Natural Variation in Sexual Traits and Gene Expression between Selfing and Outcrossing Arabidopsis lyrata Suggests Sexual Selection at Work
Jazyk angličtina Země Japonsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
PRIMUS/19/SCI/02
Grantová Agentura, Univerzita Karlova
RVO 67985939
Institute of Botany of the Czech Academy of Sciences
PubMed
39126152
PubMed Central
PMC12085089
DOI
10.1093/pcp/pcae090
PII: 7731193
Knihovny.cz E-zdroje
- Klíčová slova
- Natural variation, Pollen development, Pollen–pistil interactions, Selfing transition, Sexual gene expression, Sexual selection,
- MeSH
- Arabidopsis * genetika fyziologie MeSH
- opylení genetika MeSH
- pohlavní výběr * MeSH
- pyl genetika fyziologie růst a vývoj MeSH
- pylová láčka růst a vývoj genetika MeSH
- regulace genové exprese u rostlin MeSH
- samooplození genetika MeSH
- Publikační typ
- časopisecké články MeSH
Flowering plants show significant diversity in sexual strategies, profoundly impacting the evolution of sexual traits and associated genes. Sexual selection is one of the primary evolutionary forces driving sexual trait variation, particularly evident during pollen-pistil interactions, where pollen grains compete for fertilization and females select mating partners. Multiple mating may intensify competition among pollen donors for siring, while in contrast, self-fertilization reduces sire-sire competition, relaxing the sexual selection pressure. Traits involved in male-male competition and female choice are well described, and molecular mechanisms underlying pollen development and pollen-pistil interactions have been extensively studied in the model species Arabidopsis thaliana. However, whether these molecular mechanisms are involved in sexual selection in nature remains unclear. To address this gap, we measured intrinsic pollen performance and its interaction with female choice and investigated the associated gene expression patterns in a selfing and an outcrossing population of Arabidopsis lyrata. We found that pollen germination and pollen tube growth were significantly higher in outcrossers than selfers, and this difference was accompanied by changes in the expression of genes involved in vesicle transport and cytoskeleton. Outcrosser mother plants showed a negative impact on pollen tube growth compared to selfer mother plants, together with a difference of expression for genes involved in auxin and stress response, suggesting a potential mechanism for female choice through molecular cross talk at the post-pollination stage. Our study provides insight into the impact of sexual selection on the evolution of sexual gene expression in plants.
Zobrazit více v PubMed
Aloni R., Aloni E., Langhans M. and Ullrich C.I. (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223: 315–328. PubMed
Alonzo S.H. and Servedio M.R. (2019) Grey zones of sexual selection: why is finding a modern definition so hard? Proc. R. Soc. B 286: 20191325. PubMed PMC
Al-Shehbaz I.A. and O’Kane S.L. (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). Arabidopsis Book/Am. Soc. Plant Biol. 1: e0001. PubMed PMC
Anders S., Pyl P.T. and Huber W. (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169. PubMed PMC
Arunkumar R., Josephs E.B., Williamson R.J. and Wright S.I. (2013) Pollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora. Mol. Biol. Evol. 30: 2475–2486. PubMed
Austerlitz F., Gleiser G., Teixeira S. and Bernasconi G. (2012) The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proc. R. Soc. B 279: 91–100. PubMed PMC
Bates D., Mächler M., Bolker B. and Walker S. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1–48.
Beaudry F.E.G. Rifkin J.L., Barrett S.C.H. and Wright S.I. (2020) Evolutionary genomics of plant gametophytic selection. Plant Commun. 1: 100115. PubMed PMC
Bolger A.M., Lohse M. and Usadel B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Carleial S., van Kleunen M. and Stift M. (2017) Small reductions in corolla size and pollen: ovule ratio, but no changes in flower shape in selfing populations of the North American Arabidopsis lyrata. Oecologia 183: 401–413. PubMed
Cascallares M., Setzes N., Marchetti F., López G.A., Distéfano A.M., Cainzos M., et al. (2020) A complex journey: cell wall remodeling, interactions, and integrity during pollen tube growth. Front. Plant Sci. 11: 599247. PubMed PMC
Chae K. and Lord E.M. (2011) Pollen tube growth and guidance: roles of small, secreted proteins. Ann. Bot. 108: 627–636. PubMed PMC
Chae K., Zhang K., Zhang L., Morikis D., Kim S.T., Mollet J.-C., et al. (2007) Two SCA (stigma/style cysteine-rich adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. J. Biol. Chem. 282: 33845–33858. PubMed
Chebli Y. and Geitmann A. (2024) Pectate lyase-like lubricates the male gametophyte’s path toward its mating partner. Plant Physiol. 194: 124–136. PubMed
Chen D. and Zhao J. (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol. Plant. 134: 202–215. PubMed
Cheung A.Y., Wang H. and Wu H. (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82: 383–393. PubMed
Christopher D.A., Mitchell R.J. and Karron J.D. (2020) Pollination intensity and paternity in flowering plants. Ann. Bot. 125: 1–9. PubMed PMC
Cole R.A. and Fowler J.E. (2006) Polarized growth: maintaining focus on the tip. Curr. Opin. Plant Biol. 9: 579–588. PubMed
Connallon T. and Hall M.D. (2018) Genetic constraints on adaptation: a theoretical primer for the genomics era. Ann. N. Y. Acad. Sci. 1422: 65–87. PubMed
Cutter A.D. (2019) Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. New Phytol. 224: 1080–1094. PubMed
Darwin C.R. (1871) Principles of Sexual Selection. In The Descent of Man, and Selection in Relation to Sex. Edited by Murray, J. Vol. 1 pp. 253–320. London, UK: John Murray
Dean R., Harrison P.W., Wright A.E., Zimmer F. and Mank J.E. (2015) Positive selection underlies Faster-z evolution of gene expression in birds. Mol. Biol. Evol. 32: 2646–2656. PubMed PMC
Delph L.F., Johannsson M.H. and Stephenson A.G. (1997) How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology 78: 1632–1639.
Delph L.F., Weinig C. and Sullivan K. (1998) Why fast-growing pollen tubes give rise to vigorous progeny: the test of a new mechanism. Proc. R. Soc. Lond. B Biol. Sci. 265: 935–939.
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29: 15–21. PubMed PMC
Dresselhaus T. and Franklin-Tong N. (2013) Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6: 1018–1036. PubMed
Dresselhaus T. and Márton M.L. (2009) Micropylar pollen tube guidance and burst: adapted from defense mechanisms? Curr. Opin. Plant Biol. 12: 773–780. PubMed
Eberhard W.G. (1996) Female Control: Sexual Selection by Cryptic Female Choice, Vol. 69. Princeton University Press, Princeton, NJ.
Elleman C.J. and Dickinson H.G. (1999) Commonalities between pollen/stigma and host/pathogen interactions: calcium accumulation during stigmatic penetration by Brassica oleracea pollen tubes. Sex. Plant Reprod. 12: 194–202.
Enami K., Ichikawa M., Uemura T., Kutsuna N., Hasezawa S., Nakagawa T., et al. (2009) Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol. 50: 280–289. PubMed
Erbar C. (2003) Pollen tube transmitting tissue: place of competition of male gametophytes. Int. J. Plant Sci. 164: S265–S277.
Foxe J.P., Stift M., Tedder A., Haudry A., Wright S.I. and Mable B.K. (2010) Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context: reconstructing origins of selfing in A. lyrata. Evolution 64: 3495–3510. PubMed
Guo F. and McCubbin A.G. (2012) The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. J. Exp. Bot. 63: 3083–3095. PubMed PMC
Gutiérrez-Valencia J., Fracassetti M., Horvath R., Laenen B., Désamore A., Drouzas A.D., et al. (2022) Genomic signatures of sexual selection on pollen-expressed genes in Arabis alpina. Mol. Biol. Evol. 39: msab349. PubMed PMC
Harrison M.C., Mallon E.B., Twell D., Hammond R.L. and Mank J. (2019) Deleterious mutation accumulation in Arabidopsis thaliana pollen genes: a role for a recent relaxation of selection. Genome Biol. Evol. 11: 1939–1951. PubMed PMC
Harrison P.W., Wright A.E., Zimmer F., Dean R., Montgomery S.H., Pointer M.A., et al. (2015) Sexual selection drives evolution and rapid turnover of male gene expression. Proc. Natl. Acad. Sci. 112: 4393–4398. PubMed PMC
Heberle H., Meirelles G.V., Da Silva F.R., Telles G.P. and Minghim R. (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinf. 16: 169. PubMed PMC
Heblack J., Schepers J.R. and Willi Y. (2024) Evolutionary potential under heat and drought stress at the southern range edge of North American Arabidopsis lyrata. J. Evol. Biol. 37: 555–565. PubMed
Hedhly A., Hormaza J. and Herrero M. (2004) Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). Am. J. Bot. 91: 558–564. PubMed
Hemp A. (1996). Okologie, Verbreitung und Gesellschaftsanschluβ ausgewhlter Eiszeitrelikte (Cardaminopsis petraea, Draba aizoides, Saxifraga decipiens, Arabis alpina und Asplenium viride) in der Pegnitzalb. Ber. Bayer. Bot. Ges. 66/67: 233–267.
Higashiyama T. and Yang W. (2017) Gametophytic pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Physiol. 173: 112–121. PubMed PMC
Hoebe P.N., Stift M., Tedder A. and Mable B.K. (2009) Multiple losses of self-incompatibility in North-American Arabidopsis lyrata?: Phylogeographic context and population genetic consequences. Mol. Ecol. 18: 4924–4939. PubMed
Hove A. and Mazer S. (2013) Pollen performance in clarkia taxa with contrasting mating systems: implications for male gametophytic evolution in selfers and outcrossers. Plants 2: 248–278. PubMed PMC
Hu T.T., Pattyn P., Bakker E.G. Cao J., Cheng J.-F., Clark R.M., et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43: 476–481. PubMed PMC
Huang N., Lee I., Marcotte E.M., Hurles M.E. and Schierup M.H. (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6: e1001154. PubMed PMC
Ichikawa M., Hirano T., Enami K., Fuselier T., Kato N., Kwon C., et al. (2014) Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 55: 790–800. PubMed
Johnson M.A., Harper J.F. and Palanivelu R. (2019) A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70: 809–837. PubMed
Johnson M.A. and Preuss D. (2002) Plotting a course: multiple signals guide pollen tubes to their targets. Dev. Cell 2: 273–281. PubMed
Jonsell B., Kustås K. and Nordal I. (1995) Genetic variation in Arabis petraea, a disjunct species in northern Europe. Ecography 18: 321–332.
Klosinska M., Picard C.L. and Gehring M. (2016) Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat Plants 2: 16145. PubMed PMC
Kolesnikova U.K., Scott A.D., Van De Velde J.D., Burns R., Tikhomirov N.P., Pfordt U., et al. (2023) Transition to self-compatibility associated with dominant S-allele in a diploid Siberian progenitor of allotetraploid Arabidopsis kamchatica revealed by Arabidopsis lyrata genomes. Mol. Biol. Evol. 40: msad122. PubMed PMC
Kuznetsova A., Brockhoff P.B. and Christensen R.H.B. (2017) lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82: 1–26.
Lankinen Å. and Karlsson Green K. (2015) Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AoB Plants 7: plv008. PubMed PMC
Li Y., Mamonova E., Köhler N., van Kleunen M. and Stift M. (2023) Breakdown of self-incompatibility due to genetic interaction between a specific S-allele and an unlinked modifier. Nat. Commun. 14: 3420. PubMed PMC
Liu X., Xiao Y., Zi J., Yan J., Li C., Du C., et al. (2023a) Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Sci. Rep. 13: 611. PubMed PMC
Liu X., Zhu D., Zhao F., Gao Y., Li J. and Li Y. (2023b) VAMP726 and VAMP725 regulate vesicle secretion and pollen tube growth in Arabidopsis. Plant Cell Rep. 42: 1951–1965. PubMed
Love M.I., Huber W. and Anders S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15: 550. PubMed PMC
Lovy‐Wheeler A., Cárdenas L., Kunkel J.G. and Hepler P.K. (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil. 64: 217–232. PubMed
Mable B.K., Robertson A.V., Dart S., Di Berardo C. and Witham L. (2005) Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evol. Int. J. Org. Evol. 59: 1437–1448. PubMed
Macgregor S.R., Beronilla P.K.S. and Goring D.R. (2023) The Arabidopsis SNARE complex genes regulate the early stages of pollen-stigma interactions. Plant Reprod. PubMed
Marshall D.L., Hatfield M.W.F.C. and Bennett T. (1996) Does interference competition among pollen grains occur in wild radish? Evolution 50: 1842–1848. PubMed
Martin M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17: 10.
Mazer S.J., Hendrickson B.T., Chellew J.P., Kim L.J., Liu J.W., Shu J., et al. (2018) Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution 72: 453–472. PubMed
Mazer S.J., Hove A.A., Miller B.S. and Barbet-Massin M. (2010) The joint evolution of mating system and pollen performance: predictions regarding male gametophytic evolution in selfers vs. outcrossers. Perspect. Pl. Ecol. Evol. Syst. 12: 31–41.
Mollet J.-C., Park S.-Y., Nothnagel E.A. and Lord E.M. (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12: 1737–1749. PubMed PMC
Moore J.C. and Pannell J.R. (2011) Sexual selection in plants. Curr. Biol. 21: R176–R182. PubMed
Németh M.B. and Smith‐Huerta N.L. (2003) Pollen deposition, pollen tube growth, seed production, and seedling performance in natural populations of Clarkia unguiculata (Onagraceae). Int. J. Plant Sci. 164: 153–164.
Nordborg M. (1997) Structured coalescent processes on different time scales. Genetics 146: 1501–1514. PubMed PMC
O’Kane S.L. and Al-Shehbaz I.A. (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7: 323–327.
Pannell J.R. and Labouche A.-M. (2013) The incidence and selection of multiple mating in plants. Philos. Trans. R. Soc. B 368: 20120051. PubMed PMC
Park S.-Y., Jauh G.-Y., Mollet J.-C., Eckard K.J., Nothnagel E.A., Walling L.L., et al. (2000) A lipid transfer–like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12: 151–163. PubMed PMC
Pasonen H.L., Pulkkinen P., Kapyla M. and Blom A. (1999) Pollen-tube growth rate and seed-siring success among Betula pendula clones. New Phytol. 143: 243–251.
Pereira A.M., Moreira D., Coimbra S. and Masiero S. (2021) Paving the way for fertilization: the role of the transmitting tract. Int. J. Mol. Sci. 22: 2603. PubMed PMC
Price P.D., Palmer Droguett D.H., Taylor J.A., Kim D.W., Place E.S., Rogers T.F., et al. (2022) Detecting signatures of selection on gene expression. Nat. Ecol. Evol. 6: 1035–1045. PubMed
Qin Y. and Yang Z. (2011) Rapid tip growth: insights from pollen tubes. Semin. Cell Dev. Biol. 22: 816–824. PubMed PMC
Rawat V., Abdelsamad A., Pietzenuk B., Seymour D.K., Koenig D., Weigel D., et al. (2015) Improving the annotation of Arabidopsis lyrata using RNA-seq data. PLoS One 10: e0137391. PubMed PMC
R Core Team . (2023) R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org (September 15, 2023, date last accessed).
Rodríguez-Trelles F., Tarrío R. and Ayala F. (2003) Evolution of cis-regulatory regions versus codifying regions. Int. J. Dev. Biol. 47: 665–673. PubMed
Ross-Ibarra J., Wright S.I., Foxe J.P., Kawabe A., DeRose-Wilson L., Gos G., et al. (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3: e2411. PubMed PMC
Ruan H., Li J., Wang T. and Ren H. (2021) Secretory vesicles targeted to plasma membrane during pollen germination and tube growth. Front. Cell Develop. Biol. 8: 615447. PubMed PMC
Sanati Nezhad A. and Geitmann A. (2013) The cellular mechanics of an invasive lifestyle. J. Exp. Bot. 64: 4709–4728. PubMed
Schmickl R., Jørgensen M.H., Brysting A.K. and Koch M.A. (2010) The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol. Biol. 10: 98. PubMed PMC
Scholz P., Anstatt J., Krawczyk H.E. and Ischebeck T. (2020) Signalling pinpointed to the tip: the complex regulatory network that allows pollen tube growth. Plants 9: 1098. PubMed PMC
Shi D., Tang C., Wang R., Gu C., Wu X., Hu S., et al. (2017) Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Rep. 36: 1785–1799. PubMed PMC
Shuker D.M., Kvarnemo C. and Simmons L. (2021) The definition of sexual selection. Behav. Ecol. 32: 781–794. PubMed PMC
Sicard A., Kappel C., Lee Y.W., Woźniak N.J., Marona C., Stinchcombe J.R., et al. (2016) Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella. Proc. Natl. Acad. Sci. 113: 13911–13916. PubMed PMC
Signor S.A. and Nuzhdin S.V. (2018) The evolution of gene expression in cis and trans. Trends Genet. 34: 532–544. PubMed PMC
Skogsmyr I. and Lankinen Å. (2002) Sexual selection: an evolutionary force in plants? Biol. Rev. 77: 537–562. PubMed
Slane D., Reichardt I., El Kasmi F., Bayer M. and Jürgens G. (2017) Evolutionarily diverse SYP1 Qa-SNAREs jointly sustain pollen tube growth in Arabidopsis. Plant J. 92: 375–385. PubMed
Smith-Huerta N.L. (1996) Pollen germination and tube growth in selfing and outcrossing populations of Clarkia tembloriensis (Onagraceae). Int. J. Plant Sci. 157: 228–233.
Smith-Huerta N.L., Carrino-Kyker S.R. and Huerta A.J. (2007) The effects of maternal and paternal nutrient status on pollen performance in the wildflower Clarkia unguiculata Lindley (Onagraceae). J. Torrey Bot. Soc. 134: 451–457.
Snow A.A. and Spira T.P. (1991) Pollen vigour and the potential for sexual selection in plants. Nature 352: 796–797.
Snow A.A. and Spira T.P. (1996) Pollen-tube competition and male fitness in hibiscus moscheutos. Evolution 50: 1866–1870. PubMed
Tang D., Chen M., Huang X., Zhang G., Zeng L., Zhang G., et al. (2023) SRplot: a free online platform for data visualization and graphing. PLoS One 18: e0294236. PubMed PMC
Taylor M.L. and Williams J.H. (2012) Pollen tube development in two species of Trithuria (Hydatellaceae) with contrasting breeding systems. Sex. Plant Reprod. 25: 83–96. PubMed
Tian F., Yang D.-C., Meng Y.-Q., Jin J. and Gao G. (2019) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48: gkz1020. PubMed PMC
Tonnabel J., Cosette P., Lehner A., Mollet J.-C., Amine Ben Mlouka M., Grladinovic L., et al. (2022) Rapid evolution of pollen and pistil traits as a response to sexual selection in the post-pollination phase of mating. Curr. Biol. 32: 4465–4472.e6. PubMed
Tonnabel J., David P., Janicke T., Lehner A., Mollet J.-C., Pannell J.R., et al. (2021) The scope for postmating sexual selection in plants. Trends Ecol. Evol. 36: 556–567. PubMed
Tosto N.M., Beasley E.R., Wong B.B.M., Mank J.E. and Flanagan S.P. (2023) The roles of sexual selection and sexual conflict in shaping patterns of genome and transcriptome variation. Nat. Ecol. Evol. 7: 981–993. PubMed
Veltsos P., Porcelli D., Fang Y., Cossins A.R., Ritchie M.G. and Snook R.R. (2022) Experimental sexual selection reveals rapid evolutionary divergence in sex‐specific transcriptomes and their interactions following mating. Mol. Ecol. 31: 3374–3388. PubMed PMC
Vuylsteke M., van Eeuwijk F., Van Hummelen P., Kuiper M. and Zabeau M. (2005) Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171: 1267–1275. PubMed PMC
Wang H.-J., Huang J.-C., Jauh G.-Y. (2010) Pollen germination and tube growth. In Advances in Botanical Research. Edited by Kader, J.-C. and Delseny, M., Vol. 54, pp. 1–52. Academic Press, Cambridge, MA.
Weng X. and Wang H. (2022) Apical vesicles: social networking at the pollen tube tip. Reprod Breed. 2: 119–124.
Wilkinson G.S., Breden F., Mank J.E., Ritchie M.G., Higginson A.D., Radwan J., et al. (2015) The locus of sexual selection: moving sexual selection studies into the post‐genomics era. J. Evol. Biol. 28: 739–755. PubMed
Willi Y. and Määttänen K. (2010) Evolutionary dynamics of mating system shifts in Arabidopsis lyrata. J. Evol. Biol. 23: 2123–2131. PubMed
Wright S.I., Kalisz S. and Slotte T. (2013) Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B 280: 20130133. PubMed PMC
Xiyan L. (2011) Arabidopsis pollen tube germination protocol. Bio-Protocol. 1.
Xu Y. and Huang S. (2020) Control of the actin cytoskeleton within apical and subapical regions of pollen tubes. Front. Cell Develop. Biol. 8: 614821. PubMed PMC
Zúñiga-Mayo V.M., Gómez-Felipe A., Herrera-Ubaldo H. and de Folter S. (2019) Gynoecium development: networks in Arabidopsis and beyond. J. Exp. Bot. 70: 1447–1460. PubMed