Amplification of the PLAG-family genes-PLAGL1 and PLAGL2-is a key feature of the novel tumor type CNS embryonal tumor with PLAGL amplification

. 2023 Jan ; 145 (1) : 49-69. [epub] 20221127

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36437415

Grantová podpora
MR/N004272/1 Medical Research Council - United Kingdom
P01 CA096832 NCI NIH HHS - United States
P50 CA097257 NCI NIH HHS - United States

Odkazy

PubMed 36437415
PubMed Central PMC9807491
DOI 10.1007/s00401-022-02516-2
PII: 10.1007/s00401-022-02516-2
Knihovny.cz E-zdroje

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/β-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.

Aix Marseille Univ APHM CNRS INP Inst Neurophysiopathol CHU Timone Service d'Anatomie Pathologique et de Neuropathologie Marseille France

Clinical Cooperation Unit Neuropathology German Consortium for Translational Cancer Research Heidelberg Germany

Clinical Cooperation Unit Pediatric Oncology German Consortium for Translational Cancer Research Heidelberg Germany

Department of Clinical Pathology Kuopio University Hospital and Unit of Pathology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland

Department of Developmental Biology and Cancer UCL GOS Institute of Child Health University College London London UK

Department of Developmental Neurobiology St Jude Children's Research Hospital Memphis TN USA

Department of Neurodegenerative Disease UCL Queen Square Institute of Neurology Queen Square London UK

Department of Neuropathology Institute of Pathology University Hospital Heidelberg Heidelberg Germany

Department of Oncology Pathology Karolinska Institutet Stockholm Sweden

Department of Pathology Amsterdam University Medical Centers Location VUmc and Brain Tumor Center Amsterdam Amsterdam The Netherlands

Department of Pathology and Laboratory Medicine The Aga Khan University Karachi Pakistan

Department of Pathology and Laboratory Medicine The University of British Colombia Vancouver Canada

Department of Pathology and Molecular Medicine 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Pathology NYU Langone Medical Center New York NY USA

Department of Pathology Rigshospitalet Copenhagen Denmark

Department of Pediatric Haematology and Oncology 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Pediatric Hematology and Oncology Alder Hey Children's NHS Foundation Trust Liverpool UK

Department of Pediatric Hematology and Oncology University Medical Center Hamburg Eppendorf Hamburg Germany

Department of Pediatric Hematology Oncology Valley Children's Hospital Madera CA USA

Department of Pediatric Oncology and Hematology Charité Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt Universität zu Berlin and Berlin Institute of Health Berlin Germany

Department of Pediatric Oncology and Hematology Skåne University Hospital Lund University Lund Sweden

Department of Pediatric Oncology Hematology Immunology and Pulmonology University Hospital Heidelberg Heidelberg Germany

Department of Pediatric Oncology Hematology Immunology Olgahospital Klinikum Stuttgart Stuttgart Germany

Department of Pediatrics and Adolescent Medicine Comprehensive Cancer Center and Comprehensive Center for Pediatrics Medical University of Vienna 1090 Vienna Austria

Department of Pediatrics Pediatric Hematology and Oncology Ward Kuopio University Hospital and Institute of Clinical Medicine University of Eastern Finland Kuopio Finland

Department of Radiology Alder Hey Children's NHS Foundation Trust Liverpool UK

Division of Cancer Sciences University of Manchester Manchester Academic Health Science Centre Manchester UK

Division of Neuropathology and Neurochemistry Department of Neurology Medical University of Vienna Vienna Austria

Division of Neuropathology Department of Pathology University of California San Francisco 513 Parnassus Ave Health Sciences West 451 San Francisco CA 94143 USA

Division of Neuropathology National Hospital for Neurology and Neurosurgery University College London Hospitals NHS Foundation Trust Queen Square London UK

Division of Pediatric Glioma Research Im Neuenheimer Feld 280 69120 Heidelberg Germany

Division of Pediatric Hematology and Oncology University Medical Center Göttingen Göttingen Germany

Division of Pediatric Neurooncology German Cancer Consortium Heidelberg Germany

Faculty of Biosciences Heidelberg University Heidelberg Germany

Geoffrey Jefferson Brain Research Centre Division of Neuroscience and Experimental Psychology Faculty of Biology Medicine and Health University of Manchester Manchester UK

Hopp Children's Cancer Center Heidelberg Im Neuenheimer Feld 280 69120 Heidelberg Germany

Institut de Pathologie Multisite Site Est Groupement Hospitalier Est Hospices Civils de Lyon Lyon France

Institute of Neuropathology University Medical Center Hamburg Eppendorf Hamburg Germany

KiTZ Clinical Trial Unit Department of Pediatric Hematology and Oncology Heidelberg University Hospital Heidelberg Germany

Murdoch Children's Research Institute and Department of Paediatrics University of Melbourne Royal Children's Hospital Melbourne Australia

Prague Brain Tumor Research Group 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands

Research Institute Children's Cancer Center Hamburg Hamburg Germany

University of Bordeaux Bordeaux Institute of Oncology INSERM U1312 Université de Bordeaux 146 rue Leo Saignat Case 76 33076 Bordeaux France

Erratum v

PubMed

Zobrazit více v PubMed

Central Nervous System Tumours (2021) WHO classification of tumours, 5th edition, volume 6. Edited by the WHO Classification of Tumours Editorial Board. 2021: International Agency for Research on Cancer

Abdollahi A. LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. J Cell Physiol. 2007;210(1):16–25. doi: 10.1002/jcp.20835. PubMed DOI

Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton TC. LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J Biol Chem. 2003;278(8):6041–6049. doi: 10.1074/jbc.M210361200. PubMed DOI

Adnani L, Dixit R, Chen X, Balakrishnan A, Modi H, Touahri Y, et al. Plag1 and Plagl2 have overlapping and distinct functions in telencephalic development. Biol Open. 2018 doi: 10.1242/bio.038661. PubMed DOI PMC

Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, et al. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res. 2015;25(3):353–367. doi: 10.1101/gr.175919.114. PubMed DOI PMC

Alhalabi KT, Stichel D, Sievers P, Peterziel H, Sommerkamp AC, Sturm D, et al. PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. Acta Neuropathol. 2021;142(5):841–857. doi: 10.1007/s00401-021-02354-8. PubMed DOI PMC

Bart AG, Morais G, Vangala VR, Loadman PM, Pors K, Scott EE. Cytochrome P450 binding and bioactivation of tumor-targeted duocarmycin agents. Drug Metab Dispos. 2022;50(1):49–57. doi: 10.1124/dmd.121.000642. PubMed DOI PMC

Barz T, Hoffmann A, Panhuysen M, Spengler D. Peroxisome proliferator-activated receptor gamma is a Zac target gene mediating Zac antiproliferation. Cancer Res. 2006;66(24):11975–11982. doi: 10.1158/0008-5472.CAN-06-1529. PubMed DOI

Berg JS, Lin KK, Sonnet C, Boles NC, Weksberg DC, Nguyen H, et al. Imprinted genes that regulate early mammalian growth are coexpressed in somatic stem cells. PLoS ONE. 2011;6(10):e26410. doi: 10.1371/journal.pone.0026410. PubMed DOI PMC

Bratt-Leal AM, Carpenedo RL, McDevitt TC. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog. 2009;25(1):43–51. doi: 10.1002/btpr.139. PubMed DOI PMC

Cacciotti C, Fleming A, Ramaswamy V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J Pathol. 2020;251(3):249–261. doi: 10.1002/path.5457. PubMed DOI

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–474. doi: 10.1038/nature26000. PubMed DOI PMC

Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, et al. Gene expression across mammalian organ development. Nature. 2019;571(7766):505–509. doi: 10.1038/s41586-019-1338-5. PubMed DOI PMC

Castel D, Kergrohen T, Tauziede-Espariat A, Mackay A, Ghermaoui S, Lechapt E, et al. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3–K27M mutation. Acta Neuropathol. 2020;139(6):1109–1113. doi: 10.1007/s00401-020-02142-w. PubMed DOI

Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol. 2018;15(3):150. doi: 10.1038/nrclinonc.2017.188. PubMed DOI

Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24(4):584–594. doi: 10.1038/s41593-020-00794-1. PubMed DOI PMC

Guo J, Wang M, Wang Z, Liu X. Overexpression of pleomorphic adenoma gene-like 2 is a novel poor prognostic marker of prostate cancer. PLoS ONE. 2016;11(8):e0158667. doi: 10.1371/journal.pone.0158667. PubMed DOI PMC

Guo Z, Zhao C, Huang M, Huang T, Fan M, Xie Z, et al. Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J Neurosci. 2012;32(25):8509–8520. doi: 10.1523/JNEUROSCI.6301-11.2012. PubMed DOI PMC

Hensen K, Van Valckenborgh IC, Kas K, Van de Ven WJ, Voz ML. The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities. Cancer Res. 2002;62(5):1510–1517. PubMed

Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res. 2009;69(20):7953–7959. doi: 10.1158/0008-5472.CAN-09-2006. PubMed DOI

Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM, 3rd, Jaenisch R. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell. 2005;8(4):275–285. doi: 10.1016/j.ccr.2005.09.007. PubMed DOI

Hovestadt VZM, conumee: enhanced copy-number variation analysis using Illumina DNA methylation arrays. R package version 1.9.0. http://bioconductor.org/packages/conumee/. Accessed 6 Jan 2021

Jansky S, Sharma AK, Korber V, Quintero A, Toprak UH, Wecht EM, et al. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet. 2021;53(5):683–693. doi: 10.1038/s41588-021-00806-1. PubMed DOI

Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. 2014 doi: 10.1038/nrc3811. PubMed DOI PMC

Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol. 2017;19(2):153–161. doi: 10.1093/neuonc/now101. PubMed DOI PMC

Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E, Onodera C, et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro Oncol. 2017;19(5):699–709. doi: 10.1093/neuonc/now254. PubMed DOI PMC

Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE, et al. Sarcoma classification by DNA methylation profiling. Nat Commun. 2021;12(1):498. doi: 10.1038/s41467-020-20603-4. PubMed DOI PMC

Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103(5):389–398. doi: 10.1263/jbb.103.389. PubMed DOI

Landrette SF, Madera D, He F, Castilla LH. The transcription factor PlagL2 activates Mpl transcription and signaling in hematopoietic progenitor and leukemia cells. Leukemia. 2011;25(4):655–662. doi: 10.1038/leu.2010.301. PubMed DOI PMC

Landrette SF, Kuo YH, Hensen K, Barjesteh van Waalwijk van Doorn-Khosrovani S, Perrat PN, Van de Ven WJ et al (2005) Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11. Blood 105(7):2900–2907. 10.1182/blood-2004-09-3630 PubMed

Li D, Lin C, Li N, Du Y, Yang C, Bai Y, et al. PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine. 2019;45:124–138. doi: 10.1016/j.ebiom.2019.06.051. PubMed DOI PMC

Liu KW, Pajtler KW, Worst BC, Pfister SM, Wechsler-Reya RJ. Molecular mechanisms and therapeutic targets in pediatric brain tumors. Sci Signal. 2017 doi: 10.1126/scisignal.aaf7593. PubMed DOI

Liu X, Chen X, Zeng K, Xu M, He B, Pan Y, et al. DNA-methylation-mediated silencing of miR-486-5p promotes colorectal cancer proliferation and migration through activation of PLAGL2/IGF2/beta-catenin signal pathways. Cell Death Dis. 2018;9(10):1037. doi: 10.1038/s41419-018-1105-9. PubMed DOI PMC

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106. PubMed DOI PMC

Lui JC, Finkielstain GP, Barnes KM, Baron J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R189–196. doi: 10.1152/ajpregu.00182.2008. PubMed DOI PMC

Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. doi: 10.1186/gb-2011-12-4-r41. PubMed DOI PMC

Mondal G, Lee JC, Ravindranathan A, Villanueva-Meyer JE, Tran QT, Allen SJ, et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol. 2020;139(6):1071–1088. doi: 10.1007/s00401-020-02155-5. PubMed DOI PMC

Okonechnikov K, Joshi P, Sepp M, Leiss K, Sarropoulos I, Murat F et al (2021) Mapping pediatric brain tumors to their origins in the developing cerebellum. bioRxiv 2021.2012.2019.473154. 10.1101/2021.12.19.473154 PubMed PMC

Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 23(12 Suppl 2):iii1–iii105. 10.1093/neuonc/noab200 PubMed PMC

Pfister SM, Reyes-Mugica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, et al. A summary of the inaugural WHO classification of pediatric tumors: transitioning from the optical into the molecular era. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-21-1094. PubMed DOI PMC

R Core Team, R (2019) A language and environment for statistical computing. 2019, R Foundation for Statistical Computing: Vienna, Austria

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38(5):500–501. doi: 10.1038/ng0506-500. PubMed DOI

Rezvani G, Lui JC, Barnes KM, Baron J. A set of imprinted genes required for normal body growth also promotes growth of rhabdomyosarcoma cells. Pediatr Res. 2012;71(1):32–38. doi: 10.1038/pr.2011.6. PubMed DOI PMC

Riz I, Lee HJ, Baxter KK, Behnam R, Hawley TS, Hawley RG. Transcriptional activation by TLX1/HOX11 involves Gro/TLE corepressors. Biochem Biophys Res Commun. 2009;380(2):361–365. doi: 10.1016/j.bbrc.2009.01.099. PubMed DOI PMC

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Schiffer D, Mellai M, Boldorini R, Bisogno I, Grifoni S, Corona C, et al. The significance of chondroitin sulfate proteoglycan 4 (CSPG4) in human gliomas. Int J Mol Sci. 2018 doi: 10.3390/ijms19092724. PubMed DOI PMC

Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–231. doi: 10.1038/nature10833. PubMed DOI

Scribner JA, Brown JG, Son T, Chiechi M, Li P, Sharma S, et al. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7–H3 for solid cancer. Mol Cancer Ther. 2020;19(11):2235–2244. doi: 10.1158/1535-7163.MCT-20-0116. PubMed DOI

Selt F, Deiss A, Korshunov A, Capper D, Witt H, van Tilburg CM, et al. Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors. Brain Pathol. 2016;26(4):506–516. doi: 10.1111/bpa.12326. PubMed DOI PMC

Seoane J, Capdevila J. The right compound for the right target: tackling RET. Ann Oncol. 2018;29(8):1623–1625. doi: 10.1093/annonc/mdy188. PubMed DOI

Sharma T, Schwalbe EC, Williamson D, Sill M, Hovestadt V, Mynarek M, et al. Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019;138(2):309–326. doi: 10.1007/s00401-019-02020-0. PubMed DOI PMC

Sheldrake HM, Travica S, Johansson I, Loadman PM, Sutherland M, Elsalem L, et al. Re-engineering of the duocarmycin structural architecture enables bioprecursor development targeting CYP1A1 and CYP2W1 for biological activity. J Med Chem. 2013;56(15):6273–6277. doi: 10.1021/jm4000209. PubMed DOI

Sievers P, Henneken SC, Blume C, Sill M, Schrimpf D, Stichel D, et al. Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathol. 2021;142(5):827–839. doi: 10.1007/s00401-021-02356-6. PubMed DOI PMC

Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, et al. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J. 1997;16(10):2814–2825. doi: 10.1093/emboj/16.10.2814. PubMed DOI PMC

Straccia M, Garcia-Diaz Barriga G, Sanders P, Bombau G, Carrere J, Mairal PB, et al. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons. Mol Ther Methods Clin Dev. 2015;2:15030. doi: 10.1038/mtm.2015.30. PubMed DOI PMC

Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-art strategies for targeting RET-dependent cancers. J Clin Oncol. 2020;38(11):1209–1221. doi: 10.1200/JCO.19.02551. PubMed DOI PMC

Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29(8):1869–1876. doi: 10.1093/annonc/mdy137. PubMed DOI PMC

Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov. 2018;8(7):836–849. doi: 10.1158/2159-8290.CD-18-0338. PubMed DOI

Tauziede-Espariat A, Debily MA, Castel D, Grill J, Puget S, Sabel M, et al. An integrative radiological, histopathological and molecular analysis of pediatric pontine histone-wildtype glioma with MYCN amplification (HGG-MYCN) Acta Neuropathol Commun. 2019;7(1):87. doi: 10.1186/s40478-019-0738-y. PubMed DOI PMC

Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, et al. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin Cancer Res. 2013;19(11):2952–2961. doi: 10.1158/1078-0432.CCR-13-0238. PubMed DOI

Valente T, Junyent F, Auladell C. Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: differential phenotype of the Zac1-expressing cells during development. Dev Dyn. 2005;233(2):667–679. doi: 10.1002/dvdy.20373. PubMed DOI

Varrault A, Dantec C, Le Digarcher A, Chotard L, Bilanges B, Parrinello H, et al. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res. 2017;45(18):10466–10480. doi: 10.1093/nar/gkx672. PubMed DOI PMC

Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006;11(5):711–722. doi: 10.1016/j.devcel.2006.09.003. PubMed DOI

Voz ML, Agten NS, Van de Ven WJ, Kas K. PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res. 2000;60(1):106–113. PubMed

Voz ML, Mathys J, Hensen K, Pendeville H, Van Valckenborgh I, Van Huffel C, et al. Microarray screening for target genes of the proto-oncogene PLAG1. Oncogene. 2004;23(1):179–191. doi: 10.1038/sj.onc.1207013. PubMed DOI

Worst BC, van Tilburg CM, Balasubramanian GP, Fiesel P, Witt R, Freitag A, et al. Next-generation personalised medicine for high-risk paediatric cancer patients—the INFORM pilot study. Eur J Cancer. 2016;65:91–101. doi: 10.1016/j.ejca.2016.06.009. PubMed DOI

Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–253. doi: 10.1038/ng.1102. PubMed DOI PMC

Yang YS, Yang MC, Weissler JC. Pleiomorphic adenoma gene-like 2 expression is associated with the development of lung adenocarcinoma and emphysema. Lung Cancer. 2011;74(1):12–24. doi: 10.1016/j.lungcan.2011.02.006. PubMed DOI PMC

Yao HP, Zhao H, Hudson R, Tong XM, Wang MH. Duocarmycin-based antibody-drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov Today. 2021;26(8):1857–1874. doi: 10.1016/j.drudis.2021.06.012. PubMed DOI

Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell. 2010;17(5):497–509. doi: 10.1016/j.ccr.2010.03.020. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...