Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0701018
Medical Research Council - United Kingdom
G1100578
Medical Research Council - United Kingdom
MR/N004272/1
Medical Research Council - United Kingdom
Department of Health - United Kingdom
PubMed
34355256
PubMed Central
PMC8500895
DOI
10.1007/s00401-021-02356-6
PII: 10.1007/s00401-021-02356-6
Knihovny.cz E-zdroje
- Klíčová slova
- EP300, EWSR1, FOXO1, Gene fusion, Neuroepithelial tumor, PLAGL1, Supratentorial,
- MeSH
- dítě MeSH
- ependymom genetika MeSH
- lidé MeSH
- nádorové supresorové proteiny genetika MeSH
- onkogenní fúze MeSH
- proteiny buněčného cyklu genetika MeSH
- supratentoriální nádory genetika MeSH
- transkripční faktory genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové supresorové proteiny MeSH
- PLAGL1 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- transkripční faktory MeSH
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.
Bioinformatics and Omics Data Analytics German Cancer Research Center Heidelberg Germany
Children's Brain Tumour Research Centre University of Nottingham Nottingham UK
Department of Clinical Research University of Southern Denmark Odense Denmark
Department of Human Genetics McGill University Montreal QC H3A 1B1 Canada
Department of Neuropathology Otto Von Guericke University Magdeburg Germany
Department of Neuropathology University of Tübingen Tübingen Germany
Department of Pathology CHRU Nancy France
Department of Pathology Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
Department of Pathology Klinikum Stuttgart Stuttgart Germany
Department of Pathology NYU Langone Medical Center New York NY USA
Department of Pathology Odense University Hospital Odense Denmark
Department of Pathology St Jude Children's Research Hospital Memphis TN USA
Department of Pathology University Medical Center Utrecht Utrecht The Netherlands
Department of Pediatric Oncology Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
Department of Pediatrics McGill University Montreal QC H4A 3J1 Canada
Division of Pediatric Neurooncology German Cancer Consortium Heidelberg Germany
Faculty of Biosciences Heidelberg University 69117 Heidelberg Germany
German Cancer Consortium Heidelberg Germany
German Cancer Consortium Partner Site Essen Düsseldorf Essen Düsseldorf Germany
German Cancer Consortium Partner site Frankfurt Mainz Frankfurt am Main Germany
German Cancer Research Center Heidelberg Germany
Hopp Children's Cancer Center Heidelberg Heidelberg Germany
Institute for Neuropathology University Medical Centre Göttingen Göttingen Germany
Institute of Neuropathology Heinrich Heine University Düsseldorf Germany
Institute of Neuropathology Ludwig Maximilian University Munich Germany
Institute of Neuropathology University Medical Center Hamburg Eppendorf Hamburg Germany
Institute of Neuropathology University of Giessen Giessen Germany
Laboratory of Molecular Oncology Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona Spain
Manchester Royal Infirmary Manchester University NHS Foundation Trust Manchester UK
Neuro Oncology Branch National Cancer Institute Bethesda MD USA
Pediatric Glioma Research Group German Cancer Research Center Heidelberg Germany
Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
Research Institute Children's Cancer Center Hamburg Hamburg Germany
Shaukat Khanum Memorial Cancer Hospital and Research Centre Lahore Pakistan
The Research Institute of the McGill University Health Center Montreal QC H4A 3J1 Canada
Zobrazit více v PubMed
Abdollahi A. LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. J Cell Physiol. 2007;210:16–25. doi: 10.1002/jcp.20835. PubMed DOI
Antonescu CR, Huang SC, Sung YS, Zhang L, Helmke BM, Kirchner M, et al. Novel GATA6-FOXO1 fusions in a subset of epithelioid hemangioma. Mod Pathol. 2020 doi: 10.1038/s41379-020-00723-4. PubMed DOI PMC
Arabzade A, Zhao Y, Varadharajan S, Chen HC, Jessa S, Rivas B, et al. ZFTA-RELA dictates oncogenic transcriptional programs to drive aggressive supratentorial ependymoma. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-1066. PubMed DOI PMC
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000. PubMed DOI PMC
Cavalli FMG, Hubner JM, Sharma T, Luu B, Sill M, Zapotocky M, et al. Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol. 2018;136:227–237. doi: 10.1007/s00401-018-1888-x. PubMed DOI PMC
Ghasemi DR, Sill M, Okonechnikov K, Korshunov A, Yip S, Schutz PW, et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 2019;138:1075–1089. doi: 10.1007/s00401-019-02056-2. PubMed DOI PMC
Godlewski J, Krazinski BE, Kowalczyk AE, Kiewisz J, Kiezun J, Kwiatkowski P, et al. PLAGL1 (ZAC1/LOT1) expression in clear cell renal cell carcinoma: correlations with disease progression and unfavorable prognosis. Anticancer Res. 2016;36:617–624. PubMed
Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res. 2009;69:7953–7959. doi: 10.1158/0008-5472.CAN-09-2006. PubMed DOI
Kleinschmidt-DeMasters BK, Donson AM, Richmond AM, Pekmezci M, Tihan T, Foreman NK. SOX10 distinguishes pilocytic and pilomyxoid astrocytomas from ependymomas but shows no differences in expression level in ependymomas from infants versus older children or among molecular subgroups. J Neuropathol Exp Neurol. 2016;75:295–298. doi: 10.1093/jnen/nlw010. PubMed DOI PMC
Krystel-Whittemore M, Taylor MS, Rivera M, Lennerz JK, Le LP, Dias-Santagata D, et al. Novel and established EWSR1 gene fusions and associations identified by next-generation sequencing and fluorescence in-situ hybridization. Hum Pathol. 2019;93:65–73. doi: 10.1016/j.humpath.2019.08.006. PubMed DOI
Kupp R, Ruff L, Terranova S, Nathan E, Ballereau S, Stark R, et al. ZFTA-translocations constitute ependymoma chromatin remodeling and transcription factors. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-1052. PubMed DOI PMC
Li C, Cho HJ, Yamashita D, Abdelrashid M, Chen Q, Bastola S, et al. Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism. Neurooncol Adv. 2020;2:vdaa163. doi: 10.1093/noajnl/vdaa163. PubMed DOI PMC
Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63:499–509. doi: 10.1093/jnen/63.5.499. PubMed DOI
Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008;270:10–18. doi: 10.1016/j.canlet.2008.03.035. PubMed DOI PMC
Lopez-Nunez O, Cafferata B, Santi M, Ranganathan S, Pearce TM, Kulich SM, et al. The spectrum of rare central nervous system (CNS) tumors with EWSR1-non-ETS fusions: experience from three pediatric institutions with review of the literature. Brain Pathol. 2021;31:70–83. doi: 10.1111/bpa.12900. PubMed DOI PMC
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1. PubMed DOI
Louis DN, Ohgaki H, Wiestler OD. WHO classification of tumours of the central nervous system. 4. Lyon: IARC; 2016. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol. 2011;7:e1001138. doi: 10.1371/journal.pcbi.1001138. PubMed DOI PMC
Otero JJ, Rowitch D, Vandenberg S. OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol. 2011;104:423–438. doi: 10.1007/s11060-010-0509-x. PubMed DOI PMC
Pages M, Pajtler KW, Puget S, Castel D, Boddaert N, Tauziede-Espariat A, et al. Diagnostics of pediatric supratentorial RELA ependymomas: integration of information from histopathology, genetics, DNA methylation and imaging. Brain Pathol. 2019;29:325–335. doi: 10.1111/bpa.12664. PubMed DOI PMC
Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B, et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 2018;136:211–226. doi: 10.1007/s00401-018-1877-0. PubMed DOI PMC
Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27:728–743. doi: 10.1016/j.ccell.2015.04.002. PubMed DOI PMC
Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C, et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 2017;134:705–714. doi: 10.1007/s00401-017-1752-4. PubMed DOI PMC
Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506:451–455. doi: 10.1038/nature13109. PubMed DOI PMC
Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro Oncol. 2017;19:986–996. doi: 10.1093/neuonc/now294. PubMed DOI PMC
Rossi S, Barresi S, Giovannoni I, Alesi V, Ciolfi A, Colafati GS, et al. Expanding the spectrum of EWSR1-PATZ1 rearranged CNS tumors: an infantile case with leptomeningeal dissemination. Brain Pathol. 2020 doi: 10.1111/bpa.12934. PubMed DOI PMC
Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D, et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016;131:903–910. doi: 10.1007/s00401-015-1519-8. PubMed DOI
Siegfried A, Rousseau A, Maurage CA, Pericart S, Nicaise Y, Escudie F, et al. EWSR1-PATZ1 gene fusion may define a new glioneuronal tumor entity. Brain Pathol. 2019;29:53–62. doi: 10.1111/bpa.12619. PubMed DOI PMC
Stichel D, Schrimpf D, Casalini B, Meyer J, Wefers AK, Sievers P, et al. Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathol. 2019;138:827–835. doi: 10.1007/s00401-019-02039-3. PubMed DOI
Su HC, Wu SC, Yen LC, Chiao LK, Wang JK, Chiu YL, et al. Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis. Sci Rep. 2020;10:11837. doi: 10.1038/s41598-020-68835-0. PubMed DOI PMC
Tauziede-Espariat A, Pierron G, Siegfried A, Guillemot D, Uro-Coste E, Nicaise Y, et al. The EP300:BCOR fusion extends the genetic alteration spectrum defining the new tumoral entity of “CNS tumors with BCOR internal tandem duplication”. Acta Neuropathol Commun. 2020;8:178. doi: 10.1186/s40478-020-01064-8. PubMed DOI PMC
Thway K, Fisher C. Mesenchymal tumors with EWSR1 gene rearrangements. Surg Pathol Clin. 2019;12:165–190. doi: 10.1016/j.path.2018.10.007. PubMed DOI
Tomomasa R, Arai Y, Kawabata-Iwakawa R, Fukuoka K, Nakano Y, Hama N, et al. Ependymoma-like tumor with mesenchymal differentiation harboring C11orf95-NCOA1/2 or -RELA fusion: a hitherto unclassified tumor related to ependymoma. Brain Pathol. 2021 doi: 10.1111/bpa.12943. PubMed DOI PMC
Uhrig S, Ellermann J, Walther T, Burkhardt P, Frohlich M, Hutter B, et al. Accurate and efficient detection of gene fusions from RNA sequencing data. Genome Res. 2021;31:448–460. doi: 10.1101/gr.257246.119. PubMed DOI PMC
Valente T, Junyent F, Auladell C. Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: differential phenotype of the Zac1-expressing cells during development. Dev Dyn. 2005;233:667–679. doi: 10.1002/dvdy.20373. PubMed DOI
Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006;11:711–722. doi: 10.1016/j.devcel.2006.09.003. PubMed DOI
Vega-Benedetti AF, Saucedo C, Zavattari P, Vanni R, Zugaza JL, Parada LA. PLAGL1: an important player in diverse pathological processes. J Appl Genet. 2017;58:71–78. doi: 10.1007/s13353-016-0355-4. PubMed DOI
Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 2012;123:727–738. doi: 10.1007/s00401-012-0941-4. PubMed DOI PMC
Witt H, Gramatzki D, Hentschel B, Pajtler KW, Felsberg J, Schackert G, et al. DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro Oncol. 2018;20:1616–1624. doi: 10.1093/neuonc/noy118. PubMed DOI PMC
Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20:143–157. doi: 10.1016/j.ccr.2011.07.007. PubMed DOI PMC
Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, Maass KK, et al. Cross-species genomics reveals oncogenic dependencies in ZFTA/C11orf95 fusion-positive supratentorial ependymomas. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-0963. PubMed DOI
Zschernack V, Junger ST, Mynarek M, Rutkowski S, Garre ML, Ebinger M, et al. Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathol. 2021 doi: 10.1007/s00401-020-02260-5. PubMed DOI PMC