Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors

. 2021 Nov ; 142 (5) : 827-839. [epub] 20210805

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34355256

Grantová podpora
G0701018 Medical Research Council - United Kingdom
G1100578 Medical Research Council - United Kingdom
MR/N004272/1 Medical Research Council - United Kingdom
Department of Health - United Kingdom

Odkazy

PubMed 34355256
PubMed Central PMC8500895
DOI 10.1007/s00401-021-02356-6
PII: 10.1007/s00401-021-02356-6
Knihovny.cz E-zdroje

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.

Bioinformatics and Omics Data Analytics German Cancer Research Center Heidelberg Germany

Charité Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Institute of Neuropathology Berlin Germany

Children's Brain Tumour Research Centre University of Nottingham Nottingham UK

Clinical Cooperation Unit Neurooncology German Consortium for Translational Cancer Research Heidelberg Germany

Clinical Cooperation Unit Neuropathology German Consortium for Translational Cancer Research Heidelberg Germany

Department of Clinical Research University of Southern Denmark Odense Denmark

Department of Human Genetics McGill University Montreal QC H3A 1B1 Canada

Department of Neurodegenerative Disease UCL Queen Square Institute of Neurology Queen Square London UK

Department of Neurology and Neurooncology Program National Center for Tumor Diseases Heidelberg University Hospital Heidelberg Germany

Department of Neuropathology GHU Paris Psychiatry and Neurosciences Sainte Anne Hospital Paris France

Department of Neuropathology Institute of Pathology University Hospital Heidelberg Heidelberg Germany

Department of Neuropathology Otto Von Guericke University Magdeburg Germany

Department of Neuropathology University of Tübingen Tübingen Germany

Department of Pathology Amsterdam University Medical Centers Location VUmc and Brain Tumor Center Amsterdam Amsterdam The Netherlands

Department of Pathology and Molecular Medicine 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Pathology CHRU Nancy France

Department of Pathology Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain

Department of Pathology Klinikum Stuttgart Stuttgart Germany

Department of Pathology NYU Langone Medical Center New York NY USA

Department of Pathology Odense University Hospital Odense Denmark

Department of Pathology St Jude Children's Research Hospital Memphis TN USA

Department of Pathology University Medical Center Utrecht Utrecht The Netherlands

Department of Pediatric Haematology and Oncology 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Department of Pediatric Hematology and Oncology University Medical Center Hamburg Eppendorf Hamburg Germany

Department of Pediatric Oncology Hematology Immunology and Pulmonology University Hospital Heidelberg Heidelberg Germany

Department of Pediatric Oncology Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain

Department of Pediatrics McGill University Montreal QC H4A 3J1 Canada

Division of Brain Tumor Translational Research National Cancer Center Research Institute Chuo ku Tokyo Japan

Division of Neuropathology National Hospital for Neurology and Neurosurgery University College London Hospitals NHS Foundation Trust Queen Square London UK

Division of Pediatric Neurooncology German Cancer Consortium Heidelberg Germany

Faculty of Biosciences Heidelberg University 69117 Heidelberg Germany

Frankfurt Cancer Institute University Hospital Goethe University Frankfurt am Main Frankfurt am Main Germany

German Cancer Consortium Heidelberg Germany

German Cancer Consortium Partner Site Essen Düsseldorf Essen Düsseldorf Germany

German Cancer Consortium Partner site Frankfurt Mainz Frankfurt am Main Germany

German Cancer Research Center Heidelberg Germany

Hopp Children's Cancer Center Heidelberg Heidelberg Germany

Institute for Neuropathology University Medical Centre Göttingen Göttingen Germany

Institute of Neurology University Hospital Goethe University Frankfurt am Main Frankfurt am Main Germany

Institute of Neuropathology Heinrich Heine University Düsseldorf Germany

Institute of Neuropathology Ludwig Maximilian University Munich Germany

Institute of Neuropathology University Medical Center Hamburg Eppendorf Hamburg Germany

Institute of Neuropathology University of Giessen Giessen Germany

Laboratory of Molecular Oncology Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain

Laboratory of Pathology Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda MD USA

Laboratory of Translational Research in Pediatric Oncology SIREDO INSERM U830 Institut Curie Paris Sciences Lettres University Paris France

Manchester Royal Infirmary Manchester University NHS Foundation Trust Manchester UK

Neuro Oncology Branch National Cancer Institute Bethesda MD USA

Paul Flechsig Institute of Neuropathology University Hospital and Faculty of Medicine Leipzig Germany

Pediatric Glioma Research Group German Cancer Research Center Heidelberg Germany

Prague Brain Tumor Research Group 2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands

Research Institute Children's Cancer Center Hamburg Hamburg Germany

Shaukat Khanum Memorial Cancer Hospital and Research Centre Lahore Pakistan

The Research Institute of the McGill University Health Center Montreal QC H4A 3J1 Canada

Zobrazit více v PubMed

Abdollahi A. LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. J Cell Physiol. 2007;210:16–25. doi: 10.1002/jcp.20835. PubMed DOI

Antonescu CR, Huang SC, Sung YS, Zhang L, Helmke BM, Kirchner M, et al. Novel GATA6-FOXO1 fusions in a subset of epithelioid hemangioma. Mod Pathol. 2020 doi: 10.1038/s41379-020-00723-4. PubMed DOI PMC

Arabzade A, Zhao Y, Varadharajan S, Chen HC, Jessa S, Rivas B, et al. ZFTA-RELA dictates oncogenic transcriptional programs to drive aggressive supratentorial ependymoma. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-1066. PubMed DOI PMC

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000. PubMed DOI PMC

Cavalli FMG, Hubner JM, Sharma T, Luu B, Sill M, Zapotocky M, et al. Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol. 2018;136:227–237. doi: 10.1007/s00401-018-1888-x. PubMed DOI PMC

Ghasemi DR, Sill M, Okonechnikov K, Korshunov A, Yip S, Schutz PW, et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 2019;138:1075–1089. doi: 10.1007/s00401-019-02056-2. PubMed DOI PMC

Godlewski J, Krazinski BE, Kowalczyk AE, Kiewisz J, Kiezun J, Kwiatkowski P, et al. PLAGL1 (ZAC1/LOT1) expression in clear cell renal cell carcinoma: correlations with disease progression and unfavorable prognosis. Anticancer Res. 2016;36:617–624. PubMed

Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res. 2009;69:7953–7959. doi: 10.1158/0008-5472.CAN-09-2006. PubMed DOI

Kleinschmidt-DeMasters BK, Donson AM, Richmond AM, Pekmezci M, Tihan T, Foreman NK. SOX10 distinguishes pilocytic and pilomyxoid astrocytomas from ependymomas but shows no differences in expression level in ependymomas from infants versus older children or among molecular subgroups. J Neuropathol Exp Neurol. 2016;75:295–298. doi: 10.1093/jnen/nlw010. PubMed DOI PMC

Krystel-Whittemore M, Taylor MS, Rivera M, Lennerz JK, Le LP, Dias-Santagata D, et al. Novel and established EWSR1 gene fusions and associations identified by next-generation sequencing and fluorescence in-situ hybridization. Hum Pathol. 2019;93:65–73. doi: 10.1016/j.humpath.2019.08.006. PubMed DOI

Kupp R, Ruff L, Terranova S, Nathan E, Ballereau S, Stark R, et al. ZFTA-translocations constitute ependymoma chromatin remodeling and transcription factors. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-1052. PubMed DOI PMC

Li C, Cho HJ, Yamashita D, Abdelrashid M, Chen Q, Bastola S, et al. Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism. Neurooncol Adv. 2020;2:vdaa163. doi: 10.1093/noajnl/vdaa163. PubMed DOI PMC

Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63:499–509. doi: 10.1093/jnen/63.5.499. PubMed DOI

Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008;270:10–18. doi: 10.1016/j.canlet.2008.03.035. PubMed DOI PMC

Lopez-Nunez O, Cafferata B, Santi M, Ranganathan S, Pearce TM, Kulich SM, et al. The spectrum of rare central nervous system (CNS) tumors with EWSR1-non-ETS fusions: experience from three pediatric institutions with review of the literature. Brain Pathol. 2021;31:70–83. doi: 10.1111/bpa.12900. PubMed DOI PMC

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI

Louis DN, Ohgaki H, Wiestler OD. WHO classification of tumours of the central nervous system. 4. Lyon: IARC; 2016. PubMed PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol. 2011;7:e1001138. doi: 10.1371/journal.pcbi.1001138. PubMed DOI PMC

Otero JJ, Rowitch D, Vandenberg S. OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol. 2011;104:423–438. doi: 10.1007/s11060-010-0509-x. PubMed DOI PMC

Pages M, Pajtler KW, Puget S, Castel D, Boddaert N, Tauziede-Espariat A, et al. Diagnostics of pediatric supratentorial RELA ependymomas: integration of information from histopathology, genetics, DNA methylation and imaging. Brain Pathol. 2019;29:325–335. doi: 10.1111/bpa.12664. PubMed DOI PMC

Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B, et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 2018;136:211–226. doi: 10.1007/s00401-018-1877-0. PubMed DOI PMC

Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27:728–743. doi: 10.1016/j.ccell.2015.04.002. PubMed DOI PMC

Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C, et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 2017;134:705–714. doi: 10.1007/s00401-017-1752-4. PubMed DOI PMC

Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506:451–455. doi: 10.1038/nature13109. PubMed DOI PMC

Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro Oncol. 2017;19:986–996. doi: 10.1093/neuonc/now294. PubMed DOI PMC

Rossi S, Barresi S, Giovannoni I, Alesi V, Ciolfi A, Colafati GS, et al. Expanding the spectrum of EWSR1-PATZ1 rearranged CNS tumors: an infantile case with leptomeningeal dissemination. Brain Pathol. 2020 doi: 10.1111/bpa.12934. PubMed DOI PMC

Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D, et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016;131:903–910. doi: 10.1007/s00401-015-1519-8. PubMed DOI

Siegfried A, Rousseau A, Maurage CA, Pericart S, Nicaise Y, Escudie F, et al. EWSR1-PATZ1 gene fusion may define a new glioneuronal tumor entity. Brain Pathol. 2019;29:53–62. doi: 10.1111/bpa.12619. PubMed DOI PMC

Stichel D, Schrimpf D, Casalini B, Meyer J, Wefers AK, Sievers P, et al. Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathol. 2019;138:827–835. doi: 10.1007/s00401-019-02039-3. PubMed DOI

Su HC, Wu SC, Yen LC, Chiao LK, Wang JK, Chiu YL, et al. Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis. Sci Rep. 2020;10:11837. doi: 10.1038/s41598-020-68835-0. PubMed DOI PMC

Tauziede-Espariat A, Pierron G, Siegfried A, Guillemot D, Uro-Coste E, Nicaise Y, et al. The EP300:BCOR fusion extends the genetic alteration spectrum defining the new tumoral entity of “CNS tumors with BCOR internal tandem duplication”. Acta Neuropathol Commun. 2020;8:178. doi: 10.1186/s40478-020-01064-8. PubMed DOI PMC

Thway K, Fisher C. Mesenchymal tumors with EWSR1 gene rearrangements. Surg Pathol Clin. 2019;12:165–190. doi: 10.1016/j.path.2018.10.007. PubMed DOI

Tomomasa R, Arai Y, Kawabata-Iwakawa R, Fukuoka K, Nakano Y, Hama N, et al. Ependymoma-like tumor with mesenchymal differentiation harboring C11orf95-NCOA1/2 or -RELA fusion: a hitherto unclassified tumor related to ependymoma. Brain Pathol. 2021 doi: 10.1111/bpa.12943. PubMed DOI PMC

Uhrig S, Ellermann J, Walther T, Burkhardt P, Frohlich M, Hutter B, et al. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Res. 2021;31:448–460. doi: 10.1101/gr.257246.119. PubMed DOI PMC

Valente T, Junyent F, Auladell C. Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: differential phenotype of the Zac1-expressing cells during development. Dev Dyn. 2005;233:667–679. doi: 10.1002/dvdy.20373. PubMed DOI

Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006;11:711–722. doi: 10.1016/j.devcel.2006.09.003. PubMed DOI

Vega-Benedetti AF, Saucedo C, Zavattari P, Vanni R, Zugaza JL, Parada LA. PLAGL1: an important player in diverse pathological processes. J Appl Genet. 2017;58:71–78. doi: 10.1007/s13353-016-0355-4. PubMed DOI

Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 2012;123:727–738. doi: 10.1007/s00401-012-0941-4. PubMed DOI PMC

Witt H, Gramatzki D, Hentschel B, Pajtler KW, Felsberg J, Schackert G, et al. DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro Oncol. 2018;20:1616–1624. doi: 10.1093/neuonc/noy118. PubMed DOI PMC

Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20:143–157. doi: 10.1016/j.ccr.2011.07.007. PubMed DOI PMC

Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, Maass KK, et al. Cross-species genomics reveals oncogenic dependencies in ZFTA/C11orf95 fusion-positive supratentorial ependymomas. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-0963. PubMed DOI

Zschernack V, Junger ST, Mynarek M, Rutkowski S, Garre ML, Ebinger M, et al. Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathol. 2021 doi: 10.1007/s00401-020-02260-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...