Genomic Signatures of Sexual Selection on Pollen-Expressed Genes in Arabis alpina

. 2022 Jan 07 ; 39 (1) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34878144

Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.

Zobrazit více v PubMed

Ansell SW, Grundmann M, Russell SJ, Schneider H, Vogel JC.. 2008. Genetic discontinuity, breeding-system change and population history of Arabis alpina in the Italian Peninsula and adjacent Alps. Mol Ecol. 17(9):2245–2257. PubMed

Arunkumar R, Josephs EB, Williamson RJ, Wright SI.. 2013. Pollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora. Mol Biol Evol. 30(11):2475–2486. PubMed

Austerlitz F, Gleiser G, Teixeira S, Bernasconi G.. 2012. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc Biol Sci. 279(1726):91–100. PubMed PMC

Barrett SCH. 2002. The evolution of plant sexual diversity. Nat Rev Genet. 3(4):274–284. PubMed

Beaudry FEG, Rifkin JL, Barrett SCH, Wright SI.. 2020. Evolutionary genomics of plant gametophytic selection. Plant Commun. 1(6):100115. PubMed PMC

Bernasconi G, Ashman T-L, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, et al.2004. Evolutionary ecology of the prezygotic stage. Science 303(5660):971–975. PubMed

Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al.2004. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14(4):708–715. PubMed PMC

Boavida LC, Borges F, Becker JD, Feijó JA.. 2011. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. Plant Physiol. 155(4):2066–2080. PubMed PMC

Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD.. 2008. Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol. 148(2):1168–1181. PubMed PMC

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ.. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. PubMed PMC

Charlesworth D, Charlesworth B.. 1992. The effects of selection in the gametophyte stage on mutational load. Evolution 46(3):703–720. PubMed

Cutter AD. 2019. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. New Phytol. 224(3):1080–1094. PubMed

Clark NL, Aagaard JE, Swanson WJ.. 2006. Evolution of reproductive proteins from animals and plants. Reproduction 131(1):11–22. PubMed

Dai H, Chen Y, Chen S, Mao Q, Kennedy D, Landback P, Eyre-Walker A, Du W, Long M.. 2008. The evolution of courtship behaviors through the origination of a new gene in Drosophila. Proc Natl Acad Sci USA. 105(21):7478–7483. PubMed PMC

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al.; 1000 Genomes Project Analysis Group. 2011. The variant call format and vcftools. Bioinformatics 27(15):2156–2158. PubMed PMC

Dapper AL, Wade MJ.. 2016. The evolution of sperm competition genes: the effect of mating system on levels of genetic variation within and between species. Evolution 70(2):502–511. PubMed PMC

Dapper AL, Wade MJ.. 2020. Relaxed selection and the rapid evolution of reproductive genes. Trends Genet. 36(9):640–649. PubMed

Darwin C. 1871. The descent of man, and selection in relation to sex. London: John Murray.

Darwin C. 1876. The effects of cross and self fertilisation in the vegetable kingdom. London: John Murray.

Dean MD, Clark NL, Findlay GD, Karn RC, Yi X, Swanson WJ, MacCoss MJ, Nachman MW.. 2009. Proteomics and comparative genomic investigations reveal heterogeneity in evolutionary rate of male reproductive proteins in mice (Mus domesticus). Mol Biol Evol. 26(8):1733–1743. PubMed PMC

Ding Y, Zhao L, Yang S, Jiang Y, Chen Y, Zhao R, Zhang Y, Zhang G, Dong Y, Yu H, et al.2010. A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. PLoS Genet. 6(12):e1001255. PubMed PMC

Dresselhaus T, Franklin-Tong N.. 2013. Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant. 6(4):1018–1036. PubMed

Dresselhaus T, Sprunck S, Wessel GM.. 2016. Fertilization mechanisms in flowering plants. Curr Biol. 26(3):R125–R139. PubMed PMC

Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH.. 2005. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA. 102(40):14338–14343. PubMed PMC

Eyre-Walker A, Keightley PD.. 2009. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol. 26(9):2097–2108. PubMed

Fan L-M, Wang Y-F, Wang H, Wu W-H.. 2001. In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot. 52(361):1603–1614. PubMed

Felsenstein J. 1985. Phylogenies and the comparative method. Am Nat. 125(1):1–15.

Felsenstein J. 1989. PHYLIP-phylogeny inference package (ver. 3.2). Cladistics 5:164–166.

Finseth FR, Bondra E, Harrison RG.. 2014. Selective constraint dominates the evolution of genes expressed in a novel reproductive gland. Mol Biol Evol. 31(12):3266–3281. PubMed

Francis RM. 2017. pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour. 17(1):27–32. PubMed

Fu YX. 1994. Estimating effective population size or mutation rate using the frequencies of mutations of various classes in a sample of DNA sequences. Genetics 138(4):1375–1386. PubMed PMC

Gautier L, Cope L, Bolstad BM, Irizarry RA.. 2004. affy-analysis of affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315. PubMed

Gerstein AC, Otto SP.. 2009. Ploidy and the causes of genomic evolution. J Hered. 100(5):571–581. PubMed

Gossmann TI, Schmid MW, Grossniklaus U, Schmid KJ.. 2014. Selection-driven evolution of sex-biased genes is consistent with sexual selection in Arabidopsis thaliana. Mol Biol Evol. 31(3):574–583. PubMed

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O.. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321. PubMed

Haldane JBS. 1932. The causes of evolution. Princeton (NJ): Princeton University Press.

Haldane JBS. 1933. The part played by recurrent mutation in evolution. Am Nat. 67(708):5–19.

Harrison MC, Mallon EB, Twell D, Hammond RL.. 2019. Deleterious mutation accumulation in Arabidopsis thaliana pollen genes: a role for a recent relaxation of selection. Genome Biol Evol. 11(7):1939–1951. PubMed PMC

Hartfield M, Bataillon T, Glémin S.. 2017. The evolutionary interplay between adaptation and self-fertilization. Trends Genet. 33(6):420–431. PubMed PMC

Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T.. 2001. Pollen tube attraction by the synergid cell. Science 293:1480–1483. PubMed

Honys D, Twell D.. 2004. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5(11):R85. PubMed PMC

Hove AA, Mazer SJ.. 2013. Pollen performance in Clarkia taxa with contrasting mating systems: implications for male gametophytic evolution in selfers and outcrossers. Plants (Basel) 2(2):248–278. PubMed PMC

Immler S, Arnqvist G, Otto SP.. 2012. Ploidally antagonistic selection maintains stable genetic polymorphism. Evolution 66(1):55–65. PubMed

Innan H, Kondrashov F.. 2010. The Evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 11(2):97–108. PubMed

Johnson MA, Harper JF, Palanivelu R.. 2019. A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol. 70(1):809–837. PubMed

Julca I, Ferrari C, Flores-Tornero M, Proost S, Lindner AC, Hackenberg D, Steinbachová L, Michaelidis C, Gomes Pereira S, Misra CS, et al.2021. Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nat Plants. 7(8):1143–1159. PubMed

Karl R, Koch MA.. 2013. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography snd trait evolution in tribe Arabideae. Ann Bot. 112(6):983–1001. PubMed PMC

Keightley PD, Eyre-Walker A.. 2007. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics 177(4):2251–2261. PubMed PMC

Kiefer C, Severing E, Karl R, Bergonzi S, Koch M, Tresch A, Coupland G.. 2017. Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues. Mol Ecol. 26(13):3437–3457. PubMed PMC

Kishino H, Hasegawa M.. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 29(2):170–179. PubMed

Kokko H, Rankin DJ.. 2006. Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philos Trans R Soc Lond B Biol Sci. 361(1466):319–334. PubMed PMC

Kondrashov AS, Crow JF.. 1991. Haploidy or diploidy: which is better? Nature 351(6324):314–315. PubMed

Korunes KL, Samuk K.. 2021. pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol Ecol Resour. 21(4):1359–1368. PubMed PMC

Laenen B, Tedder A, Nowak MD, Toräng P, Wunder J, Wötzel S, Steige KA, Kourmpetis Y, Odong T, Drouzas AD, et al.2018. Demography and mating system shape the genome-wide impact of purifying selection in Arabis alpina. Proc Natl Acad Sci USA. 115(4):816–821. PubMed PMC

Lankinen Å, Hydbom S, Strandh M.. 2017. Sexually antagonistic evolution caused by male-male competition in the pistil. Evolution 71(10):2359–2369. PubMed

Lankinen Å, Karlsson Green K.. 2015. Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AoB Plants 7:plv008. PubMed PMC

Lankinen Å, Skogsmyr I.. 2002. Pollen competitive ability: the effect of proportion in two-donor crosses. Evol Ecol Res. 4:687–700.

Lee TH, Guo H, Wang X, Kim C, Paterson AH.. 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15:162. PubMed PMC

Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA.. 2017. The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell. 29(5):984–1006. PubMed PMC

Lohani N, Singh MB, Bhalla PL.. 2020. RNA-seq highlights molecular events associated with impaired pollen-pistil interactions following short-term heat stress in Brassica napus. Front Plant Sci. 11:622748. PubMed PMC

Mattila TM, Laenen B, Horvath R, Hämälä T, Savolainen O, Slotte T.. 2019. Impact of demography on linked selection in two outcrossing Brassicaceae species. Ecol Evol. 9(17):9532–9545. PubMed PMC

Mazer SJ, Hove AA, Miller BS, Barbet-Massin M.. 2010. The joint evolution of mating system and pollen performance: predictions regarding male gametophytic evolution in selfers vs. outcrossers. Perspect Plant Ecol Evol Syst. 12(1):31–41.

Mazer SJ, Hendrickson BT, Chellew JP, Kim LJ, Liu JW, Shu J, Sharma MV.. 2018. Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution 72(3):453–472. PubMed

Moyle LC, Wu M, Gibson MJS.. 2021. Reproductive proteins evolve faster than non-reproductive proteins among Solanum species. Front Plant Sci. 12:635990. PubMed PMC

Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R.. 2016. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32(11):1749–1751. PubMed PMC

Nei M, Li WH.. 1979. Mathematical Model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 76(10):5269–5273. PubMed PMC

Ogle DH, Wheeler P, Dinno A.. 2020. FSA: fisheries stock analysis. Available from: https://github.com/droglenc/FSA.

Palanivelu R, Tsukamoto T.. 2012. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. Wiley Interdiscip Rev Dev Biol. 1(1):96–113. PubMed

Pannell JR, Labouche A.. 2013. The incidence and selection of multiple mating in plants. Philos Trans R Soc Lond B Biol Sci. 368(1613):20120051. PubMed PMC

Paradis E, Claude J, Strimmer K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290. PubMed

Pasonen HL, Pulkkinen P, Kapyla M, Blom A.. 1999. Pollen-tube growth rate and seed-siring success among Betula pendula clones. New Phytol. 143(2):243–251.

Peters MAE, Weis AE.. 2018. Selection for pollen competitive ability in mixed-mating systems. Evolution 72(11):2513–2536. PubMed

Petrén H, Toräng P, Ågren J, Friberg M.. 2021. Evolution of floral scent in relation to self-incompatibility and capacity for autonomous self-pollination in the perennial herb Arabis alpina. Ann Bot. 127(6):737–747. PubMed PMC

Pina C, Pinto F, Feijó JA, Becker JD.. 2005. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138(2):744–756. PubMed PMC

Purcell S, Chang C.. 2020. PLINK. Available from: http://www.cog-genomics.org/plink/2.0/.

Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R.. 2009. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 5(8):e1000621. PubMed PMC

R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna (Austria). Available from: https://www.R-project.org/.

Raj A, Stephens M, Pritchard JK.. 2014. fastSTRUCTURE: variational inference of population structure in large SNP Data Sets. Genetics 197(2):573–589. PubMed PMC

Rowe L, Houle D.. 1996. The Lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B. 263:1415–1421.

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU.. 2005. A gene expression map of Arabidopsis thaliana development. Nat Genet. 37(5):501–506. PubMed

Schmid MW, Schmidt A, Klostermeier UC, Barann M, Rosenstiel P, Grossniklaus U.. 2012. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing. PLoS One 7(1):e29685. PubMed PMC

Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK.. 2016. Role of ubiquitin-mediated degradation system in plant biology. Front Plant Sci. 7:806. PubMed PMC

Sicard A, Lenhard M.. 2011. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological Adaptation in plants. Ann Bot. 107(9):1433–1443. PubMed PMC

Skogsmyr I, Lankinen ÅSA.. 2002. Sexual selection: an evolutionary force in plants? Biol Rev Camb Philos Soc. 77(4):537–562. PubMed

Slotte T. 2014. The impact of linked selection on plant genomic variation. Brief Funct Genomics. 13(4):268–275. PubMed PMC

Slotte T, Bataillon T, Hansen TT, St Onge K, Wright SI, Schierup MH.. 2011. Genomic determinants of protein evolution and polymorphism in Arabidopsis. Genome Biol Evol. 3:1210–1219. PubMed PMC

Smith-Huerta NL. 1996. Pollen germination and tube growth in selfing and outcrossing populations of clarkia tembloriensis (Onagraceae). Int J Plant Sci. 157(2):228–233.

Steige KA, Laenen B, Reimegård J, Scofield DG, Slotte T.. 2017. Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proc Natl Acad Sci USA. 114(5):1087–1092. PubMed PMC

Swanson WJ, Vacquier VD.. 2002. The rapid evolution of reproductive proteins. Nat Rev Genet. 3(2):137–144. PubMed

Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A.. 2013. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Mol Biol Evol. 30(8):1929–1939. PubMed

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595. PubMed PMC

Tan G, Polychronopoulos D, Lenhard B.. 2019. CNEr: a toolkit for exploring extreme noncoding conservation. PLoS Comput Biol. 15(8):e1006940. PubMed PMC

Taylor ML, Williams JH.. 2012. Pollen tube development in two species of Trithuria (Hydatellaceae) with contrasting breeding systems. Sex Plant Reprod. 25(2):83–96. PubMed

Tedder A, Ansell SW, Lao X, Vogel JC, Mable BK.. 2011. Sporophytic self-incompatibility genes and mating system variation in Arabis alpina. Ann Bot. 108(4):699–713. PubMed PMC

Thomson JD. 1989. Germination schedules of pollen grains: implications for pollen selection. Evolution 43(1):220–223. PubMed

Thompson JD, Higgins DG, Gibson TJ.. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673–4680. PubMed PMC

Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M.. 2021. The scope for postmating sexual selection in plants. Trends Ecol Evol. 36(6):556–567. PubMed

Toräng P, Vikström L, Wunder J, Wötzel S, Coupland G, Ågren J.. 2017. Evolution of the selfing syndrome: anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution 71(9):2206–2218. PubMed

Varis S, Reininharju J, Santanen A, Ranta H, Pulkkinen P.. 2010. Interactions during in vitro germination of scots pine pollen. Trees 24(1):99–104.

von Besser K, Frank AC, Johnson MA, Preuss D.. 2006. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133(23):4761–4769. PubMed

Walsh NE, Charlesworth D.. 1992. Evolutionary interpretations of differences in pollen tube growth rates. Q Rev Biol. 67(1):19–37.

Willi Y. 2013. The battle of the sexes over seed size: support for both kinship genomic imprinting and interlocus contest evolution. Am Nat. 181(6):787–798. PubMed

Williamson RJ, Josephs EB, Platts AE, Hazzouri KM, Haudry A, Blanchette M, Wright SI.. 2014. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of Capsella grandiflora. PLoS Genet. 10(9):e1004622. PubMed PMC

Willing E-M, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C, Warthmann N, Chica C, Szarzynska B, et al.2015. Genome expansion of Arabis Alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants. 1(14023):14023. PubMed

Wright S. 1951. The genetical structure of populations. Ann Eugen. 15(4):323–354. PubMed

Wright S. 1969. Evolution and the genetics of populations. In: The theory of gene frequencies. Vol 2. Chicago (IL): University of Chicago Press.

Wright SI, Kalisz S, Slotte T.. 2013. Evolutionary consequences of self-fertilization in plants. Proc Biol Sci. 280(1760):20130133. PubMed PMC

Wright SI, Yau CBK, Looseley M, Meyers BC.. 2004. Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol. 21(9):1719–1726. PubMed

Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U.. 2010. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol. 20(6):506–512. PubMed

Yang L, Gaut BS.. 2011. Factors that contribute to variation in evolutionary rate among Arabidopsis genes. Mol Biol Evol. 28(8):2359–2369. PubMed

Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J, Guo X, Lin Q, Gu H, Dong J, Dresselhaus T, et al.2017. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat Plants. 3:17079. PubMed PMC

Zhang J, Yang J-R.. 2015. Determinants of the rate of protein sequence evolution. Nat Rev Genet. 16(7):409–420. PubMed PMC

Zheng Y-Y, Lin X-J, Liang H-M, Wang F-F, Chen L-Y.. 2018. The long journey of pollen tube in the pistil. Int J Mol Sci. 19(11):3529. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...