Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects

. 2020 Aug 22 ; 10 (9) : . [epub] 20200822

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32842660

Grantová podpora
109508 and 76555 National Research Foundation, South Africa - International

Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.

Zobrazit více v PubMed

Kaminek M. Tracking the story of cytokinin research. J. Plant Growth Regul. 2015;34:723–739. doi: 10.1007/s00344-015-9543-4. DOI

Merchant S.S., Gruissem W., Ort D. Annual review of plant biology 2017. Curr. Sci. 2018;115:431–449. doi: 10.18520/cs/v115/i6/1204-1207. DOI

Srivastava L.M. Introduction to Some Special Aspects of Plant Growth and Development. Elsevier BV; Amsterdam, The Netherlands: 2002. p. 1.

Stirk W.A., Van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI

Jameson P.E., Song J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2015;67:593–606. doi: 10.1093/jxb/erv461. PubMed DOI

Kinet J., Lejeune P., Bernier G. Shoot-root interactions during floral transition: A possible role for cytokinins. Environ. Exp. Bot. 1993;33:459–469. doi: 10.1016/0098-8472(93)90019-C. DOI

Kumar R., Khurana A., Sharma A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2013;65:4561–4575. doi: 10.1093/jxb/eru277. PubMed DOI

Kunikowska A., Byczkowska A., Doniak M., Kaźmierczak A. Cytokinins résumé: Their signaling and role in programmed cell death in plants. Plant Cell Rep. 2013;32:771–780. doi: 10.1007/s00299-013-1436-z. PubMed DOI PMC

Schmülling T. New insights into the functions of cytokinins in plant development. J. Plant Growth Regul. 2002;21:40–49. doi: 10.1007/s003440010046. PubMed DOI

Šmehilová M., Spíchal L. The Plant Plasma Membrane. Volume 22. Springer Science and Business Media LLC; Berlin, Germany: 2013. The biotechnological potential of cytokinin status manipulation; pp. 103–130.

Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015;34:845–872. doi: 10.1007/s00344-015-9541-6. DOI

Spíchal L. Cytokinins—Recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267. doi: 10.1071/FP11276. PubMed DOI

Khush G. Green revolution: The way forward. Nat. Rev. Genet. 2001;2:815–822. doi: 10.1038/35093585. PubMed DOI

Koprna R., De Diego N., Dundálková L., Spíchal L. Use of cytokinins as agrochemicals. Bioorganic Med. Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI

Bapat V.A., Trivedi P.K., Ghosh A., Sane V.A., Ganapathi T.R., Nath P. Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol. Adv. 2010;28:94–107. doi: 10.1016/j.biotechadv.2009.10.002. PubMed DOI

Cherian S., Figueroa C.R., Nair H. ‘Movers and shakers’ in the regulation of fruit ripening: A cross-dissection of climacteric versus non-climacteric fruit. J. Exp. Bot. 2014;65:4705–4722. doi: 10.1093/jxb/eru280. PubMed DOI

Debnath S.C. Somatic Embryogenesis in Woody Plants. Springer Science and Business Media LLC; Berlin, Germany: 2003. Micropropagation of small fruits; pp. 465–506.

Nadeem S.M., Ahmad M., Zahir Z.A., Javaid A., Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014;32:429–448. doi: 10.1016/j.biotechadv.2013.12.005. PubMed DOI

Pauls K. Plant biotechnology for crop improvement. Biotechnol. Adv. 1995;13:673–693. doi: 10.1016/0734-9750(95)02010-1. PubMed DOI

Rai M.K., Asthana P., Singh S.K., Jaiswal V., Jaiswal U. The encapsulation technology in fruit plants—A review. Biotechnol. Adv. 2009;27:671–679. doi: 10.1016/j.biotechadv.2009.04.025. PubMed DOI

Sharma H., Crouch J., Sharma K., Seetharama N., Hash C. Applications of biotechnology for crop improvement: Prospects and constraints. Plant Sci. 2002;163:381–395. doi: 10.1016/S0168-9452(02)00133-4. DOI

Zalabák D., Pospíšilová H., Šmehilová M., Mrízová K., Frébort I., Galuszka P. Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnol. Adv. 2013;31:97–117. doi: 10.1016/j.biotechadv.2011.12.003. PubMed DOI

Ma Q.-H. Genetic engineering of cytokinins and their application to agriculture. Crit. Rev. Biotechnol. 2008;28:213–232. doi: 10.1080/07388550802262205. PubMed DOI

Rai M.K., Shekhawat N.S. Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tissue Organ Cult. 2013;116:1–15. doi: 10.1007/s11240-013-0389-9. DOI

Sonah H., Deshmukh R., Singh V.P., Gupta D.K., Singh N.K., Sharma T.R. Genomic resources in horticultural crops: Status, utility and challenges. Biotechnol. Adv. 2011;29:199–209. doi: 10.1016/j.biotechadv.2010.11.002. PubMed DOI

Karkute S.G., Singh A.K., Gupta O.P., Singh P.M., Singh B. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front. Plant Sci. 2017;8:8. doi: 10.3389/fpls.2017.01635. PubMed DOI PMC

Gururani M.A., Ganesan M., Song P.-S. Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnol. Adv. 2015;33:53–63. doi: 10.1016/j.biotechadv.2014.12.005. PubMed DOI

Manjunatha G., Lokesh V., Neelwarne B. Nitric oxide in fruit ripening: Trends and opportunities. Biotechnol. Adv. 2010;28:489–499. doi: 10.1016/j.biotechadv.2010.03.001. PubMed DOI

Watkins C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006;24:389–409. doi: 10.1016/j.biotechadv.2006.01.005. PubMed DOI

Sharma H.S.S., Fleming C., Selby C., Rao J.R., Martin T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Environ. Biol. Fishes. 2013;26:465–490. doi: 10.1007/s10811-013-0101-9. DOI

Albacete A., Martínez-Andújar C., Pérez-Alfocea F. Hormonal and metabolic regulation of source-sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnol. Adv. 2014;32:12–30. doi: 10.1016/j.biotechadv.2013.10.005. PubMed DOI

Argueso C.T., Ferreira F.J., Kieber J.J. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI

Shigenaga A.M., Argueso C.T. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 2016;56:174–189. doi: 10.1016/j.semcdb.2016.06.005. PubMed DOI

Wolters H., Jürgens G. Survival of the flexible: Hormonal growth control and adaptation in plant development. Nat. Rev. Genet. 2009;10:305–317. doi: 10.1038/nrg2558. PubMed DOI

Pacifici E., Polverari L., Sabatini S. Plant hormone cross-talk: The pivot of root growth. J. Exp. Bot. 2015;66:1113–1121. doi: 10.1093/jxb/eru534. PubMed DOI

Vanková R., Petrášek J., Zažímalová E., Kamínek M., Motyka V., Ludwig-Müller J. Auxins and cytokinins in plant development and interactions with other phytohormones 2014. J. Plant Growth Regul. 2014;33:709–714. doi: 10.1007/s00344-014-9449-6. DOI

Bubán T. The use of benzyladenine in orchard fruit growing: A mini review. Plant Growth Regul. 2000;32:381–390. doi: 10.1023/A:1010785604339. DOI

Kakimoto T. Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 2003;54:605–627. doi: 10.1146/annurev.arplant.54.031902.134802. PubMed DOI

Hwang I., Sheen J., Muller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012;63:353–380. doi: 10.1146/annurev-arplant-042811-105503. PubMed DOI

Steklov M.Y., Lomin S.N., Osolodkin D.I., Romanov G.A. Structural basis for cytokinin receptor signaling: An evolutionary approach. Plant Cell Rep. 2013;32:781–793. doi: 10.1007/s00299-013-1408-3. PubMed DOI

Bergougnoux V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014;32:170–189. doi: 10.1016/j.biotechadv.2013.11.003. PubMed DOI

Gillaspy G.E., Ben-David H., Gruissem W. Fruits: A developmental perspective. Plant Cell. 1993;5:1439–1451. doi: 10.2307/3869794. PubMed DOI PMC

Matsuo S., Kikuchi K., Fukuda M., Honda I., Imanishi S. Roles and regulation of cytokinins in tomato fruit development. J. Exp. Bot. 2012;63:5569–5579. doi: 10.1093/jxb/ers207. PubMed DOI PMC

Schaller G.E., Bishopp A., Kieber J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC

Hosek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2019;225:2423–2438. doi: 10.1111/nph.16310. PubMed DOI

Kurakawa T., Ueda N., Maekawa M., Kobayashi K., Kojima M., Nagato Y., Sakakibara H., Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445:652–655. doi: 10.1038/nature05504. PubMed DOI

Kieber J.J., Schaller G.E. Cytokinin signaling in plant development. Development. 2018;145:dev149344. doi: 10.1242/dev.149344. PubMed DOI

Kieber J.J., Schaller G.E. Cytokinins. Arab. Book. 2014;12:e0168. doi: 10.1199/tab.0168. PubMed DOI PMC

Šmehilová M., Dobrůšková J., Novak O., Takáč T., Galuszka P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.01264. PubMed DOI PMC

Argueso C.T., Ferreira F.J., Epple P., To J.P., Hutchison C.E., Schaller G.E., Dangl J.L., Kieber J.J. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 2012;8:e1002448. doi: 10.1371/journal.pgen.1002448. PubMed DOI PMC

Shi X., Gupta S., Lindquist I.E., Cameron C.T., Mudge J., Rashotte A.M. Transcriptome analysis of cytokinin response in tomato leaves. PLoS ONE. 2013;8:e55090. doi: 10.1371/journal.pone.0055090. PubMed DOI PMC

Shi X., Gupta S., Rashotte A.M. Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. Plant Cell Rep. 2013;33:35–45. doi: 10.1007/s00299-013-1510-6. PubMed DOI

Cortleven A., Leuendorf J.E., Frank M., Pezzetta D., Bolt S., Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019;42:998–1018. doi: 10.1111/pce.13494. PubMed DOI

Ni J., Bai S., Gao L., Qian M., Zhong L., Teng Y. Identification, classification, and transcription profiles of the B-type response regulator family in pear. PLoS ONE. 2017;12:e0171523. doi: 10.1371/journal.pone.0171523. PubMed DOI PMC

Li L., Li N., Luo Z., Huang X., Li X. Proteomic response and quality maintenance in postharvest fruit of strawberry (Fragaria × ananassa) to exogenous cytokinin. Sci. Rep. 2016;6:27094. doi: 10.1038/srep27094. PubMed DOI PMC

Nardozza S., Boldingh H.L., Wohlers M., Gleave A.P., Luo Z., Costa G., A Macrae E., Clearwater M.J., Richardson A.C. Exogenous cytokinin application to Actinidia chinensis var. deliciosa ‘Hayward’ fruit promotes fruit expansion through water uptake. Hortic. Res. 2017;4:17043. doi: 10.1038/hortres.2017.43. PubMed DOI PMC

Tan M., Li G., Qi S., Liu X., Chen X., Ma J., Zhang N., Han M. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.) Gene. 2018;651:106–117. doi: 10.1016/j.gene.2018.01.101. PubMed DOI

Li Y., Zhang N., Xing L., Zhang S., Zhao C., Han M. Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in ‘Fuji’ apple (Malus domestica Borkh.) Plant Growth Regul. 2015;79:65–70. doi: 10.1007/s10725-015-0111-5. DOI

Li Y., Zhang N., Zhang L., Zuo X., Fan S., Zhang X., Shalmani A., Han M. Identification and expression analysis of cytokinin response-regulator genes during floral induction in apple (Malus domestica Borkh.) Plant Growth Regul. 2017;83:455–464. doi: 10.1007/s10725-017-0311-2. DOI

Tian S., Jiang L., Zhang J., Zong M., Ren Y., Guo S., Gong G., Liu F., Xu Y., Gao Q. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep. 2016;36:399–406. doi: 10.1007/s00299-016-2089-5. PubMed DOI

Hajari E. Molecular and related approaches to litchi improvement—Historical perspective and future trends. J. Hortic. Sci. Biotechnol. 2019;94:693–702. doi: 10.1080/14620316.2019.1624202. DOI

Wang T., Zhang H., Zhu H.-L. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic. Res. 2019;6:77. doi: 10.1038/s41438-019-0159-x. PubMed DOI PMC

Chai P., Dong S., Chai L., Chen S., Flaishman M., Ma H. Cytokinin-induced parthenocarpy of San Pedro type fig (Ficus carica L.) main crop: Explained by phytohormone assay and transcriptomic network comparison. Plant Mol. Biol. 2019;99:329–346. doi: 10.1007/s11103-019-00820-2. PubMed DOI

Zheng J., Cao M., Zhang Z., Zheng Z.-L. Expression analysis suggests potential roles for PH-LIKE(PHL) genes in diploid strawberry Fragaria vesca L. seedling hormone response and fruit development. J. Hortic. Sci. Biotechnol. 2018;94:151–159. doi: 10.1080/14620316.2018.1499424. DOI

Joshi M., Baghel R.S., Fogelman E., Stern R.A., Ginzberg I. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4 + 7 and the cytokinin 6-benzyladenine. Plant Physiol. Biochem. 2018;127:436–445. doi: 10.1016/j.plaphy.2018.04.015. PubMed DOI

Luo J., Guo L., Huang Y., Wang C., Qiao C., Pang R., Li J., Pang T., Wang R., Xie H., et al. Transcriptome analysis reveals the effect of pre-harvest CPPU treatment on the volatile compounds emitted by kiwifruit stored at room temperature. Food Res. Int. 2017;102:666–673. doi: 10.1016/j.foodres.2017.09.051. PubMed DOI

Hu B., Li J., Wang D., Qin Y., Zhao J. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid. Plant Growth Regul. 2017;84:437–450. doi: 10.1007/s10725-017-0351-7. DOI

Hu B., Zhao J., Lai B., Qin Y., Wang H., Hu G. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep. 2016;35:831–843. doi: 10.1007/s00299-015-1924-4. PubMed DOI

Nakajima I., Ban Y., Azuma A., Onoue N., Moriguchi T., Yamamoto T., Toki S., Endo M. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE. 2017;12:e0177966. doi: 10.1371/journal.pone.0177966. PubMed DOI PMC

Jia H., Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE. 2014;9:e93806. doi: 10.1371/journal.pone.0093806. PubMed DOI PMC

Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017;15:1509–1519. doi: 10.1111/pbi.12733. PubMed DOI PMC

Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC

Liu P., Wang S., Wang X., Yang X., Li Q., Wang C., Chen C., Shi Q., Ren Z., Wang L. Genome-wide characterization of two-component system (TCS) genes in melon (Cucumis melo L.) Plant Physiol. Biochem. 2020;151:197–213. doi: 10.1016/j.plaphy.2020.03.017. PubMed DOI

Altman A., Ziv M. Introduction: Horticultural biotechnology: A historical perspective and future prospects. Acta Hortic. 1997;447:31–38. doi: 10.17660/ActaHortic.1997.447.1. DOI

Dobránszki J., Da Silva J.A.T. Micropropagation of apple—A review. Biotechnol. Adv. 2010;28:462–488. doi: 10.1016/j.biotechadv.2010.02.008. PubMed DOI

Bhatti S., Jha G. Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep. 2010;29:1215–1225. doi: 10.1007/s00299-010-0907-8. PubMed DOI

Krishna H., Alizadeh M., Singh D., Singh U., Chauhan N., Eftekhari M., Sadh R.K. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016;6:54. doi: 10.1007/s13205-016-0389-7. PubMed DOI PMC

Omar A.A., Dutt M., Gmitter F.G., Grosser J.W. Advanced Structural Safety Studies. Volume 1359. Springer Science and Business Media LLC; Berlin, Germany: 2016. Somatic embryogenesis: Still a relevant technique in citrus improvement; pp. 289–327. PubMed

Maillot P., Deglène-Benbrahim L., Walter B. Efficient somatic embryogenesis from meristematic explants in grapevine (Vitis vinifera L.) cv. Chardonnay: An improved protocol. Trees. 2016;30:1377–1387. doi: 10.1007/s00468-016-1374-9. DOI

Rai M.K., Asthana P., Jaiswal V.S., Jaiswal U. Biotechnological advances in guava (Psidium guajava L.): Recent developments and prospects for further research. Trees. 2009;24:1–12. doi: 10.1007/s00468-009-0384-2. DOI

Chauhan R.D., Kanwar K. Biotechnological advances in pomegranate (Punica granatum L) In Vitro Cell. Dev. Biol.-Plant. 2012;48:579–594. doi: 10.1007/s11627-012-9467-7. DOI

Kamle M., Baek K.-H. Somatic embryogenesis in guava (Psidium guajava L.): Current status and future perspectives. 3 Biotech. 2017;7 doi: 10.1007/s13205-017-0844-0. PubMed DOI PMC

Paul H., Belaizi M., Sangwan-Norreel B. Somatic embryogenesis in apple. J. Plant Physiol. 1994;143:78–86. doi: 10.1016/S0176-1617(11)82100-0. DOI

Wang G.-F., Qin H.-Y., Sun D., Fan S.-T., Yang Y.-M., Wang Z.-X., Xu P.-L., Zhao Y., Liu Y.-X., Jun A. Haploid plant regeneration from hardy kiwifruit (Actinidia arguta Planch.) anther culture. Plant Cell Tissue Organ Cult. 2018;134:15–28. doi: 10.1007/s11240-018-1396-7. DOI

Pruski K., Nowak J., Grainger G. Micropropagation of four cultivars of Saskatoon berry (Amelanchier alnifolia NUTT.) Plant Cell Tissue Organ Cult. (PCTOC) 1990;21:103–109. doi: 10.1007/BF00033428. DOI

Moyo M., Aremu A.O., Plačková L., Plíhalová L., Pěnčík A., Novak O., Holub J., Dolezal K., Van Staden J. Deciphering the growth pattern and phytohormonal content in Saskatoon berry (Amelanchier alnifolia) in response to in vitro cytokinin application. New Biotechnol. 2018;42:85–94. doi: 10.1016/j.nbt.2018.02.001. PubMed DOI

Be L., DeBergh P. Potential low-cost micropropagation of pineapple (Ananas comosus) S. Afr. J. Bot. 2006;72:191–194. doi: 10.1016/j.sajb.2005.07.002. DOI

Teklehaymanot T., Wannakrairoj S., Pipattanawong N. Meta-topolin for pineapple shoot multiplication under three in vitro systems. Am. Eurasian J. Agric. Environ. Sci. 2010;7:157–162.

Okunade O.A., Sinniah U.R., Namasivayam P., Swamy M.K., Lynch P.T. Influence of seed position within the fruit on seedling quality and in vitro shoot tip production of jackfruit. J. Hortic. Sci. Biotechnol. 2017;93:1–9. doi: 10.1080/14620316.2017.1405746. DOI

Mahoney J.D., Apicella P.V., Brand M.H. Adventitious shoot regeneration from in vitro leaves of Aronia mitschurinii and cotyledons of closely related Pyrinae taxa. Sci. Hortic. 2018;237:135–141. doi: 10.1016/j.scienta.2018.03.062. DOI

Roussos P.A., Dimitriou G., Voloudakis A.E. N-(2-chloro-4-pyridyl)-N-phenylurea(4-CPPU) enhances in vitro direct shoot organogenesis of Citrus aurantium L. epicotyl segments compared to other commonly used cytokinins. Span. J. Agric. Res. 2011;9:504. doi: 10.5424/sjar/20110902-201-10. DOI

Niedz R.P., Evens T.J. The effects of benzyladenine and meta-topolin on in vitro shoot regeneration of a Citrus citrandarin rootstock. Res. J. Agric. Biol. Sci. 2010;6:45–53.

Hussain M., Raja N.I., Iqbal M., Iftikhar A., Sadaf H.M., Sabir S., Sultan M.A., Faz M.N.A. Plantlets regeneration via somatic embryogenesis from the nucellus tissues of kinnow mandarin (Citrus reticulata L.) Am. J. Plant Sci. 2016;7:798–805. doi: 10.4236/ajps.2016.76074. DOI

Salis C., E Papadakis I., Kintzios S., Hagidimitriou M. In vitro propagation and assessment of genetic relationships of citrus rootstocks using ISSR molecular markers. Not. Bot. Horti Agrobot. Cluj-Napoca. 2017;45:383–391. doi: 10.15835/nbha45210900. DOI

Ling W.T., Liew F.C., Lim W.Y., Subramaniam S., Chew B.L. shoot induction from axillary shoot tip explants of fig (Ficus carica) cv. Japanese BTM 6. Trop. Life Sci. Res. 2018;29:165–174. doi: 10.21315/tlsr2018.29.2.11. PubMed DOI PMC

Cappelletti R., Sabbadini S., Mezzetti B. The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci. Hortic. 2016;207:117–124. doi: 10.1016/j.scienta.2016.05.016. DOI

Biswas M.K., Dutt M., Roy U., Islam R., Hossain M. Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Sci. Hortic. 2009;122:409–416. doi: 10.1016/j.scienta.2009.06.002. DOI

Naing A.H., Kim S.H., Chung M.Y., Park S.K., Kim C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods. 2019;15:36. doi: 10.1186/s13007-019-0421-0. PubMed DOI PMC

Das D.K., Rahman A., Kumari D. Synthetic seed preparation, germination and plantlet regeneration of litchi (Litchi chinensis Sonn.) Am. J. Plant Sci. 2016;7:1395–1406. doi: 10.4236/ajps.2016.710133. DOI

Dobránszki J., Hudak I., Magyar-Tábori K., Jámbor-Benczúr E., Galli Z., Kiss E. How can different cytokinins influence the process of shoot regeneration from apple leaves in ‘Royal Gala’ and ‘M.26’. Acta Hortic. 2006;725:191–196. doi: 10.17660/ActaHortic.2006.725.22. DOI

Magyar-Tábori K., Dobránszky J., Jámbor-Benczúr É., Bubán T., Lazányi J., Szalai J., Ferenczy A. Post-effects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ’Red Fuji’. Int. J. Hortic. Sci. 2001;7:26–29. doi: 10.31421/IJHS/7/3-4/276. DOI

Dobránszki J., Magyar-Tábori K., Jámbor-Benczúr E., Al E. Effect of conditioning apple shoots with meta-topolin on the morphogenic activity of in vitro leaves. Acta Agron. Hung. 2002;50:117–126. doi: 10.1556/AAgr.50.2002.2.1. DOI

Dobránszky J., Jámbor-Benczúr E., Reményi M.L., Magyar-Tábori K., Hudák I., Kiss E., Galli Z. Effects of aromatic cytokinins on structural characteristics of leaves and their post-effects on subsequent shoot regeneration from in vitro apple leaves of ’Royal Gala’. Int. J. Hortic. Sci. 2005;11:41–46. doi: 10.31421/IJHS/11/1/556. DOI

Magyar-Tábori K., Dobránszki J., Hudák I. Effect of cytokinin content of the regeneration media on in vitro rooting ability of adventitious apple shoots. Sci. Hortic. 2011;129:910–913. doi: 10.1016/j.scienta.2011.05.011. DOI

Lizárraga A., Fraga M., Ascasíbar J., González M.L. In vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. Am. J. Plant Sci. 2017;8:2238–2254. doi: 10.4236/ajps.2017.89150. DOI

Saha S., Adhikari S., Dey T., Ghosh P. RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene. 2015;7:7–15. doi: 10.1016/j.mgene.2015.10.004. PubMed DOI PMC

Safarpour M., Sinniah U.R., Subramaniam S., Swamy M.K. A novel technique for Musa acuminata Colla ‘Grand Naine’ (AAA) micropropagation through transverse sectioning of the shoot apex. In Vitro Cell. Dev. Biol.-Plant. 2017;53:226–238. doi: 10.1007/s11627-017-9809-6. DOI

Arinaitwe G., Rubaihayo P.R., Magambo M.J.S. Proliferation rate effects of cytokinins on banana (Musa spp.) cultivars. Sci. Hortic. 2000;86:13–21. doi: 10.1016/S0304-4238(00)00124-2. DOI

Bairu M.W., Stirk W.A., Doležal K., Van Staden J. The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA) Plant Cell Tissue Organ Cult. 2008;95:373–379. doi: 10.1007/s11240-008-9451-4. DOI

Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Shoot and root proliferation in ‘Williams’ banana: Are the topolins better cytokinins? Plant Cell Tissue Organ Cult. 2012;111:209–218. doi: 10.1007/s11240-012-0187-9. DOI

Bairu M.W., Fennell C.W., Van Staden J. The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’) Sci. Hortic. 2006;108:347–351. doi: 10.1016/j.scienta.2006.01.039. DOI

Escalona M., Cejas I., González-Olmedo J., Capote I., Roels S., Cañal M.J., Rodríguez R., Sandoval J., Debergh P. The effect of meta-topolin on plantain propagation using a temporary immersion bioreactor. InfoMusa. 2003;12:28–30.

Roels S., Escalona M., Cejas I., Noceda C., Rodriguez R., Cañal M.-J., Sandoval J., DeBergh P. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult. 2005;82:57–66. doi: 10.1007/s11240-004-6746-y. DOI

De Faria R.B., De Carvalho I.F., Rossi A.A.B., De Matos E.M., Rocha D.I., Pinto D.L.P., Otoni W.C., Da Silva M.L. High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species. In Vitro Cell. Dev. Biol.-Plant. 2018;54:166–174. doi: 10.1007/s11627-017-9881-y. DOI

Antoniazzi C.A., De Faria R.B., De Carvalho P.P., Mikovski A.I., De Carvalho I.F., De Matos E.M., Reis A.C., Viccini L.F., Pinto D.L.P., Rocha D.I., et al. In vitro regeneration of triploid plants from mature endosperm culture of commercial passionfruit (Passiflora edulis Sims) Sci. Hortic. 2018;238:408–415. doi: 10.1016/j.scienta.2018.05.001. DOI

Barceló-Muñoz A., Encina C.L., Simón-Pérez E., Pliego-Alfaro F. Micropropagation of adult avocado. Plant Cell Tissue Organ Cult. 1999;58:11–17. doi: 10.1023/A:1006305716426. DOI

Soni M., Kanwar K. Rejuvenation influences indirect organogenesis from leaf explants of Pomegranate (Punica granatum L.) ‘Kandhari Kabuli’. J. Hortic. Sci. Biotechnol. 2016;91:93–99. doi: 10.1080/14620316.2015.1110998. DOI

Ružić D.V., Vujović T.I. The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.) Hortic. Sci. 2008;35:12–21. doi: 10.17221/646-HORTSCI. DOI

Nas M.N., Bolek Y., Sevgin N. The effects of explant and cytokinin type on regeneration of Prunus microcarpa. Sci. Hortic. 2010;126:88–94. doi: 10.1016/j.scienta.2010.06.012. DOI

Tsafouros A., Roussos P.A. First report of Krymsk® 5 (cv. VSL 2) cherry rootstock in vitro propagation: Studying the effect of cytokinins, auxins and endogenous sugars. Not. Bot. Horti Agrobot. Cluj-Napoca. 2018;47:152–161. doi: 10.15835/nbha47111276. DOI

Qiu D., Wei X., Fan S., Jian D., Chen J. Regeneration of blueberry cultivars through indirect shoot organogenesis. HortScience. 2018;53:1045–1049. doi: 10.21273/HORTSCI13059-18. DOI

Fan S., Jian D., Wei X., Chen J., Beeson R.C., Zhou Z., Wang X. Micropropagation of blueberry ‘Bluejay’ and ‘Pink Lemonade’ through in vitro shoot culture. Sci. Hortic. 2017;226:277–284. doi: 10.1016/j.scienta.2017.08.052. DOI

Debnath S.C. A scale-up system for lowbush blueberry micropropagation using a bioreactor. HortScience. 2009;44:1962–1966. doi: 10.21273/HORTSCI.44.7.1962. DOI

Ružić D., Vujović T., Libiakova G., Cerović R., Gajdošová A. Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.) J. Berry Res. 2012;2:97–103. doi: 10.3233/JBR-2012-030. DOI

Liu C., Callow P., Rowland L.J., Hancock J.F., Song G.-q. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars. Plant Cell Tissue Organ Cult. 2010;103:137–144. doi: 10.1007/s11240-010-9755-z. DOI

Cao X., Hammerschlag F.A., Douglass L. A two-step pretreatment significantly enhances shoot organogenesis from leaf explants of highbush blueberry cv. Bluecrop. HortScience. 2002;37:819–821. doi: 10.21273/HORTSCI.37.5.819. DOI

Reed B.M., Abdelnour-Esquivel A. The use of zeatin to initiate in vitro cultures of Vaccinium species and cultivars. HortScience. 1991;26:1320–1322. doi: 10.21273/HORTSCI.26.10.1320. DOI

Meiners J., Schwab M., Szankowski I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult. 2007;89:169–176. doi: 10.1007/s11240-007-9230-7. DOI

Rowland L.J., Ogden E.L. Use of a cytokinin conjugate for efficient shoot regeneration from leaf sections of highbush blueberry. HortScience. 1992;27:1127–1129. doi: 10.21273/HORTSCI.27.10.1127. DOI

Hung C.D., Hong C.-H., Kim S.-K., Lee K.-H., Park J.-Y., Nam M.-W., Choi D.-H., Lee H.-I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.) Acta Physiol. Plant. 2016;38 doi: 10.1007/s11738-016-2164-0. DOI

Cüce M., Sökmen A. In vitro production protocol of Vaccinium uliginosum L. (bog bilberry)growing in the Turkish flora. Turk. J. Agric. For. 2017;41:294–304. doi: 10.3906/tar-1704-19. DOI

Arigundam U., Variyath A.M., Siow Y.L., Marshall D., Debnath S. Liquid culture for efficient in vitro propagation of adventitious shoots in wild Vaccinium vitis-idaea ssp. minus (lingonberry) using temporary immersion and stationary bioreactors. Sci. Hortic. 2020;264:109199. doi: 10.1016/j.scienta.2020.109199. DOI

Alizadeh M., Singh S., Patel V., Deshmukh P. In vitro clonal multiplication of two grape (Vitis spp.) rootstock genotypes. Plant Tissue Cult. Biotechnol. 2018;28:1–11. doi: 10.3329/ptcb.v28i1.37193. DOI

Surakshitha N., Soorianathasundaram K., Ganga M., Raveendran M. Alleviating shoot tip necrosis during in vitro propagation of grape cv. Red Globe. Sci. Hortic. 2019;248:118–125. doi: 10.1016/j.scienta.2019.01.013. DOI

Posada-Pérez L., Montesinos Y.P., Guerra D.G., Daniels D., Gómez-Kosky R. Complete germination of papaya (Carica papaya L. cv. ‘Maradol Roja’) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium. In Vitro Cell. Dev. Biol.-Plant. 2017;53:505–513.

Cardoso J.C., Curtolo M., Latado R.R., Martinelli A.P. Somatic embryogenesis of a seedless sweet orange (Citrus sinensis (L.) Osbeck) In Vitro Cell. Dev. Biol. - Plant. 2017;53:619–623. doi: 10.1007/s11627-017-9866-x. DOI

Cardoso J.C., Martinelli A.P., Latado R.R. Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tissue Organ Cult. 2011;109:171–177. doi: 10.1007/s11240-011-0073-x. DOI

Raharjo S., Litz R.E. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn.) from leaves of mature phase trees. Plant Cell Tissue Organ Cult. 2007;89:113–119. doi: 10.1007/s11240-007-9219-2. DOI

Yu C., Chen Z., Lu L., Lin J. Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant Cell Tissue Organ Cult. 2000;61:51–58. doi: 10.1023/A:1006446506041. DOI

Daigny G., Paul H., Sangwan R.S., Sangwan-Norreel B.S. Factors influencing secondary somatic embryogenesis in Malus x domestica Borkh. (cv ‘Gloster 69′) Plant Cell Rep. 1996;16:153–157. doi: 10.1007/BF01890857. PubMed DOI

Morais-Lino L.S., Santos-Serejo J.A., Amorim E.P., De Santana J.R.F., Pasqual M., Silva S.D.O.E. Somatic embryogenesis, cell suspension, and genetic stability of banana cultivars. In Vitro Cell. Dev. Biol.-Plant. 2015;52:99–106. doi: 10.1007/s11627-015-9729-2. DOI

Natarajan N., Sundararajan S., Suresh C.P., Ramalingam S. In vitro somatic embryogenesis from immature female flower of Musa AAB cv. Chenichampa and molecular analysis of transcript factors (TFs) during somatic embryogenesis. Plant Cell Tissue Organ Cult. 2020;142:339–351. doi: 10.1007/s11240-020-01866-7. DOI

Pinto D.L.P., De Almeida A.M.R., Rêgo M.M., Da Silva M.L., De Oliveira E.J., Otoni W.C. Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tissue Organ Cult. 2011;107:521–530. doi: 10.1007/s11240-011-0003-y. DOI

Da Silva G.M., Da Cruz A.C.F., Otoni W.C., Pereira T.N.S., Rocha D.I., Da Silva M.L. Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae) In Vitro Cell. Dev. Biol.-Plant. 2015;51:539–545. doi: 10.1007/s11627-015-9699-4. DOI

Palomo Ríos E., Pérez C., Mercado J.A., Pliego-Alfaro F. Enhancing frequency of regeneration of somatic embryos of avocado (Persea americana Mill.) using semi-permeable cellulose acetate membranes. Plant Cell Tissue Organ Cult. 2013;115:199–207. doi: 10.1007/s11240-013-0352-9. DOI

Palomo-Ríos E., Barceló-Muñoz A., Mercado J.A., Pliego-Alfaro F. Evaluation of key factors influencing Agrobacterium-mediated transformation of somatic embryos of avocado (Persea americana Mill.) Plant Cell Tissue Organ Cult. 2012;109:201–211. doi: 10.1007/s11240-011-0086-5. DOI

Encina C.L., Parisi A., O’Brien C., Mitter N. Enhancing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in the culture medium. Sci. Hortic. 2014;165:44–50. doi: 10.1016/j.scienta.2013.10.019. DOI

Palomo-Ríos E., Cerezo S., Mercado J.A., Pliego-Alfaro F., Mercado J.A. Agrobacterium-mediated transformation of avocado (Persea americana Mill.) somatic embryos with fluorescent marker genes and optimization of transgenic plant recovery. Plant Cell Tissue Organ Cult. 2016;128:447–455. doi: 10.1007/s11240-016-1122-2. DOI

Bhansali R.R. Somatic embryogenesis and regeneration of plantlets in pomegranate. Ann. Bot. 1990;66:249–253. doi: 10.1093/oxfordjournals.aob.a088022. DOI

Pateña L.F., Barba R.C. The development of techniques for tissue culture of mango (Mangifera indica L.) var. Carabao and successful transfer of ex vitro-grafted plants to soil and the field. In Vitro Cell. Dev. Biol.-Plant. 2011;47:629–636. doi: 10.1007/s11627-011-9412-1. DOI

Zhou Q., Dai L., Cheng S., He J., Wang D., Zhang J., Wang Y. A circulatory system useful both for long-term somatic embryogenesis and genetic transformationin Vitis vinifera L. cv. Thompson Seedless. Plant Cell Tissue Organ Cult. 2014;118:157–168. doi: 10.1007/s11240-014-0471-y. DOI

Gambino G., Ruffa P., Vallania R., Gribaudo I. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.) Plant Cell Tissue Organ Cult. 2007;90:79–83. doi: 10.1007/s11240-007-9256-x. DOI

Acanda Y., Prado M.J., Gonzalez M.V., Rey M. Somatic embryogenesis from stamen filaments in grapevine (Vitis vinifera L. cv. Mencía): Changes in ploidy level and nuclear DNA content. In Vitro Cell. Dev. Biol.-Plant. 2013;49:276–284. doi: 10.1007/s11627-013-9499-7. DOI

Dai L., Zhou Q., Li R., Du Y., He J., Wang D., Cheng S., Zhang J., Wang Y. Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species. Plant Cell Tissue Organ Cult. 2015;121:397–412. doi: 10.1007/s11240-015-0711-9. DOI

Naik S.K., Chand P.K. Tissue culture-mediated biotechnological intervention in pomegranate: A review. Plant Cell Rep. 2011;30:707–721. doi: 10.1007/s00299-010-0969-7. PubMed DOI

Da Silva J.A.T., Rana T.S., Narzary D., Verma N., Meshram D.T., Ranade S.A. Pomegranate biology and biotechnology: A review. Sci. Hortic. 2013;160:85–107. doi: 10.1016/j.scienta.2013.05.017. DOI

Cabasson C., Alvard D., Dambier D., Ollitrault P., Teisson C. Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell Tissue Organ Cult. 1997;50:33–37. doi: 10.1023/A:1005896725780. DOI

Rai M.K., Akhtar N., Jaiswal V. Somatic embryogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Sci. Hortic. 2007;113:129–133. doi: 10.1016/j.scienta.2007.02.010. DOI

Akhtar N. Evaluation of the efficiency of somatic embryogenesis in guava (Psidium guajava L.) J. Hortic. Sci. Biotechnol. 2010;85:556–562.

Kamle M., Kumar P., Bajpai A., Kalim S., Chandra R. Assessment of genetic fidelity of somatic embryogenesis regenerated guava (Psidium guajava L.) plants using DNA-based markers. N. Z. J. Crop. Hortic. Sci. 2013;42:1–9. doi: 10.1080/01140671.2013.814574. DOI

Tang H., Ren Z., Krczal G. Somatic embryogenesis and organogenesis from immature embryo cotyledons of three sour cherry cultivars (Prunus cerasus L.) Sci. Hortic. 2000;83:109–126. doi: 10.1016/S0304-4238(99)00073-4. DOI

Gao M., Kawabe M., Tsukamoto T., Hanada H., Tao R. Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot (Prunus mume) using immature cotyledons. Sci. Hortic. 2010;124:360–367. doi: 10.1016/j.scienta.2010.01.021. DOI

Dhekney S.A., Li Z.T., Grant T.N.L., Gray D.J. Advanced Structural Safety Studies. Volume 1359. Springer Science and Business Media LLC; Berlin, Germany: 2016. Somatic embryogenesis and genetic modification of vitis; pp. 263–277. PubMed

Garcia C., De Almeida A.-A.F., Costa M., Britto D., Valle R., Royaert S., Marelli J.-P. Abnormalities in somatic embryogenesis caused by 2,4-D: An overview. Plant Cell Tissue Organ Cult. 2019;137:193–212. doi: 10.1007/s11240-019-01569-8. DOI

Werbrouck S.P.O., Strnad M., Van Onckelen H.A., Debergh P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996;98:291–297. doi: 10.1034/j.1399-3054.1996.980210.x. DOI

Strnad M. The aromatic cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI

Aremu A.O., Bairu M.W., Doležal K., Finnie J.F., Van Staden J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ Cult. 2011;108:1–16. doi: 10.1007/s11240-011-0007-7. DOI

White P.R. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 1934;9:585–600. doi: 10.1104/pp.9.3.585. PubMed DOI PMC

Bairu M.W., Novák O., Doležal K., Van Staden J. Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul. 2011;63:105–114. doi: 10.1007/s10725-010-9558-6. DOI

Aremu A.O., Plačková L., Bairu M.W., Novak O., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Endogenous cytokinin profiles of tissue-cultured and acclimatized ‘Williams’ bananas subjected to different aromatic cytokinin treatments. Plant Sci. 2014;214:88–98. doi: 10.1016/j.plantsci.2013.09.012. PubMed DOI

Aremu A.O., Doležal K., Van Staden J. New cytokinin-like compounds as a tool to improve rooting and establishment of micropropagated plantlets. Acta Hortic. 2017:497–504. doi: 10.17660/ActaHortic.2017.1155.73. DOI

Motte H., Vereecke D., Geelen D., Werbrouck S. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 2014;32:107–121. doi: 10.1016/j.biotechadv.2013.12.002. PubMed DOI

Xu K., Liu J., Fan M., Xin W., Hu Y., Xu C. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics. 2012;100:116–124. doi: 10.1016/j.ygeno.2012.05.013. PubMed DOI

Zhang T.-Q., Lian H., Zhou C.-M., Xu L., Jiao Y., Wang J.-W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell. 2017;29:1073–1087. doi: 10.1105/tpc.16.00863. PubMed DOI PMC

Hurný A., Benková E. Advanced Structural Safety Studies. Volume 1569. Springer Science and Business Media LLC; Berlin, Germany: 2017. Methodological advances in auxin and cytokinin biology; pp. 1–29. PubMed

Quinlan J.D., Tobutt K.R. Manipulating fruit tree structure chemically and genetically for improved performance. HortScience. 1990;25:60–64. doi: 10.21273/HORTSCI.25.1.60. DOI

Moghadam E.G., Zamanipour M. Induction of lateral branching in sweet cherry (Prunus avium L. cvs.” Siah Mashhad” &” Dovomras”) trees in nursery. J. Agric. Sci. 2013;5:23–30.

Quinlan J.D., Preston A.P. The use of branching agents to replace hand pruning of young trees of brantley’s seedling apple. J. Hortic. Sci. 1978;53:39–43. doi: 10.1080/00221589.1978.11514791. DOI

Çağlar S., Ilgin M. The effects of benzyladenine applications on branching of ‘Mondial Gala’apple nursery trees on MM. 106 in the first year growth. KSÜ J. Nat. Sci. 2009;12:66–70.

Zhalnerchyk P., Przybyła A.A. Jaumień F: Influence of chemicals of arbolin group on branching of maiden trees of three apple cultivars. J. Hortic. Res. 2015;23:95–104. doi: 10.2478/johr-2015-0019. DOI

Van Oosten H. Effect of initial tree quality on yield. Acta Hortic. 1976;65:123–128. doi: 10.17660/ActaHortic.1978.65.19. DOI

Greene D.W., Autio W.R. Vegetative responses of apple trees following benzyladenine and growth regulator sprays. J. Am. Soc. Hortic. Sci. 1990;115:400–404. doi: 10.21273/JASHS.115.3.400. DOI

Gąstoł M., Domagała-Świątkiewicz I., Bijak M. The effect of different bioregulators on lateral shoot formation in maiden apple trees. Folia Hortic. 2012;24:147–152. doi: 10.2478/v10245-012-0018-9. DOI

Wani S.H., Kumar V., Shriram V., Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop. J. 2016;4:162–176. doi: 10.1016/j.cj.2016.01.010. DOI

Francini A., Sebastiani L. Abiotic stress effects on performance of horticultural crops. Horticulture. 2019;5:67. doi: 10.3390/horticulturae5040067. DOI

Upreti K.K., Sharma M. Role of plant growth regulators in abiotic stress tolerance. In: Rao N.K.S., Shivashankara K.S., Laxman R.H., editors. Abiotic Stress Physiology of Horticultural Crops. Springer; New Delhi, India: 2016. pp. 19–46.

Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI

Zhu L.-H., Van De Peppel A., Li X.-Y., Welander M. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Sci. Hortic. 2004;99:133–141. doi: 10.1016/S0304-4238(03)00089-X. DOI

Merewitz E.B., Gianfagna T., Huang B. Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J. Am. Soc. Hortic. Sci. 2010;135:230–239. doi: 10.21273/JASHS.135.3.230. DOI

Macková H., Hronková M., Dobrá J.K., Turečková V., Novak O., Lubovská Z., Motyka V., Haisel D., Hájek T., Prášil I.T., et al. Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 2013;64:2805–2815. doi: 10.1093/jxb/ert131. PubMed DOI PMC

Greene D. The development and use of plant bioregulators in tree fruit production. Acta Hortic. 2010;884:31–40. doi: 10.17660/ActaHortic.2010.884.1. DOI

Petracek P.D., Silverman F.P., Greene D.W. A history of commercial plant growth regulators in apple production. HortScience. 2003;38:937–942. doi: 10.21273/HORTSCI.38.5.937. DOI

Nicolaï B., Defraeye T., De Ketelaere B., Herremans E., Hertog M.L.A.T.M., Saeys W., Torricelli A., VandenDriessche T., Verboven P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 2014;5:285–312. doi: 10.1146/annurev-food-030713-092410. PubMed DOI

Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–745. doi: 10.1126/science.1113373. PubMed DOI

Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC

Ainalidou A., Tanou G., Belghazi M., Samiotaki M., Diamantidis G., Molassiotis A., Karamanoli K. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. J. Proteom. 2016;143:318–333. doi: 10.1016/j.jprot.2016.02.013. PubMed DOI

Mariotti L., Picciarelli P., Lombardi L., Ceccarelli N. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J. Plant Growth Regul. 2011;30:405–415. doi: 10.1007/s00344-011-9204-1. DOI

Fuentes L., Figueroa C.R., Valdenegro M. Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae. 2019;5:45. doi: 10.3390/horticulturae5020045. DOI

Ding J., Chen B., Xia X., Mao W., Shi K., Zhou Y.-H., Yu J. Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS ONE. 2013;8:e70080. doi: 10.1371/journal.pone.0070080. PubMed DOI PMC

Watanabe M., Segawa H., Murakami M., Sagawa S., Komori S. Effects of plant growth regulators on fruit set and fruit shape of parthenocarpic apple fruits. J. Jpn. Soc. Hortic. Sci. 2008;77:350–357. doi: 10.2503/jjshs1.77.350. DOI

Teng Y., Xu C., Bai S., Pan Z., Tang Y. Studies on pear parthenocarpy induced by exogenous plant growth regulators. Acta Hortic. 2018;1206:21–26. doi: 10.17660/ActaHortic.2018.1206.3. DOI

Böttcher C., Burbidge C.A., Boss P.K., Davies C. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. BMC Plant Biol. 2015;15:223. doi: 10.1186/s12870-015-0611-5. PubMed DOI PMC

Böttcher C., Boss P.K., Harvey K.E., Nicholson E.L., Burbidge C.A., Davies C. Post-veraison restriction of phloem import into Riesling (Vitis vinifera L.) berries induces transient and stable changes to fermentation-derived and varietal wine volatiles. Aust. J. Grape Wine Res. 2019;25:286–292.

Zhang C., Whiting M.D. Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Sci. Hortic. 2011;127:341–346. doi: 10.1016/j.scienta.2010.11.006. DOI

Canli F., Pektas M. Improving fruit size and quality of low yielding and small fruited pear cultivars with benzyladenine and gibberellin applications. Eur. J. Hortic. Sci. 2015;80:103–108. doi: 10.17660/eJHS.2015/80.3.2. DOI

Stern R.A., Flaishman M.A. Benzyladenine effects on fruit size, fruit thinning and return yield of ‘Spadona’ and ‘Coscia’ pear. Sci. Hortic. 2003;98:499–504. doi: 10.1016/S0304-4238(03)00035-9. DOI

Fujisawa H., Kawai Y., Ishikawa K. Response of highbush blueberry (Vaccinium corymbosum) ‘Spartan’ to gibberellic acid and CPPU applied at various rates and timings. Acta Hortic. 2018;1206:183–188. doi: 10.17660/ActaHortic.2018.1206.25. DOI

Retamales J., Bangerth F., Cooper T., Callejas R. Effects of CPPU and GA3 on fruit quality of sultanina table grape. Acta Hortic. 1995;394:149–158. doi: 10.17660/ActaHortic.1995.394.14. DOI

Greene D.W., Schupp J.R., Winzeler H.E. Effect of abscisic acid and benzyladenine on fruit set and fruit quality of apples. HortScience. 2011;46:604–609. doi: 10.21273/HORTSCI.46.4.604. DOI

Reynolds A., Wardle D., Zurowski C., Looney N. Phenylureas CPPU and thidiazuron affect yield components, fruit composition, and storage potential of four seedless grape selections. J. Am. Soc. Hortic. Sci. 1992;117:85–89. doi: 10.21273/JASHS.117.1.85. DOI

Matsumoto K., Fujita T., Sato S. Exogenous applications of plant growth regulators improve quality of ‘Fuji’apple. Int. J. Agric. Biol. 2018;20:2083–2090.

Blumenfeld A., Gazit S. Cytokinin activity in avocado seeds during fruit development. Plant Physiol. 1970;46:331–333. doi: 10.1104/pp.46.2.331. PubMed DOI PMC

Blumenfeld A., Gazit S. Growth of avocado fruit callus and its relation to exogenous and endogenous cytokinins. Physiol. Plant. 1971;25:369–371. doi: 10.1111/j.1399-3054.1971.tb01457.x. DOI

Kim J., Takami Y., Mizugami T., Beppu K., Fukuda T., Kataoka I. CPPU application on size and quality of hardy kiwifruit. Sci. Hortic. 2006;110:219–222. doi: 10.1016/j.scienta.2006.06.017. DOI

Antognozzi E., Famiani F., Palliotti A., Tombesi A. Effects of CPPU (cytokinin) on kiwifruit productivity. Acta Hortic. 1993;329:150–152. doi: 10.17660/ActaHortic.1993.329.29. DOI

Antognozzi E., Battistelli A., Famiani F., Moscatello S., Stanica F., Tombesi A. Influence of CPPU on carbohydrate accumulation and metabolism in fruits of Actinidia deliciosa (A. Chev.) Sci. Hortic. 1996;65:37–47. doi: 10.1016/0304-4238(95)00852-7. DOI

Cruz-Castillo J.G., Woolley D.J., Lawes G.S. Kiwifruit size and CPPU response are influenced by the time of anthesis. Sci. Hortic. 2002;95:23–30. doi: 10.1016/S0304-4238(01)00384-3. DOI

Ikoma Y., Yano M., Xu Z.C., Ogawa K. Reduction in ethylene synthesis in parthenocarpic Actinidia deliciosa fruit induced by N-(2-chloro-4-pyridyl)-N′-phenylurea. Postharvest Biol. Technol. 1998;13:121–129. doi: 10.1016/S0925-5214(98)00002-7. DOI

Lorenzo E., Lastra B., Otero V., Gallego P. Effects of three plant growth regulators on kiwifruit development. Acta Hortic. 2007:549–554. doi: 10.17660/ActaHortic.2007.753.72. DOI

Adaniya S., Minemoto K., Moromizato Z., Molomura K. The use of CPPU for efficient propagation of pineapple. Sci. Hortic. 2004;100:7–14. doi: 10.1016/j.scienta.2003.07.003. DOI

Huitrón M.V., Diaz M., Diánez F., Camacho-Ferre F., Valverde A. Effect of 2,4-D and CPPU on triploid watermelon production and quality. HortScience. 2007;42:559–564. doi: 10.21273/HORTSCI.42.3.559. DOI

Biton E., Kobiler I., Feygenberg O., Yaari M., Friedman H., Prusky D. Control of alternaria black spot in persimmon fruit by a mixture of gibberellin and benzyl adenine, and its mode of action. Postharvest Biol. Technol. 2014;94:82–88. doi: 10.1016/j.postharvbio.2014.03.009. DOI

Sugiyama N., Yamaki Y. Effects of CPPU on fruit set and fruit growth in Japanese persimmon. Sci. Hortic. 1995;60:337–343. doi: 10.1016/0304-4238(94)00712-O. DOI

Curry E.A., Greene D.W. CPPU influences fruit quality, fruit set, return bloom, and preharvest drop of apples. HortScience. 1993;28:115–119. doi: 10.21273/HORTSCI.28.2.115. DOI

Elfving D., Cline R. Cytokinin and ethephon affect crop load, shoot growth, and nutrient concentration of ‘empire’ apple trees. HortScience. 1993;28:1011–1014. doi: 10.21273/HORTSCI.28.10.1011. DOI

Greene D.W. Thidiazuron effects on fruit set, fruit quality, and return bloom of apples. HortScience. 1995;30:1238–1240. doi: 10.21273/HORTSCI.30.6.1238. DOI

Greene D.W. CPPU influences fruit quality and fruit abscission of ’McIntosh’ apples. HortScience. 2001;36:1292–1295. doi: 10.21273/HORTSCI.36.7.1292. DOI

Greene D.W., Autio W.R. Combination sprays with benzyladenine to chemically thin spur-type ‘delicious’ apples. HortScience. 1994;29:887–890. doi: 10.21273/HORTSCI.29.8.887. DOI

Yuan R., Greene D.W. ‘McIntosh’ apple fruit thinning by benzyladenine in relation to seed number and endogenous cytokinin levels in fruit and leaves. Sci. Hortic. 2000;86:127–134. doi: 10.1016/S0304-4238(00)00142-4. DOI

Nevine T.M., El-Ghany K.M. Some horticultural and pathological studies to reduce fruit decay of “Anna” apple and increase fruit set, yield and improve fruit quality and storability. J. Am. Sci. 2016;12:104–122.

Kulkarni S., Patil S., Magar S. Effect of plant growth regulators on yield and quality of mango (Mangifera indica L.) cv. Kesha. J. Pharmacogn. Phytochem. 2017;6:2309–2313.

Burondkar M., Jadhav B., Chetti M. Post-flowering morpho-physiological behavior of alphonso mango as influenced by plant growth regulators, polyamine and nutrients under rainfed conditions. Acta Hortic. 2009;820:425–432. doi: 10.17660/ActaHortic.2009.820.52. DOI

Zhang C., Whiting M. Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth. Sci. Hortic. 2013;150:73–79. doi: 10.1016/j.scienta.2012.10.007. DOI

Flaishman M., Shargal A.A., Raphael S. The synthetic cytokinin CPPU increases fruit size and yield of ‘Spadona’ and ‘Costia’ pear (Pyrus communis L.) J. Hortic. Sci. Biotechnol. 2001;76:145–149. doi: 10.1080/14620316.2001.11511341. DOI

Greene D.W. Influence of abscisic acid and benzyladenine on fruit set and fruit quality of ‘Bartlett’ pears. HortScience. 2012;47:1607–1611. doi: 10.21273/HORTSCI.47.11.1607. DOI

Malik H., Archbold D.D. Manipulating primocane architecture in thornless blackberry with uniconazole, GA3, and BA. HortScience. 1992;27:116–118. doi: 10.21273/HORTSCI.27.2.116. DOI

Nesmith D.S. Response of Rabbiteye Blueberry (Vaccinium ashei Reade) to the growth regulators CPPU and gibberellic acid. HortScience. 2002;37:666–668. doi: 10.21273/HORTSCI.37.4.666. DOI

Nesmith D.S. Effects of timing of CPPU applications on rabbiteye blueberries. HortScience. 2008;43:1446–1448. doi: 10.21273/HORTSCI.43.5.1446. DOI

Williamson J.G., Nesmith D.S. Effects of CPPU applications on southern highbush blueberries. HortScience. 2007;42:1612–1615. doi: 10.21273/HORTSCI.42.7.1612. DOI

Zabadal T.J., Bukovac M.J. Effect of CPPU on fruit development of selected seedless and seeded grape cultivars. HortScience. 2006;41:154–157. doi: 10.21273/HORTSCI.41.1.154. DOI

Marzouk H., Kassem H.A. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci. Hortic. 2011;130:425–430. doi: 10.1016/j.scienta.2011.07.013. DOI

Strydom J. Research note: Effect of CPPU (N-(2-Chloro-4-pyridinyl)-N’- phenylurea) and a seaweed extract on flame seedless, redglobe and crimson seedless grape quality. S. Afr. J. Enol. Vitic. 2016;34:233–240. doi: 10.21548/34-2-1099. DOI

Peppi M.C., Fidelibus M.W. Effects of forchlorfenuron and abscisic acid on the quality of ‘Flame seedless’ grapes. HortScience. 2008;43:173–176. doi: 10.21273/HORTSCI.43.1.173. DOI

Zoffoli J.P., Latorre B.A., Naranjo P. Preharvest applications of growth regulators and their effect on postharvest quality of table grapes during cold storage. Postharvest Biol. Technol. 2009;51:183–192. doi: 10.1016/j.postharvbio.2008.06.013. DOI

Beno-Moualem D., Vinokur Y., Prusky D. Cytokinins increase epicatechin content and fungal decay resistance in avocado fruits. J. Plant Growth Regul. 2001;20:95–100. doi: 10.1007/s003440010005. DOI

Kays S.J. Preharvest factors affecting appearance. Postharvest Biol. Technol. 1999;15:233–247. doi: 10.1016/S0925-5214(98)00088-X. DOI

Kyriacou M.C., Rouphael Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018;234:463–469. doi: 10.1016/j.scienta.2017.09.046. DOI

Crisosto C.H. Stone fruit maturity indices: A descriptive. Postharvest News Inf. 1994;5:65N–68N.

Niu Q., Wang T., Li J., Yang Q., Qian M., Teng Y. Effects of exogenous application of GA4+7 and N-(2-chloro-4-pyridyl)-N′-phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia ‘Cuiguan’. Plant Growth Regul. 2014;76:251–258. doi: 10.1007/s10725-014-9995-8. DOI

Prasanna V., Prabha T.N., Tharanathan R.N. Fruit ripening phenomena–An overview. Crit. Rev. Food Sci. Nutr. 2007;47:1–19. doi: 10.1080/10408390600976841. PubMed DOI

Ruan Y.-L., Patrick J.W., Bouzayen M., Osorio S., Fernie A.R. Molecular regulation of seed and fruit set. Trends Plant Sci. 2012;17:656–665. doi: 10.1016/j.tplants.2012.06.005. PubMed DOI

Zheng X., Yu T., Chen R., Huang B., Wu V.C. Inhibiting Penicillium expansum infection on pear fruit by Cryptococcus laurentii and cytokinin. Postharvest Biol. Technol. 2007;45:221–227. doi: 10.1016/j.postharvbio.2007.03.001. DOI

Osorio S., Scossa F., Fernie A.R. Molecular regulation of fruit ripening. Front. Plant Sci. 2013;4:4. doi: 10.3389/fpls.2013.00198. PubMed DOI PMC

Kawai Y., Baba T., Yoshida M., Agravante J.U., Del Carmen D.R. Effects of benzyladenine and light on post-harvest calamondin (x Citrofortunella microcarpa) fruit color and quality. Hortic. J. 2018;87:324–328. doi: 10.2503/hortj.OKD-145. DOI

Guyer L., Hofstetter S.S., Christ B., Lira B.S., Rossi M., Hörtensteiner S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiol. 2014;166:44–56. doi: 10.1104/pp.114.239541. PubMed DOI PMC

Yu T., Wang L., Yin Y., Feng F., Zheng X. Suppression of postharvest blue mould of apple fruit by Cryptococcus laurentii and N6-benzyladenine. J. Sci. Food Agric. 2008;88:1266–1271. doi: 10.1002/jsfa.3217. DOI

Massolo J.F., Lemoine M.L., Chaves A.R., Concellón A., Vicente A. Benzyl-aminopurine (BAP) treatments delay cell wall degradation and softening, improving quality maintenance of refrigerated summer squash. Postharvest Biol. Technol. 2014;93:122–129. doi: 10.1016/j.postharvbio.2014.02.010. DOI

Xu F., Chen X., Yang Z., Jin P., Wang K., Shang H., Wang X., Zheng Y. Maintaining quality and bioactive compounds of broccoli by combined treatment with 1-methylcyclopropene and 6-benzylaminopurine. J. Sci. Food Agric. 2012;93:1156–1161. doi: 10.1002/jsfa.5867. PubMed DOI

Zhang D., Xu X., Zhang Z., Jiang G., Feng L., Duan X., Jiang Y. 6-Benzylaminopurine improves the quality of harvested litchi fruit. Postharvest Biol. Technol. 2018;143:137–142. doi: 10.1016/j.postharvbio.2018.05.002. DOI

Itai A., Tanabe K., Tamura F., Susaki S., Yonemori K., Sugiura A. Synthetic cytokinins control persimmon fruit shape, size and quality. J. Hortic. Sci. 1995;70:867–873. doi: 10.1080/14620316.1995.11515362. DOI

Huang H., Jing G., Wang H., Duan X., Qu H., Jiang Y. The combined effects of phenylurea and gibberellins on quality maintenance and shelf life extension of banana fruit during storage. Sci. Hortic. 2014;167:36–42. doi: 10.1016/j.scienta.2013.12.028. DOI

Chen B., Yang H. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status. J. Sci. Food Agric. 2012;93:1915–1921. doi: 10.1002/jsfa.5990. PubMed DOI

Tian S., Qin G., Li B. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Mol. Biol. 2013;82:593–602. doi: 10.1007/s11103-013-0035-2. PubMed DOI

Zhang Y., Zeng L., Yang J., Zheng X., Yu T. 6-Benzylaminopurine inhibits growth of Monilinia fructicola and induces defense-related mechanism in peach fruit. Food Chem. 2015;187:210–217. doi: 10.1016/j.foodchem.2015.04.100. PubMed DOI

Magwaza L.S., Opara U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015;184:179–192. doi: 10.1016/j.scienta.2015.01.001. DOI

Qian C., Ren N., Wang J., Xu Q., Chen X., Qi X.-H. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.) Food Chem. 2018;243:410–413. doi: 10.1016/j.foodchem.2017.09.150. PubMed DOI

Fahima A., Levinkron S., Maytal Y., Hugger A., Lax I., Huang X., Eyal Y., Lichter A., Goren M., Stern R.A., et al. Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning. Plant Sci. 2019;283:41–50. doi: 10.1016/j.plantsci.2019.02.006. PubMed DOI

Tsantili E., Pontikis C. Response to ethylene and its interactive effects with N6-benzyladenine (BA) in harvested green olives during ripening. Postharvest Biol. Technol. 2004;33:153–162. doi: 10.1016/j.postharvbio.2004.02.005. DOI

Tsantili E., Rekoumi K., Roussos P.A., Pontikis C. Effects of postharvest treatment with N6-benzyladenine on green olive fruit. J. Hortic. Sci. Biotechnol. 2002;77:294–299. doi: 10.1080/14620316.2002.11511495. DOI

Wang D., Yeats T.H., Uluisik S., Rose J.K., Seymour G. Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 2018;23:302–310. doi: 10.1016/j.tplants.2018.01.006. PubMed DOI

Huang H., Jiang Y. Effect of plant growth regulators on banana fruit and broccoli during storage. Sci. Horticulturae. 2012;145:62–67. doi: 10.1016/j.scienta.2012.07.025. DOI

Nguyen-Quoc B., Foyer C.H. A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J. Exp. Bot. 2001;52:881–889. doi: 10.1093/jexbot/52.358.881. PubMed DOI

Wang L., Ruan Y.-L. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 2013;4:4. doi: 10.3389/fpls.2013.00163. PubMed DOI PMC

Cheynier V., Comte G., Davies K.M., Lattanzio V., Martens S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013;72:1–20. doi: 10.1016/j.plaphy.2013.05.009. PubMed DOI

Aremu A.O., Bairu M.W., Szüčová L., Doležal K., Finnie J.F., Van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated ‘Williams’ banana. Acta Physiol. Plant. 2012;34:2265–2273. doi: 10.1007/s11738-012-1027-6. DOI

Dixon R.A., Paiva N.L. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085–1097. doi: 10.2307/3870059. PubMed DOI PMC

Kurepa J., Shull T.E., Karunadasa S.S., Smalle J.A. Modulation of auxin and cytokinin responses by early steps of the phenylpropanoid pathway. BMC Plant Biol. 2018;18:278. doi: 10.1186/s12870-018-1477-0. PubMed DOI PMC

Schlosser J., Olsson N., Weis M., Reid K., Peng F., Lund S., Bowen P. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.) Protoplasma. 2008;232:255–265. doi: 10.1007/s00709-008-0280-9. PubMed DOI

Riou C., Huntley R.P., Jacqmard A., Murray J.A.H. Cytokinin activation of arabidopsis cell division through a D-type cyclin. Science. 1999;283:1541–1544. doi: 10.1126/science.283.5407.1541. PubMed DOI

Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F., Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 2009;150:494–505. doi: 10.1104/pp.109.138107. PubMed DOI PMC

Barman K., Siddiqui M.W., Patel V., Prasad M. Nitric oxide reduces pericarp browning and preserves bioactive antioxidants in litchi. Sci. Hortic. 2014;171:71–77. doi: 10.1016/j.scienta.2014.03.036. DOI

Kumar D., Mishra D.S., Chakraborty B., Kumar P. Pericarp browning and quality management of litchi fruit by antioxidants and salicylic acid during ambient storage. J. Food Sci. Technol. 2011;50:797–802. doi: 10.1007/s13197-011-0384-2. PubMed DOI PMC

Yang D., Li S., Li M., Yang X., Wang W., Cao Z., Li W. Physiological characteristics and leaf ultrastructure of a novel chlorophyll-deficient chd6 mutant of Vitis venifera cultured in vitro. J. Plant Growth Regul. 2011;31:124–135. doi: 10.1007/s00344-011-9225-9. DOI

Ali S., Khan A.S., Malik A.U. Postharvest L-cysteine application delayed pericarp browning, suppressed lipid peroxidation and maintained antioxidative activities of litchi fruit. Postharvest Biol. Technol. 2016;121:135–142. doi: 10.1016/j.postharvbio.2016.07.015. DOI

Rahman M. Ph.D. Thesis. East West University; Dhaka, Bangladesh: 2016. Evaluation of antioxidant activity of Spilanthes calva, Solanum virginianum, Stevia rebaudiana, Ruellia tuberosa and phytochemical investigation of Mikania cordata.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...