak J., Grainger G. Micropropagation of four cultivars of Saskatoon berry (Amelanchier alnifolia NUTT.) Plant Cell Tissue Organ Cult. (PCTOC) 1990;21:103–109. doi: 10.1007/BF00033428. DOI
Moyo M., Aremu A.O., Plačková L., Plíhalová L., Pěnčík A., Novak O., Holub J., Dolezal K., Van Staden J. Deciphering the growth pattern and phytohormonal content in Saskatoon berry (Amelanchier alnifolia) in response to in vitro cytokinin application. New Biotechnol. 2018;42:85–94. doi: 10.1016/j.nbt.2018.02.001. PubMed DOI
Be L., DeBergh P. Potential low-cost micropropagation of pineapple (Ananas comosus) S. Afr. J. Bot. 2006;72:191–194. doi: 10.1016/j.sajb.2005.07.002. DOI
Teklehaymanot T., Wannakrairoj S., Pipattanawong N. Meta-topolin for pineapple shoot multiplication under three in vitro systems. Am. Eurasian J. Agric. Environ. Sci. 2010;7:157–162.
Okunade O.A., Sinniah U.R., Namasivayam P., Swamy M.K., Lynch P.T. Influence of seed position within the fruit on seedling quality and in vitro shoot tip production of jackfruit. J. Hortic. Sci. Biotechnol. 2017;93:1–9. doi: 10.1080/14620316.2017.1405746. DOI
Mahoney J.D., Apicella P.V., Brand M.H. Adventitious shoot regeneration from in vitro leaves of Aronia mitschurinii and cotyledons of closely related Pyrinae taxa. Sci. Hortic. 2018;237:135–141. doi: 10.1016/j.scienta.2018.03.062. DOI
Roussos P.A., Dimitriou G., Voloudakis A.E. N-(2-chloro-4-pyridyl)-N-phenylurea(4-CPPU) enhances in vitro direct shoot organogenesis of Citrus aurantium L. epicotyl segments compared to other commonly used cytokinins. Span. J. Agric. Res. 2011;9:504. doi: 10.5424/sjar/20110902-201-10. DOI
Niedz R.P., Evens T.J. The effects of benzyladenine and meta-topolin on in vitro shoot regeneration of a Citrus citrandarin rootstock. Res. J. Agric. Biol. Sci. 2010;6:45–53.
Hussain M., Raja N.I., Iqbal M., Iftikhar A., Sadaf H.M., Sabir S., Sultan M.A., Faz M.N.A. Plantlets regeneration via somatic embryogenesis from the nucellus tissues of kinnow mandarin (Citrus reticulata L.) Am. J. Plant Sci. 2016;7:798–805. doi: 10.4236/ajps.2016.76074. DOI
Salis C., E Papadakis I., Kintzios S., Hagidimitriou M. In vitro propagation and assessment of genetic relationships of citrus rootstocks using ISSR molecular markers. Not. Bot. Horti Agrobot. Cluj-Napoca. 2017;45:383–391. doi: 10.15835/nbha45210900. DOI
Ling W.T., Liew F.C., Lim W.Y., Subramaniam S., Chew B.L. shoot induction from axillary shoot tip explants of fig (Ficus carica) cv. Japanese BTM 6. Trop. Life Sci. Res. 2018;29:165–174. doi: 10.21315/tlsr2018.29.2.11. PubMed DOI PMC
Cappelletti R., Sabbadini S., Mezzetti B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci. Hortic. 2016;207:117–124. doi: 10.1016/j.scienta.2016.05.016. DOI
Biswas M.K., Dutt M., Roy U., Islam R., Hossain M. Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Sci. Hortic. 2009;122:409–416. doi: 10.1016/j.scienta.2009.06.002. DOI
Naing A.H., Kim S.H., Chung M.Y., Park S.K., Kim C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods. 2019;15:36. doi: 10.1186/s13007-019-0421-0. PubMed DOI PMC
Das D.K., Rahman A., Kumari D. Synthetic seed preparation, germination and plantlet regeneration of litchi (Litchi chinensis Sonn.) Am. J. Plant Sci. 2016;7:1395–1406. doi: 10.4236/ajps.2016.710133. DOI
Dobránszki J., Hudak I., Magyar-Tábori K., Jámbor-Benczúr E., Galli Z., Kiss E. How can different cytokinins influence the process of shoot regeneration from apple leaves in ‘Royal Gala’ and ‘M.26’. Acta Hortic. 2006;725:191–196. doi: 10.17660/ActaHortic.2006.725.22. DOI
Magyar-Tábori K., Dobránszky J., Jámbor-Benczúr É., Bubán T., Lazányi J., Szalai J., Ferenczy A. Post-effects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ’Red Fuji’. Int. J. Hortic. Sci. 2001;7:26–29. doi: 10.31421/IJHS/7/3-4/276. DOI
Dobránszki J., Magyar-Tábori K., Jámbor-Benczúr E., Al E. Effect of conditioning apple shoots with meta-topolin on the morphogenic activity of in vitro leaves. Acta Agron. Hung. 2002;50:117–126. doi: 10.1556/AAgr.50.2002.2.1. DOI
Dobránszky J., Jámbor-Benczúr E., Reményi M.L., Magyar-Tábori K., Hudák I., Kiss E., Galli Z. Effects of aromatic cytokinins on structural characteristics of leaves and their post-effects on subsequent shoot regeneration from in vitro apple leaves of ’Royal Gala’. Int. J. Hortic. Sci. 2005;11:41–46. doi: 10.31421/IJHS/11/1/556. DOI
Magyar-Tábori K., Dobránszki J., Hudák I. Effect of cytokinin content of the regeneration media on in vitro rooting ability of adventitious apple shoots. Sci. Hortic. 2011;129:910–913. doi: 10.1016/j.scienta.2011.05.011. DOI
Lizárraga A., Fraga M., Ascasíbar J., González M.L. In vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. Am. J. Plant Sci. 2017;8:2238–2254. doi: 10.4236/ajps.2017.89150. DOI
Saha S., Adhikari S., Dey T., Ghosh P. RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene. 2015;7:7–15. doi: 10.1016/j.mgene.2015.10.004. PubMed DOI PMC
Safarpour M., Sinniah U.R., Subramaniam S., Swamy M.K. A novel technique for Musa acuminata Colla ‘Grand Naine’ (AAA) micropropagation through transverse sectioning of the shoot apex. In Vitro Cell. Dev. Biol.-Plant. 2017;53:226–238. doi: 10.1007/s11627-017-9809-6. DOI
Arinaitwe G., Rubaihayo P.R., Magambo M.J.S. Proliferation rate effects of cytokinins on banana (Musa spp.) cultivars. Sci. Hortic. 2000;86:13–21. doi: 10.1016/S0304-4238(00)00124-2. DOI
Bairu M.W., Stirk W.A., Doležal K., Van Staden J. The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA) Plant Cell Tissue Organ Cult. 2008;95:373–379. doi: 10.1007/s11240-008-9451-4. DOI
Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Shoot and root proliferation in ‘Williams’ banana: Are the topolins better cytokinins? Plant Cell Tissue Organ Cult. 2012;111:209–218. doi: 10.1007/s11240-012-0187-9. DOI
Bairu M.W., Fennell C.W., Van Staden J. The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’) Sci. Hortic. 2006;108:347–351. doi: 10.1016/j.scienta.2006.01.039. DOI
Escalona M., Cejas I., González-Olmedo J., Capote I., Roels S., Cañal M.J., Rodríguez R., Sandoval J., Debergh P. The effect of meta-topolin on plantain propagation using a temporary immersion bioreactor. InfoMusa. 2003;12:28–30.
Roels S., Escalona M., Cejas I., Noceda C., Rodriguez R., Cañal M.-J., Sandoval J., DeBergh P. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult. 2005;82:57–66. doi: 10.1007/s11240-004-6746-y. DOI
De Faria R.B., De Carvalho I.F., Rossi A.A.B., De Matos E.M., Rocha D.I., Pinto D.L.P., Otoni W.C., Da Silva M.L. High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species. In Vitro Cell. Dev. Biol.-Plant. 2018;54:166–174. doi: 10.1007/s11627-017-9881-y. DOI
Antoniazzi C.A., De Faria R.B., De Carvalho P.P., Mikovski A.I., De Carvalho I.F., De Matos E.M., Reis A.C., Viccini L.F., Pinto D.L.P., Rocha D.I., et al. In vitro regeneration of triploid plants from mature endosperm culture of commercial passionfruit (Passiflora edulis Sims) Sci. Hortic. 2018;238:408–415. doi: 10.1016/j.scienta.2018.05.001. DOI
Barceló-Muñoz A., Encina C.L., Simón-Pérez E., Pliego-Alfaro F. Micropropagation of adult avocado. Plant Cell Tissue Organ Cult. 1999;58:11–17. doi: 10.1023/A:1006305716426. DOI
Soni M., Kanwar K. Rejuvenation influences indirect organogenesis from leaf explants of Pomegranate (Punica granatum L.) ‘Kandhari Kabuli’. J. Hortic. Sci. Biotechnol. 2016;91:93–99. doi: 10.1080/14620316.2015.1110998. DOI
Ružić D.V., Vujović T.I. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.) Hortic. Sci. 2008;35:12–21. doi: 10.17221/646-HORTSCI. DOI
Nas M.N., Bolek Y., Sevgin N. The effects of explant and cytokinin type on regeneration of Prunus microcarpa. Sci. Hortic. 2010;126:88–94. doi: 10.1016/j.scienta.2010.06.012. DOI
Tsafouros A., Roussos P.A. First report of Krymsk® 5 (cv. VSL 2) cherry rootstock in vitro propagation: Studying the effect of cytokinins, auxins and endogenous sugars. Not. Bot. Horti Agrobot. Cluj-Napoca. 2018;47:152–161. doi: 10.15835/nbha47111276. DOI
Qiu D., Wei X., Fan S., Jian D., Chen J. Regeneration of blueberry cultivars through indirect shoot organogenesis. HortScience. 2018;53:1045–1049. doi: 10.21273/HORTSCI13059-18. DOI
Fan S., Jian D., Wei X., Chen J., Beeson R.C., Zhou Z., Wang X. Micropropagation of blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in vitro shoot culture. Sci. Hortic. 2017;226:277–284. doi: 10.1016/j.scienta.2017.08.052. DOI
Debnath S.C. A scale-up system for lowbush blueberry micropropagation using a bioreactor. HortScience. 2009;44:1962–1966. doi: 10.21273/HORTSCI.44.7.1962. DOI
Ružić D., Vujović T., Libiakova G., Cerović R., Gajdošová A. Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.) J. Berry Res. 2012;2:97–103. doi: 10.3233/JBR-2012-030. DOI
Liu C., Callow P., Rowland L.J., Hancock J.F., Song G.-q. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars. Plant Cell Tissue Organ Cult. 2010;103:137–144. doi: 10.1007/s11240-010-9755-z. DOI
Cao X., Hammerschlag F.A., Douglass L. A two-step pretreatment significantly enhances shoot organogenesis from leaf explants of highbush blueberry cv. Bluecrop. HortScience. 2002;37:819–821. doi: 10.21273/HORTSCI.37.5.819. DOI
Reed B.M., Abdelnour-Esquivel A. The use of zeatin to initiate in vitro cultures of Vaccinium species and cultivars. HortScience. 1991;26:1320–1322. doi: 10.21273/HORTSCI.26.10.1320. DOI
Meiners J., Schwab M., Szankowski I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult. 2007;89:169–176. doi: 10.1007/s11240-007-9230-7. DOI
Rowland L.J., Ogden E.L. Use of a cytokinin conjugate for efficient shoot regeneration from leaf sections of highbush blueberry. HortScience. 1992;27:1127–1129. doi: 10.21273/HORTSCI.27.10.1127. DOI
Hung C.D., Hong C.-H., Kim S.-K., Lee K.-H., Park J.-Y., Nam M.-W., Choi D.-H., Lee H.-I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.) Acta Physiol. Plant. 2016;38 doi: 10.1007/s11738-016-2164-0. DOI
Cüce M., Sökmen A. In vitro production protocol of Vaccinium uliginosum L. (bog bilberry)growing in the Turkish flora. Turk. J. Agric. For. 2017;41:294–304. doi: 10.3906/tar-1704-19. DOI
Arigundam U., Variyath A.M., Siow Y.L., Marshall D., Debnath S. Liquid culture for efficient in vitro propagation of adventitious shoots in wild Vaccinium vitis-idaea ssp. minus (lingonberry) using temporary immersion and stationary bioreactors. Sci. Hortic. 2020;264:109199. doi: 10.1016/j.scienta.2020.109199. DOI
Alizadeh M., Singh S., Patel V., Deshmukh P. In vitro clonal multiplication of two grape (Vitis spp.) rootstock genotypes. Plant Tissue Cult. Biotechnol. 2018;28:1–11. doi: 10.3329/ptcb.v28i1.37193. DOI
Surakshitha N., Soorianathasundaram K., Ganga M., Raveendran M. Alleviating shoot tip necrosis during in vitro propagation of grape cv. Red Globe. Sci. Hortic. 2019;248:118–125. doi: 10.1016/j.scienta.2019.01.013. DOI
Posada-Pérez L., Montesinos Y.P., Guerra D.G., Daniels D., Gómez-Kosky R. Complete germination of papaya (Carica papaya L. cv. ‘Maradol Roja’) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium. In Vitro Cell. Dev. Biol.-Plant. 2017;53:505–513.
Cardoso J.C., Curtolo M., Latado R.R., Martinelli A.P. Somatic embryogenesis of a seedless sweet orange (Citrus sinensis (L.) Osbeck) In Vitro Cell. Dev. Biol. - Plant. 2017;53:619–623. doi: 10.1007/s11627-017-9866-x. DOI
Cardoso J.C., Martinelli A.P., Latado R.R. Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tissue Organ Cult. 2011;109:171–177. doi: 10.1007/s11240-011-0073-x. DOI
Raharjo S., Litz R.E. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tissue Organ Cult. 2007;89:113–119. doi: 10.1007/s11240-007-9219-2. DOI
Yu C., Chen Z., Lu L., Lin J. Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant Cell Tissue Organ Cult. 2000;61:51–58. doi: 10.1023/A:1006446506041. DOI
Daigny G., Paul H., Sangwan R.S., Sangwan-Norreel B.S. Factors influencing secondary somatic embryogenesis in Malus x domestica Borkh. (cv ‘Gloster 69′) Plant Cell Rep. 1996;16:153–157. doi: 10.1007/BF01890857. PubMed DOI
Morais-Lino L.S., Santos-Serejo J.A., Amorim E.P., De Santana J.R.F., Pasqual M., Silva S.D.O.E. Somatic embryogenesis, cell suspension, and genetic stability of banana cultivars. In Vitro Cell. Dev. Biol.-Plant. 2015;52:99–106. doi: 10.1007/s11627-015-9729-2. DOI
Natarajan N., Sundararajan S., Suresh C.P., Ramalingam S. In vitro somatic embryogenesis from immature female flower of Musa AAB cv. Chenichampa and molecular analysis of transcript factors (TFs) during somatic embryogenesis. Plant Cell Tissue Organ Cult. 2020;142:339–351. doi: 10.1007/s11240-020-01866-7. DOI
Pinto D.L.P., De Almeida A.M.R., Rêgo M.M., Da Silva M.L., De Oliveira E.J., Otoni W.C. Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tissue Organ Cult. 2011;107:521–530. doi: 10.1007/s11240-011-0003-y. DOI
Da Silva G.M., Da Cruz A.C.F., Otoni W.C., Pereira T.N.S., Rocha D.I., Da Silva M.L. Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae) In Vitro Cell. Dev. Biol.-Plant. 2015;51:539–545. doi: 10.1007/s11627-015-9699-4. DOI
Palomo Ríos E., Pérez C., Mercado J.A., Pliego-Alfaro F. Enhancing frequency of regeneration of somatic embryos of avocado (Persea americana Mill.) using semi-permeable cellulose acetate membranes. Plant Cell Tissue Organ Cult. 2013;115:199–207. doi: 10.1007/s11240-013-0352-9. DOI
Palomo-Ríos E., Barceló-Muñoz A., Mercado J.A., Pliego-Alfaro F. Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.) Plant Cell Tissue Organ Cult. 2012;109:201–211. doi: 10.1007/s11240-011-0086-5. DOI
Encina C.L., Parisi A., O’Brien C., Mitter N. Enhancing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in the culture medium. Sci. Hortic. 2014;165:44–50. doi: 10.1016/j.scienta.2013.10.019. DOI
Palomo-Ríos E., Cerezo S., Mercado J.A., Pliego-Alfaro F., Mercado J.A. Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell Tissue Organ Cult. 2016;128:447–455. doi: 10.1007/s11240-016-1122-2. DOI
Bhansali R.R. Somatic embryogenesis and regeneration of plantlets in pomegranate. Ann. Bot. 1990;66:249–253. doi: 10.1093/oxfordjournals.aob.a088022. DOI
Pateña L.F., Barba R.C. The development of techniques for tissue culture of mango (Mangifera indica L.) var. Carabao and successful transfer of ex vitro-grafted plants to soil and the field. In Vitro Cell. Dev. Biol.-Plant. 2011;47:629–636. doi: 10.1007/s11627-011-9412-1. DOI
Zhou Q., Dai L., Cheng S., He J., Wang D., Zhang J., Wang Y. A circulatory system useful both for long-term somatic embryogenesis and genetic transformationin Vitis vinifera L. cv. Thompson Seedless. Plant Cell Tissue Organ Cult. 2014;118:157–168. doi: 10.1007/s11240-014-0471-y. DOI
Gambino G., Ruffa P., Vallania R., Gribaudo I. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.) Plant Cell Tissue Organ Cult. 2007;90:79–83. doi: 10.1007/s11240-007-9256-x. DOI
Acanda Y., Prado M.J., Gonzalez M.V., Rey M. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): Changes in ploidy level and nuclear DNA content. In Vitro Cell. Dev. Biol.-Plant. 2013;49:276–284. doi: 10.1007/s11627-013-9499-7. DOI
Dai L., Zhou Q., Li R., Du Y., He J., Wang D., Cheng S., Zhang J., Wang Y. Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tissue Organ Cult. 2015;121:397–412. doi: 10.1007/s11240-015-0711-9. DOI
Naik S.K., Chand P.K. Tissue culture-mediated biotechnological intervention in pomegranate: A review. Plant Cell Rep. 2011;30:707–721. doi: 10.1007/s00299-010-0969-7. PubMed DOI
Da Silva J.A.T., Rana T.S., Narzary D., Verma N., Meshram D.T., Ranade S.A. Pomegranate biology and biotechnology: A review. Sci. Hortic. 2013;160:85–107. doi: 10.1016/j.scienta.2013.05.017. DOI
Cabasson C., Alvard D., Dambier D., Ollitrault P., Teisson C. Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell Tissue Organ Cult. 1997;50:33–37. doi: 10.1023/A:1005896725780. DOI
Rai M.K., Akhtar N., Jaiswal V. Somatic embryogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Sci. Hortic. 2007;113:129–133. doi: 10.1016/j.scienta.2007.02.010. DOI
Akhtar N. Evaluation of the efficiency of somatic embryogenesis in guava (Psidium guajava L.) J. Hortic. Sci. Biotechnol. 2010;85:556–562.
Kamle M., Kumar P., Bajpai A., Kalim S., Chandra R. Assessment of genetic fidelity of somatic embryogenesis regenerated guava (Psidium guajava L.) plants using DNA-based markers. N. Z. J. Crop. Hortic. Sci. 2013;42:1–9. doi: 10.1080/01140671.2013.814574. DOI
Tang H., Ren Z., Krczal G. Somatic embryogenesis and organogenesis from immature embryo cotyledons of three sour cherry cultivars (Prunus cerasus L.) Sci. Hortic. 2000;83:109–126. doi: 10.1016/S0304-4238(99)00073-4. DOI
Gao M., Kawabe M., Tsukamoto T., Hanada H., Tao R. Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot (Prunus mume) using immature cotyledons. Sci. Hortic. 2010;124:360–367. doi: 10.1016/j.scienta.2010.01.021. DOI
Dhekney S.A., Li Z.T., Grant T.N.L., Gray D.J. Advanced Structural Safety Studies. Volume 1359. Springer Science and Business Media LLC; Berlin, Germany: 2016. Somatic embryogenesis and genetic modification of vitis; pp. 263–277. PubMed
Garcia C., De Almeida A.-A.F., Costa M., Britto D., Valle R., Royaert S., Marelli J.-P. Abnormalities in somatic embryogenesis caused by 2,4-D: An overview. Plant Cell Tissue Organ Cult. 2019;137:193–212. doi: 10.1007/s11240-019-01569-8. DOI
Werbrouck S.P.O., Strnad M., Van Onckelen H.A., Debergh P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI
Strnad M. The aromatic cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI
Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2011;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI
White P.R. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 1934;9:585–600. doi: 10.1104/pp.9.3.585. PubMed DOI PMC
Bairu M.W., Novák O., Doležal K., Van Staden J. Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul. 2011;63:105–114. doi: 10.1007/s10725-010-9558-6. DOI
Aremu A.O., Plačková L., Bairu M.W., Novak O., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Endogenous cytokinin profiles of tissue-cultured and acclimatized ‘Williams’ bananas subjected to different aromatic cytokinin treatments. Plant Sci. 2014;214:88–98. doi: 10.1016/j.plantsci.2013.09.012. PubMed DOI
Aremu A.O., Doležal K., Van Staden J. New cytokinin-like compounds as a tool to improve rooting and establishment of micropropagated plantlets. Acta Hortic. 2017:497–504. doi: 10.17660/ActaHortic.2017.1155.73. DOI
Motte H., Vereecke D., Geelen D., Werbrouck S. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 2014;32:107–121. doi: 10.1016/j.biotechadv.2013.12.002. PubMed DOI
Xu K., Liu J., Fan M., Xin W., Hu Y., Xu C. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics. 2012;100:116–124. doi: 10.1016/j.ygeno.2012.05.013. PubMed DOI
Zhang T.-Q., Lian H., Zhou C.-M., Xu L., Jiao Y., Wang J.-W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell. 2017;29:1073–1087. doi: 10.1105/tpc.16.00863. PubMed DOI PMC
Hurný A., Benková E. Advanced Structural Safety Studies. Volume 1569. Springer Science and Business Media LLC; Berlin, Germany: 2017. Methodological advances in auxin and cytokinin biology; pp. 1–29. PubMed
Quinlan J.D., Tobutt K.R. Manipulating fruit tree structure chemically and genetically for improved performance. HortScience. 1990;25:60–64. doi: 10.21273/HORTSCI.25.1.60. DOI
Moghadam E.G., Zamanipour M. Induction of lateral branching in sweet cherry (Prunus avium L. cvs.” Siah Mashhad” &” Dovomras”) trees in nursery. J. Agric. Sci. 2013;5:23–30.
Quinlan J.D., Preston A.P. The use of branching agents to replace hand pruning of young trees of brantley’s seedling apple. J. Hortic. Sci. 1978;53:39–43. doi: 10.1080/00221589.1978.11514791. DOI
Çağlar S., Ilgin M. The effects of benzyladenine applications on branching of ‘Mondial Gala’apple nursery trees on MM. 106 in the first year growth. KSÜ J. Nat. Sci. 2009;12:66–70.
Zhalnerchyk P., Przybyła A.A. Jaumień F: Influence of chemicals of arbolin group on branching of maiden trees of three apple cultivars. J. Hortic. Res. 2015;23:95–104. doi: 10.2478/johr-2015-0019. DOI
Van Oosten H. Effect of initial tree quality on yield. Acta Hortic. 1976;65:123–128. doi: 10.17660/ActaHortic.1978.65.19. DOI
Greene D.W., Autio W.R. Vegetative responses of apple trees following benzyladenine and growth regulator sprays. J. Am. Soc. Hortic. Sci. 1990;115:400–404. doi: 10.21273/JASHS.115.3.400. DOI
Gąstoł M., Domagała-Świątkiewicz I., Bijak M. The effect of different bioregulators on lateral shoot formation in maiden apple trees. Folia Hortic. 2012;24:147–152. doi: 10.2478/v10245-012-0018-9. DOI
Wani S.H., Kumar V., Shriram V., Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop. J. 2016;4:162–176. doi: 10.1016/j.cj.2016.01.010. DOI
Francini A., Sebastiani L. Abiotic stress effects on performance of horticultural crops. Horticulture. 2019;5:67. doi: 10.3390/horticulturae5040067. DOI
Upreti K.K., Sharma M. Role of plant growth regulators in abiotic stress tolerance. In: Rao N.K.S., Shivashankara K.S., Laxman R.H., editors. Abiotic Stress Physiology of Horticultural Crops. Springer; New Delhi, India: 2016. pp. 19–46.
Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI
Zhu L.-H., Van De Peppel A., Li X.-Y., Welander M. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci. Hortic. 2004;99:133–141. doi: 10.1016/S0304-4238(03)00089-X. DOI
Merewitz E.B., Gianfagna T., Huang B. Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J. Am. Soc. Hortic. Sci. 2010;135:230–239. doi: 10.21273/JASHS.135.3.230. DOI
Macková H., Hronková M., Dobrá J.K., Turečková V., Novak O., Lubovská Z., Motyka V., Haisel D., Hájek T., Prášil I.T., et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 2013;64:2805–2815. doi: 10.1093/jxb/ert131. PubMed DOI PMC
Greene D. The development and use of plant bioregulators in tree fruit production. Acta Hortic. 2010;884:31–40. doi: 10.17660/ActaHortic.2010.884.1. DOI
Petracek P.D., Silverman F.P., Greene D.W. A history of commercial plant growth regulators in apple production. HortScience. 2003;38:937–942. doi: 10.21273/HORTSCI.38.5.937. DOI
Nicolaï B., Defraeye T., De Ketelaere B., Herremans E., Hertog M.L.A.T.M., Saeys W., Torricelli A., VandenDriessche T., Verboven P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 2014;5:285–312. doi: 10.1146/annurev-food-030713-092410. PubMed DOI
Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–745. doi: 10.1126/science.1113373. PubMed DOI
Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC
Ainalidou A., Tanou G., Belghazi M., Samiotaki M., Diamantidis G., Molassiotis A., Karamanoli K. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. J. Proteom. 2016;143:318–333. doi: 10.1016/j.jprot.2016.02.013. PubMed DOI
Mariotti L., Picciarelli P., Lombardi L., Ceccarelli N. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J. Plant Growth Regul. 2011;30:405–415. doi: 10.1007/s00344-011-9204-1. DOI
Fuentes L., Figueroa C.R., Valdenegro M. Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae. 2019;5:45. doi: 10.3390/horticulturae5020045. DOI
Ding J., Chen B., Xia X., Mao W., Shi K., Zhou Y.-H., Yu J. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS ONE. 2013;8:e70080. doi: 10.1371/journal.pone.0070080. PubMed DOI PMC
Watanabe M., Segawa H., Murakami M., Sagawa S., Komori S. Effects of plant growth regulators on fruit set and fruit shape of parthenocarpic apple fruits. J. Jpn. Soc. Hortic. Sci. 2008;77:350–357. doi: 10.2503/jjshs1.77.350. DOI
Teng Y., Xu C., Bai S., Pan Z., Tang Y. Studies on pear parthenocarpy induced by exogenous plant growth regulators. Acta Hortic. 2018;1206:21–26. doi: 10.17660/ActaHortic.2018.1206.3. DOI
Böttcher C., Burbidge C.A., Boss P.K., Davies C. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. BMC Plant Biol. 2015;15:223. doi: 10.1186/s12870-015-0611-5. PubMed DOI PMC
Böttcher C., Boss P.K., Harvey K.E., Nicholson E.L., Burbidge C.A., Davies C. Post-veraison restriction of phloem import into Riesling (Vitis vinifera L.) berries induces transient and stable changes to fermentation-derived and varietal wine volatiles. Aust. J. Grape Wine Res. 2019;25:286–292.
Zhang C., Whiting M.D. Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Sci. Hortic. 2011;127:341–346. doi: 10.1016/j.scienta.2010.11.006. DOI
Canli F., Pektas M. Improving fruit size and quality of low yielding and small fruited pear cultivars with benzyladenine and gibberellin applications. Eur. J. Hortic. Sci. 2015;80:103–108. doi: 10.17660/eJHS.2015/80.3.2. DOI
Stern R.A., Flaishman M.A. Benzyladenine effects on fruit size, fruit thinning and return yield of ‘Spadona’ and ‘Coscia’ pear. Sci. Hortic. 2003;98:499–504. doi: 10.1016/S0304-4238(03)00035-9. DOI
Fujisawa H., Kawai Y., Ishikawa K. Response of highbush blueberry (Vaccinium corymbosum) ‘Spartan’ to gibberellic acid and CPPU applied at various rates and timings. Acta Hortic. 2018;1206:183–188. doi: 10.17660/ActaHortic.2018.1206.25. DOI
Retamales J., Bangerth F., Cooper T., Callejas R. Effects of CPPU and GA3 on fruit quality of sultanina table grape. Acta Hortic. 1995;394:149–158. doi: 10.17660/ActaHortic.1995.394.14. DOI
Greene D.W., Schupp J.R., Winzeler H.E. Effect of abscisic acid and benzyladenine on fruit set and fruit quality of apples. HortScience. 2011;46:604–609. doi: 10.21273/HORTSCI.46.4.604. DOI
Reynolds A., Wardle D., Zurowski C., Looney N. Phenylureas CPPU and thidiazuron affect yield components, fruit composition, and storage potential of four seedless grape selections. J. Am. Soc. Hortic. Sci. 1992;117:85–89. doi: 10.21273/JASHS.117.1.85. DOI
Matsumoto K., Fujita T., Sato S. Exogenous applications of plant growth regulators improve quality of ‘Fuji’apple. Int. J. Agric. Biol. 2018;20:2083–2090.
Blumenfeld A., Gazit S. Cytokinin activity in avocado seeds during fruit development. Plant Physiol. 1970;46:331–333. doi: 10.1104/pp.46.2.331. PubMed DOI PMC
Blumenfeld A., Gazit S. Growth of avocado fruit callus and its relation to exogenous and endogenous cytokinins. Physiol. Plant. 1971;25:369–371. doi: 10.1111/j.1399-3054.1971.tb01457.x. DOI
Kim J., Takami Y., Mizugami T., Beppu K., Fukuda T., Kataoka I. CPPU application on size and quality of hardy kiwifruit. Sci. Hortic. 2006;110:219–222. doi: 10.1016/j.scienta.2006.06.017. DOI
Antognozzi E., Famiani F., Palliotti A., Tombesi A. Effects of CPPU (cytokinin) on kiwifruit productivity. Acta Hortic. 1993;329:150–152. doi: 10.17660/ActaHortic.1993.329.29. DOI
Antognozzi E., Battistelli A., Famiani F., Moscatello S., Stanica F., Tombesi A. Influence of CPPU on carbohydrate accumulation and metabolism in fruits of Actinidia deliciosa (A. Chev.) Sci. Hortic. 1996;65:37–47. doi: 10.1016/0304-4238(95)00852-7. DOI
Cruz-Castillo J.G., Woolley D.J., Lawes G.S. Kiwifruit size and CPPU response are influenced by the time of anthesis. Sci. Hortic. 2002;95:23–30. doi: 10.1016/S0304-4238(01)00384-3. DOI
Ikoma Y., Yano M., Xu Z.C., Ogawa K. Reduction in ethylene synthesis in parthenocarpic Actinidia deliciosa fruit induced by N-(2-chloro-4-pyridyl)-N′-phenylurea. Postharvest Biol. Technol. 1998;13:121–129. doi: 10.1016/S0925-5214(98)00002-7. DOI
Lorenzo E., Lastra B., Otero V., Gallego P. Effects of three plant growth regulators on kiwifruit development. Acta Hortic. 2007:549–554. doi: 10.17660/ActaHortic.2007.753.72. DOI
Adaniya S., Minemoto K., Moromizato Z., Molomura K. The use of CPPU for efficient propagation of pineapple. Sci. Hortic. 2004;100:7–14. doi: 10.1016/j.scienta.2003.07.003. DOI
Huitrón M.V., Diaz M., Diánez F., Camacho-Ferre F., Valverde A. Effect of 2,4-D and CPPU on triploid watermelon production and quality. HortScience. 2007;42:559–564. doi: 10.21273/HORTSCI.42.3.559. DOI
Biton E., Kobiler I., Feygenberg O., Yaari M., Friedman H., Prusky D. Control of alternaria black spot in persimmon fruit by a mixture of gibberellin and benzyl adenine, and its mode of action. Postharvest Biol. Technol. 2014;94:82–88. doi: 10.1016/j.postharvbio.2014.03.009. DOI
Sugiyama N., Yamaki Y. Effects of CPPU on fruit set and fruit growth in Japanese persimmon. Sci. Hortic. 1995;60:337–343. doi: 10.1016/0304-4238(94)00712-O. DOI
Curry E.A., Greene D.W. CPPU influences fruit quality, fruit set, return bloom, and preharvest drop of apples. HortScience. 1993;28:115–119. doi: 10.21273/HORTSCI.28.2.115. DOI
Elfving D., Cline R. Cytokinin and ethephon affect crop load, shoot growth, and nutrient concentration of ‘empire’ apple trees. HortScience. 1993;28:1011–1014. doi: 10.21273/HORTSCI.28.10.1011. DOI
Greene D.W. Thidiazuron effects on fruit set, fruit quality, and return bloom of apples. HortScience. 1995;30:1238–1240. doi: 10.21273/HORTSCI.30.6.1238. DOI
Greene D.W. CPPU influences fruit quality and fruit abscission of ’McIntosh’ apples. HortScience. 2001;36:1292–1295. doi: 10.21273/HORTSCI.36.7.1292. DOI
Greene D.W., Autio W.R. Combination sprays with benzyladenine to chemically thin spur-type ‘delicious’ apples. HortScience. 1994;29:887–890. doi: 10.21273/HORTSCI.29.8.887. DOI
Yuan R., Greene D.W. ‘McIntosh’ apple fruit thinning by benzyladenine in relation to seed number and endogenous cytokinin levels in fruit and leaves. Sci. Hortic. 2000;86:127–134. doi: 10.1016/S0304-4238(00)00142-4. DOI
Nevine T.M., El-Ghany K.M. Some horticultural and pathological studies to reduce fruit decay of “Anna” apple and increase fruit set, yield and improve fruit quality and storability. J. Am. Sci. 2016;12:104–122.
Kulkarni S., Patil S., Magar S. Effect of plant growth regulators on yield and quality of mango (Mangifera indica L.) cv. Kesha. J. Pharmacogn. Phytochem. 2017;6:2309–2313.
Burondkar M., Jadhav B., Chetti M. Post-flowering morpho-physiological behavior of alphonso mango as influenced by plant growth regulators, polyamine and nutrients under rainfed conditions. Acta Hortic. 2009;820:425–432. doi: 10.17660/ActaHortic.2009.820.52. DOI
Zhang C., Whiting M. Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth. Sci. Hortic. 2013;150:73–79. doi: 10.1016/j.scienta.2012.10.007. DOI
Flaishman M., Shargal A.A., Raphael S. The synthetic cytokinin CPPU increases fruit size and yield of ‘Spadona’ and ‘Costia’ pear (Pyrus communis L.) J. Hortic. Sci. Biotechnol. 2001;76:145–149. doi: 10.1080/14620316.2001.11511341. DOI
Greene D.W. Influence of abscisic acid and benzyladenine on fruit set and fruit quality of ‘Bartlett’ pears. HortScience. 2012;47:1607–1611. doi: 10.21273/HORTSCI.47.11.1607. DOI
Malik H., Archbold D.D. Manipulating primocane architecture in thornless blackberry with uniconazole, GA3, and BA. HortScience. 1992;27:116–118. doi: 10.21273/HORTSCI.27.2.116. DOI
Nesmith D.S. Response of Rabbiteye Blueberry (Vaccinium ashei Reade) to the growth regulators CPPU and gibberellic acid. HortScience. 2002;37:666–668. doi: 10.21273/HORTSCI.37.4.666. DOI
Nesmith D.S. Effects of timing of CPPU applications on rabbiteye blueberries. HortScience. 2008;43:1446–1448. doi: 10.21273/HORTSCI.43.5.1446. DOI
Williamson J.G., Nesmith D.S. Effects of CPPU applications on southern highbush blueberries. HortScience. 2007;42:1612–1615. doi: 10.21273/HORTSCI.42.7.1612. DOI
Zabadal T.J., Bukovac M.J. Effect of CPPU on fruit development of selected seedless and seeded grape cultivars. HortScience. 2006;41:154–157. doi: 10.21273/HORTSCI.41.1.154. DOI
Marzouk H., Kassem H.A. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci. Hortic. 2011;130:425–430. doi: 10.1016/j.scienta.2011.07.013. DOI
Strydom J. Research note: Effect of CPPU (N-(2-Chloro-4-pyridinyl)-N’- phenylurea) and a seaweed extract on flame seedless, redglobe and crimson seedless grape quality. S. Afr. J. Enol. Vitic. 2016;34:233–240. doi: 10.21548/34-2-1099. DOI
Peppi M.C., Fidelibus M.W. Effects of forchlorfenuron and abscisic acid on the quality of ‘Flame seedless’ grapes. HortScience. 2008;43:173–176. doi: 10.21273/HORTSCI.43.1.173. DOI
Zoffoli J.P., Latorre B.A., Naranjo P. Preharvest applications of growth regulators and their effect on postharvest quality of table grapes during cold storage. Postharvest Biol. Technol. 2009;51:183–192. doi: 10.1016/j.postharvbio.2008.06.013. DOI
Beno-Moualem D., Vinokur Y., Prusky D. Cytokinins increase epicatechin content and fungal decay resistance in avocado fruits. J. Plant Growth Regul. 2001;20:95–100. doi: 10.1007/s003440010005. DOI
Kays S.J. Preharvest factors affecting appearance. Postharvest Biol. Technol. 1999;15:233–247. doi: 10.1016/S0925-5214(98)00088-X. DOI
Kyriacou M.C., Rouphael Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018;234:463–469. doi: 10.1016/j.scienta.2017.09.046. DOI
Crisosto C.H. Stone fruit maturity indices: A descriptive. Postharvest News Inf. 1994;5:65N–68N.
Niu Q., Wang T., Li J., Yang Q., Qian M., Teng Y. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N′-phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia ‘Cuiguan’. Plant Growth Regul. 2014;76:251–258. doi: 10.1007/s10725-014-9995-8. DOI
Prasanna V., Prabha T.N., Tharanathan R.N. Fruit ripening phenomena–An overview. Crit. Rev. Food Sci. Nutr. 2007;47:1–19. doi: 10.1080/10408390600976841. PubMed DOI
Ruan Y.-L., Patrick J.W., Bouzayen M., Osorio S., Fernie A.R. Molecular regulation of seed and fruit set. Trends Plant Sci. 2012;17:656–665. doi: 10.1016/j.tplants.2012.06.005. PubMed DOI
Zheng X., Yu T., Chen R., Huang B., Wu V.C. Inhibiting Penicillium expansum infection on pear fruit by Cryptococcus laurentii and cytokinin. Postharvest Biol. Technol. 2007;45:221–227. doi: 10.1016/j.postharvbio.2007.03.001. DOI
Osorio S., Scossa F., Fernie A.R. Molecular regulation of fruit ripening. Front. Plant Sci. 2013;4:4. doi: 10.3389/fpls.2013.00198. PubMed DOI PMC
Kawai Y., Baba T., Yoshida M., Agravante J.U., Del Carmen D.R. Effects of benzyladenine and light on post-harvest calamondin (x Citrofortunella microcarpa) fruit color and quality. Hortic. J. 2018;87:324–328. doi: 10.2503/hortj.OKD-145. DOI
Guyer L., Hofstetter S.S., Christ B., Lira B.S., Rossi M., Hörtensteiner S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol. 2014;166:44–56. doi: 10.1104/pp.114.239541. PubMed DOI PMC
Yu T., Wang L., Yin Y., Feng F., Zheng X. Suppression of postharvest blue mould of apple fruit by Cryptococcus laurentii and N6-benzyladenine. J. Sci. Food Agric. 2008;88:1266–1271. doi: 10.1002/jsfa.3217. DOI
Massolo J.F., Lemoine M.L., Chaves A.R., Concellón A., Vicente A. Benzyl-aminopurine (BAP) treatments delay cell wall degradation and softening, improving quality maintenance of refrigerated summer squash. Postharvest Biol. Technol. 2014;93:122–129. doi: 10.1016/j.postharvbio.2014.02.010. DOI
Xu F., Chen X., Yang Z., Jin P., Wang K., Shang H., Wang X., Zheng Y. Maintaining quality and bioactive compounds of broccoli by combined treatment with 1-methylcyclopropene and 6-benzylaminopurine. J. Sci. Food Agric. 2012;93:1156–1161. doi: 10.1002/jsfa.5867. PubMed DOI
Zhang D., Xu X., Zhang Z., Jiang G., Feng L., Duan X., Jiang Y. 6-Benzylaminopurine improves the quality of harvested litchi fruit. Postharvest Biol. Technol. 2018;143:137–142. doi: 10.1016/j.postharvbio.2018.05.002. DOI
Itai A., Tanabe K., Tamura F., Susaki S., Yonemori K., Sugiura A. Synthetic cytokinins control persimmon fruit shape, size and quality. J. Hortic. Sci. 1995;70:867–873. doi: 10.1080/14620316.1995.11515362. DOI
Huang H., Jing G., Wang H., Duan X., Qu H., Jiang Y. The combined effects of phenylurea and gibberellins on quality maintenance and shelf life extension of banana fruit during storage. Sci. Hortic. 2014;167:36–42. doi: 10.1016/j.scienta.2013.12.028. DOI
Chen B., Yang H. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status. J. Sci. Food Agric. 2012;93:1915–1921. doi: 10.1002/jsfa.5990. PubMed DOI
Tian S., Qin G., Li B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol. Biol. 2013;82:593–602. doi: 10.1007/s11103-013-0035-2. PubMed DOI
Zhang Y., Zeng L., Yang J., Zheng X., Yu T. 6-Benzylaminopurine inhibits growth of Monilinia fructicola and induces defense-related mechanism in peach fruit. Food Chem. 2015;187:210–217. doi: 10.1016/j.foodchem.2015.04.100. PubMed DOI
Magwaza L.S., Opara U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015;184:179–192. doi: 10.1016/j.scienta.2015.01.001. DOI
Qian C., Ren N., Wang J., Xu Q., Chen X., Qi X.-H. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.) Food Chem. 2018;243:410–413. doi: 10.1016/j.foodchem.2017.09.150. PubMed DOI
Fahima A., Levinkron S., Maytal Y., Hugger A., Lax I., Huang X., Eyal Y., Lichter A., Goren M., Stern R.A., et al. Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning. Plant Sci. 2019;283:41–50. doi: 10.1016/j.plantsci.2019.02.006. PubMed DOI
Tsantili E., Pontikis C. Response to ethylene and its interactive effects with N6-benzyladenine (BA) in harvested green olives during ripening. Postharvest Biol. Technol. 2004;33:153–162. doi: 10.1016/j.postharvbio.2004.02.005. DOI
Tsantili E., Rekoumi K., Roussos P.A., Pontikis C. Effects of postharvest treatment with N6-benzyladenine on green olive fruit. J. Hortic. Sci. Biotechnol. 2002;77:294–299. doi: 10.1080/14620316.2002.11511495. DOI
Wang D., Yeats T.H., Uluisik S., Rose J.K., Seymour G. Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 2018;23:302–310. doi: 10.1016/j.tplants.2018.01.006. PubMed DOI
Huang H., Jiang Y. Effect of plant growth regulators on banana fruit and broccoli during storage. Sci. Horticulturae. 2012;145:62–67. doi: 10.1016/j.scienta.2012.07.025. DOI
Nguyen-Quoc B., Foyer C.H. A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J. Exp. Bot. 2001;52:881–889. doi: 10.1093/jexbot/52.358.881. PubMed DOI
Wang L., Ruan Y.-L. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 2013;4:4. doi: 10.3389/fpls.2013.00163. PubMed DOI PMC
Cheynier V., Comte G., Davies K.M., Lattanzio V., Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013;72:1–20. doi: 10.1016/j.plaphy.2013.05.009. PubMed DOI
Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated ‘Williams’ banana. Acta Physiol. Plant. 2012;34:2265–2273. doi: 10.1007/s11738-012-1027-6. DOI
Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC
Kurepa J., Shull T.E., Karunadasa S.S., Smalle J.A. Modulation of auxin and cytokinin responses by early steps of the phenylpropanoid pathway. BMC Plant Biol. 2018;18:278. doi: 10.1186/s12870-018-1477-0. PubMed DOI PMC
Schlosser J., Olsson N., Weis M., Reid K., Peng F., Lund S., Bowen P. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.) Protoplasma. 2008;232:255–265. doi: 10.1007/s00709-008-0280-9. PubMed DOI
Riou C., Huntley R.P., Jacqmard A., Murray J.A.H. Cytokinin activation of arabidopsis cell division through a D-type cyclin. Science. 1999;283:1541–1544. doi: 10.1126/science.283.5407.1541. PubMed DOI
Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F., Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 2009;150:494–505. doi: 10.1104/pp.109.138107. PubMed DOI PMC
Barman K., Siddiqui M.W., Patel V., Prasad M. Nitric oxide reduces pericarp browning and preserves bioactive antioxidants in litchi. Sci. Hortic. 2014;171:71–77. doi: 10.1016/j.scienta.2014.03.036. DOI
Kumar D., Mishra D.S., Chakraborty B., Kumar P. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage. J. Food Sci. Technol. 2011;50:797–802. doi: 10.1007/s13197-011-0384-2. PubMed DOI PMC
Yang D., Li S., Li M., Yang X., Wang W., Cao Z., Li W. Physiological characteristics and leaf ultrastructure of a novel chlorophyll-deficient chd6 mutant of Vitis venifera cultured in vitro. J. Plant Growth Regul. 2011;31:124–135. doi: 10.1007/s00344-011-9225-9. DOI
Ali S., Khan A.S., Malik A.U. Postharvest L-cysteine application delayed pericarp browning, suppressed lipid peroxidation and maintained antioxidative activities of litchi fruit. Postharvest Biol. Technol. 2016;121:135–142. doi: 10.1016/j.postharvbio.2016.07.015. DOI
Rahman M. Ph.D. Thesis. East West University; Dhaka, Bangladesh: 2016. Evaluation of antioxidant activity of Spilanthes calva, Solanum virginianum, Stevia rebaudiana, Ruellia tuberosa and phytochemical investigation of Mikania cordata.