The transcription factors and pathways underpinning male reproductive development in Arabidopsis

. 2024 ; 15 () : 1354418. [epub] 20240208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38390292

As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.

Zobrazit více v PubMed

Aarts M., Dirkse W., Stiekema W., Pereira A. (1993). Transposon tagging of a male sterility gene in Arabidopsis . Nature 363 (6431), 715–717. doi: 10.1038/363715a0 PubMed DOI

Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., et al. . (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science 309 (5737), 1052–1056. doi: 10.1126/science.1115983 PubMed DOI

Blackmore S., Wortley A. H., Skvarla J. J., Rowley J. R. (2007). Pollen wall development in flowering plants. New Phytol. 174 (3), 483–498. doi: 10.1111/j.1469-8137.2007.02060.x PubMed DOI

Borg M., Rutley N., Kagale S., Hamamura Y., Gherghinoiu M., Kumar S., et al. . (2014). An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis . Plant Cell 26 (5), 2098–2113. doi: 10.1105/tpc.114.124743 PubMed DOI PMC

Borg M., Twell D. (2011). “Pollen: structure and development,” in eLS (American Cancer Society; ). doi: 10.1002/9780470015902.a0002039.pub2 DOI

Borner R., Kampmann G., Chandler J., Gleißner R., Wisman E., Apel K., et al. . (2000). A MADS domain gene involved in the transition to flowering in Arabidopsis . Plant J. 24 (5), 591–599. doi: 10.1046/j.1365-313x.2000.00906.x PubMed DOI

Bowman J., Alvarez J., Weigel D., Meyerowitz E., Smyth. D. (1993). “Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119 (3), 721–743. doi: 10.1242/dev.119.3.721 DOI

Bowman J., Smyth D., Meyerowitz. E. (1989). Genes directing flower development in Arabidopsis . Plant Cell 1 (1), 37–52. doi: 10.1105/tpc.1.1.37 PubMed DOI PMC

Bowman J., Smyth D., Meyerowitz E. (1991). Genetic interactions among floral homeotic genes of Arabidopsis . Development 112 (1), 1–20. doi: 10.1242/dev.112.1.1 PubMed DOI

Breuil-Broyer S., Morel P., de Almeida-Engler J., Coustham V., Negrutiu I., Trehin C. (2004). High-Resolution Boundary Analysis during Arabidopsis thaliana Flower Development. Plant J. For. Cell Mol. Biol. 38 (1), 182–192. doi: 10.1111/j.1365-313X.2004.02026.x PubMed DOI

Brownfield L., Hafidh S., Borg M., Sidorova A., Mori T., Twell D. (2009). A plant germline-specific integrator of sperm specification and cell cycle progression. PloS Genet. 5 (3), e1000430. doi: 10.1371/journal.pgen.1000430 PubMed DOI PMC

Canales C., Bhatt A. M., Scott R., Dickinson H. (2002). EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis . Curr. Biol. 12 (20), 1718–1727. doi: 10.1016/s0960-9822(02)01151-x PubMed DOI

Castillejo C., Romera-Branchat M., Pelaz S. (2005). A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J. 43 (4), 586–596. doi: 10.1111/j.1365-313X.2005.02476.x PubMed DOI

Cecchetti V., Altamura M. M., Brunetti P., Petrocelli V., Falasca G., Ljung K., et al. . (2013). Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J. For. Cell Mol. Biol. 74 (3), 411–422. doi: 10.1111/tpj.12130 PubMed DOI

Cecchetti V., Altamura M. M., Falasca G., Costantino P., Cardarelli M. (2008). Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20 (7), 1760–1774. doi: 10.1105/tpc.107.057570 PubMed DOI PMC

Chen W., Lv M., Wang Y., Wang P.-A., Cui Y., Li M., et al. . (2019). BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana . Nat. Commun. 10 (1), 4164. doi: 10.1038/s41467-019-12118-4 PubMed DOI PMC

Choi H., Jin J.-Y., Choi S., Hwang J.-U., Kim Y.-Y., Suh M. C., et al. . (2011). An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant Journal: For Cell Mol. Biol. 65 (2), 181–193. doi: 10.1111/j.1365-313X.2010.04412.x PubMed DOI

Colcombet J., Boisson-Dernier A., Ros-Palau R., Vera C. E., Schroeder J. I. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17 (12), 3350–3361. doi: 10.1105/tpc.105.036731 PubMed DOI PMC

Corbesier L., Vincent C., Jang S., Fornara F., Fan Q., Searle I., et al. . (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316 (5827), 1030–1033. doi: 10.1126/science.1141752 PubMed DOI

Dawson J., Sözen E., Vizir I., Van Waeyenberge S., Wilson Z. A., Mulligan. B. J. (1999). Characterization and genetic mapping of a mutation (Ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytol. 144 (2), 213–222. doi: 10.1046/j.1469-8137.1999.00507.x DOI

de Azevedo Souza C., Soo Kim S., Koch S., Kienow L., Schneider K., McKim S. M., et al. . (2009). A novel fatty acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21 (2), 507–525. doi: 10.1105/tpc.108.062513 PubMed DOI PMC

Ferguson A. C., Pearce S., Band L. R., Yang C., Ferjentsikova I., King J., et al. . (2016). Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis . New Phytol. 14, 778–790. doi: 10.1111/nph.14200 PubMed DOI PMC

Ferrándiz C., Gu Q., Martienssen R., Yanofsky. M. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127 (4), 725–734. doi: 10.1242/dev.127.4.725 PubMed DOI

Fitzgerald M., Knox B. (1995). Initiation of primexine in freeze-substituted microspores of brassica campestris. Sexual Plant Reprod. 8 (2), 99–104. doi: 10.1007/BF00230896 DOI

Gibalova A., Chab D., Twell D., Honys. D. (2009). AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 21, 581–601. doi: 10.1007/s11103-009-9493-y PubMed DOI

Gibalová A., Steinbachová L., Hafidh S., Bláhová V., Gadiou Z., Michailidis C., et al. . (2017). Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reprod. 30, 1–17. doi: 10.1007/s00497-016-0295-5 PubMed DOI

Goldberg R., Beals T., Sanders P. (1993). Anther development: basic principles and practical applications. Plant Cell 5 (10), 1217–1229. doi: 10.1105/tpc.5.10.1217 PubMed DOI PMC

Goto K., Meyerowitz E. M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8 (13), 1548–1560. doi: 10.1101/gad.8.13.1548 PubMed DOI

Grienenberger E., Kim S. S., Lallemand B., Geoffroy P., Heintz D., Souza C. d. A., et al. . (2010). Analysis of TETRAKETIDE α-PYRONE REDUCTASE Function in Arabidopsis thaliana Reveals a Previously Unknown, but Conserved, Biochemical Pathway in Sporopollenin Monomer Biosynthesis. Plant Cell 22 (12), 4067–4083. doi: 10.1105/tpc.110.080036 PubMed DOI PMC

Gu J.-N., Zhu J., Yu Y., Teng X.-D., Lou Y., Xu X.-F., et al. . (2014). DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis . Plant J. 80 (6), 1005–1013. doi: 10.1111/tpj.12694 PubMed DOI

Guo X., Li L., Liu X., Zhang C., Yao X., Xun Z., et al. . (2022). MYB2 is important for tapetal PCD and pollen development by directly activating protease expression in Arabidopsis . Int. J. Mol. Sci. 23 (7), 3563. doi: 10.3390/ijms23073563 PubMed DOI PMC

Hartmann U., Höhmann S., Nettesheim K., Wisman E., Saedler H., Huijser. P. (2000). Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis . Plant Journal: For Cell Mol. Biol. 21 (4), 351–360. doi: 10.1046/j.1365-313x.2000.00682.x PubMed DOI

Honma T., Goto K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409 (6819), 525–529. doi: 10.1038/35054083 PubMed DOI

Honys D., Twell D. (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis . Genome Biol. 5. doi: 10.1186/gb-2004-5-11-r85 PubMed DOI PMC

Hord C., Chen C., DeYoung B., Clark S., Ma. H. (2006). The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18 (7), 1667–1680. doi: 10.1105/tpc.105.036871 PubMed DOI PMC

Hsieh K., Huang A. H. C. (2007). Tapetosomes in brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19 (2), 582–596. doi: 10.1105/tpc.106.049049 PubMed DOI PMC

Immink R., Tonaco I., de Folter S., Shchennikova A., Dijk A. v., Busscher-Lange J., et al. . (2009). SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10 (2), R24. doi: 10.1186/gb-2009-10-2-r24 PubMed DOI PMC

Irish V., Sussex I. (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2 (8), 741–753. doi: 10.2307/3869173 PubMed DOI PMC

Jack T., Brockman L., Meyerowitz. E. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68 (4), 683–697. doi: 10.1016/0092-8674(92)90144-2 PubMed DOI

Jia X.-L., Xue J.-S., Zhang F., Yao C., Shen S.-Y., Sui C.-X., et al. . (2021). A dye combination for the staining of pollen coat and pollen wall. Plant Reprod. 34 (2), 91–101. doi: 10.1007/s00497-021-00412-5 PubMed DOI

Jia Q.-S., Zhu J., Xu X.-F., Lou Y., Zhang Z.-L., Zhang Z.-P., et al. . (2015). Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for nexine formation. Mol. Plant 8 (2), 251–260. doi: 10.1016/j.molp.2014.10.001 PubMed DOI

Jiang J., Xu P., Zhang J., Li Y., Zhou X., Jiang M., et al. . (2022). Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed (Brassica napus L.). Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1004781 PubMed DOI PMC

Kardailsky I., Shukla V., Ahn J. H., Dagenais N., Christensen S., Nguyen J., et al. . (1999). Activation tagging of the floral inducer FT. Science 286 (5446), 1962–1965. doi: 10.1126/science.286.5446.1962 PubMed DOI

Kim S. S., Grienenberger E., Lallemand B., Colpitts C., Kim S. Y., de Azevedo Souza C., et al. . (2010). LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana . Plant Cell 22 (12), 4045–4066. doi: 10.1105/tpc.110.080028 PubMed DOI PMC

Kinoshita A., Richter R. (2020). Genetic and molecular basis of floral induction in Arabidopsis thaliana . J. Exp. Bot. 71 (9), 2490–2504. doi: 10.1093/jxb/eraa057 PubMed DOI PMC

Klucher K., Helen C., Leonore R., Robert. F. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8 (2), 137–153. doi: 10.1105/tpc.8.2.137 PubMed DOI PMC

Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki. T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 (5446), 1960–1962. doi: 10.1126/science.286.5446.1960 PubMed DOI

Koltunow A., Truettner J., Cox K., Wallroth M., Goldberg. R. (1990). Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2 (12), 1201–1224. doi: 10.1105/tpc.2.12.1201 PubMed DOI PMC

Krizek B., Ivory B., Yen-Yi H., Nowlan F., Ann. L. (2020). The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. Plant J. 103 (2), 752–768. doi: 10.1111/tpj.14769 PubMed DOI PMC

Krizek B., Lewis M., Fletcher. J. (2006). RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant Journal: For Cell Mol. Biol. 45 (3), 369–383. doi: 10.1111/j.1365-313X.2005.02633.x PubMed DOI

Lai Z., Wang J., Peng S.-Q., Chang F. (2022). bHLH010/089 Transcription Factors Control Pollen Wall Development via Specific Transcriptional and Metabolic Networks in Arabidopsis thaliana . Int. J. Mol. Sci. 23 (19), 11683. doi: 10.3390/ijms231911683 PubMed DOI PMC

Laux T., Mayer K., Berger J., Jürgens G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis . Development 122 (1), 87–96. doi: 10.1242/dev.122.1.87 PubMed DOI

Lee J., Oh M., Park H., Lee. I. (2008). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant Journal: For Cell Mol. Biol. 55 (5), 832–843. doi: 10.1111/j.1365-313X.2008.03552.x PubMed DOI

Lee H., Suh S.-S., Park E., Cho E., Ahn J. H., Kim S.-G., et al. . (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis . Genes Dev. 14 (18), 2366–2376. doi: 10.1101/gad.813600 PubMed DOI PMC

Liu C., Chen H., Er H. L., Soo H. M., Kumar P., Han J.-H., et al. . (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis . Development 135 (8), 1481–1491. doi: 10.1242/dev.020255 PubMed DOI

Liu X., Kim Y. J., Müller R., Yumul R. E., Liu C., Pan Y., et al. . (2011). AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of polycomb group proteins. Plant Cell 23 (10), 3654–3670. doi: 10.1105/tpc.111.091538 PubMed DOI PMC

Liu C., Zhou J., Bracha-Drori K., Yalovsky S., Ito T., Yu. H. (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134 (10), 1901–1910. doi: 10.1242/dev.003103 PubMed DOI

Lou Y., Xu X.-F., Zhu J., Gu J.-N., Blackmore S., Yang Z.-N. (2014). The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat. Commun. 5 (1), 3855. doi: 10.1038/ncomms4855 PubMed DOI PMC

Lou Y., Zhou H.-S., Han Y., Zeng Q.-Y., Zhu J., Yang Z.-N. (2018). Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana . New Phytol. 217 (1), 378–391. doi: 10.1111/nph.14790 PubMed DOI

Ma H. (2005). Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56, 393–434. doi: 10.1146/annurev.arplant.55.031903.141717 PubMed DOI

Mandaokar A., Browse J. (2009). MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis . Plant Physiol. 149 (2), 851–862. doi: 10.1104/pp.108.132597 PubMed DOI PMC

Mi L., Mo A., Yang J., Liu H., Ren D., Che W., et al. . (2022). Arabidopsis novel microgametophyte defective mutant 1 is required for pollen viability via influencing intine development in Arabidopsis . Front. Plant Sci. 13. doi: 10.3389/fpls.2022.814870 PubMed DOI PMC

Michaels S., Ditta G., Gustafson-Brown C., Pelaz S., Yanofsky M., Amasino R. (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant Journal: For Cell Mol. Biol. 33 (5), 867–874. doi: 10.1046/j.1365-313x.2003.01671.x PubMed DOI

Mitsuda N., Seki M., Shinozaki K., Ohme-Takagi. M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17 (11), 2993–3006. doi: 10.1105/tpc.105.036004 PubMed DOI PMC

Morant M., Jørgensen K., Schaller H., Pinot F., Møller B. L., Werck-Reichhart D., et al. . (2007). CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19 (5), 1473–1487. doi: 10.1105/tpc.106.045948 PubMed DOI PMC

Murmu J., Bush M. J., DeLong C., Li S., Xu M., Khan M., et al. . (2010). Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 154 (3), 1492–1504. doi: 10.1104/pp.110.159111 PubMed DOI PMC

Nagpal P., Christine E., Hans W., Sara P., Lana B., Thomas G., et al. . (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132 (18), 4107–4118. doi: 10.1242/dev.01955 PubMed DOI

Oh S.-A., Hoai T. N. T., Park H.-J., Zhao M., Twell D., Honys D., et al. . (2020). MYB81, a microspore-specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis . Plant J. 101 (3), 590–603. doi: 10.1111/tpj.14564 PubMed DOI

Paxson-Sowders D., Owen H., Makaroff. C. (1997). A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198 (1), 53–65. doi: 10.1007/BF01282131 DOI

Payne T., Johnson S., Koltunow. A. (2004). KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131 (15), 3737–3749. doi: 10.1242/dev.01216 PubMed DOI

Pelaz S., Ditta G., Baumann E., Wisman E., Yanofsky. M. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405 (6783), 200–203. doi: 10.1038/35012103 PubMed DOI

Phan H. A., Iacuone S., Li S., Parish R. (2011). The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana . Plant Cell 23 (6), 2209–2224. doi: 10.1105/tpc.110.082651 PubMed DOI PMC

Putterill J., Robson F., Lee K., Simon R., Coupland. G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80 (6), 847–857. doi: 10.1016/0092-8674(95)90288-0 PubMed DOI

Qi T., Huang H., Song S., Xie D. (2015). Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis . Plant Cell 27 (6), 1620–1633. doi: 10.1105/tpc.15.00116 PubMed DOI PMC

Quilichini T., Samuels L., Douglas C. (2014). ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis . Plant Cell 26 (11), 4483–4498. doi: 10.1105/tpc.114.130484 PubMed DOI PMC

Reddy V., Heisler M., Ehrhardt D., Meyerowitz. E. (2004). Real-Time Lineage Analysis Reveals Oriented Cell Divisions Associated with Morphogenesis at the Shoot Apex of Arabidopsis thaliana . Development 131 (17), 4225–4237. doi: 10.1242/dev.01261 PubMed DOI

Rotman N., Durbarry A., Wardle A., Yang W. C., Chaboud A., Faure J.-E., et al. . (2005). A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15 (3), 244–248. doi: 10.1016/j.cub.2005.01.013 PubMed DOI

Sakai H., Medrano L., Meyerowitz E. (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378 (6553), 199–203. doi: 10.1038/378199a0 PubMed DOI

Sanders P., Bui A., Weterings K., McIntire K. N., Hsu Y.-C., Lee P. Y., et al. . (1999). Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sexual Plant Reprod. 11 (6), 297–322. doi: 10.1007/s004970050158 DOI

Schiefthaler U., Balasubramanian S., Sieber P., Chevalier D., Wisman E., Schneitz. K. (1999). Molecular Analysis of NOZZLE, a Gene Involved in Pattern Formation and Early Sporogenesis during Sex Organ Development in Arabidopsis thaliana . Proc. Natl. Acad. Sci. United States America 96 (20), 11664–11669. doi: 10.1073/pnas.96.20.11664 PubMed DOI PMC

Schultz E., Pickett B., Haughn. G. (1991). The FLO10 gene product regulates the expression domain of homeotic genes AP3 and PI in Arabidopsis flowers. Plant Cell 3 (11), 1221–1237. doi: 10.2307/3869229 PubMed DOI PMC

Shi J., Cui M., Yang L., Kim Y.-J., Zhang D. (2015). Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci. 20 (11), 741–753. doi: 10.1016/j.tplants.2015.07.010 PubMed DOI

Sorensen A.-M., Kröber S., Unte U., Huijser P., Dekker K., Saedler H. (2003). The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J. 33 (2), 413–423. doi: 10.1046/j.1365-313X.2003.01644.x PubMed DOI

Srikanth A., Schmid M. (2011). Regulation of flowering time: all roads lead to Rome. Cell. Mol. Life Sciences: CMLS 68 (12), 2013–2037. doi: 10.1007/s00018-011-0673-y PubMed DOI PMC

Steiner-Lange S., Gremse M., Kuckenberg M., Nissing E., Schächtele D., Spenrath N., et al. . (2001). Efficient identification of Arabidopsis knock-out mutants using DNA-arrays of transposon flanking sequences. Plant Biol. 3 (4), 391–397. doi: 10.1055/s-2001-16468 DOI

Sun B., Xu Y., Ng K.-H., Ito T. (2009). A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 23 (15), 1791–1804. doi: 10.1101/gad.1800409 PubMed DOI PMC

Tabata R., Ikezaki M., Fujibe T., Aida M., Tian C.-e., Ueno Y., et al. . (2010). Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol. 51 (1), 164–175. doi: 10.1093/pcp/pcp176 PubMed DOI

Tang L. K., Chu H., Yip W. K., Yeung E., Lo. C. (2009). An anther-specific dihydroflavonol 4-reductase-like gene (DRL1) is essential for male fertility in Arabidopsis . New Phytol. 181 (3), 576–587. doi: 10.1111/j.1469-8137.2008.02692.x PubMed DOI

Tang X., Hao Y.-J., Lu J.-X., Lu G., Zhang. T. (2019). Transcriptomic Analysis Reveals the Mechanism of Thermosensitive Genic Male Sterility (TGMS) of Brassica napus under the High Temperature Inducement. BMC Genomics 20, 644. doi: 10.1186/s12864-019-6008-3 PubMed DOI PMC

Theißen G., Saedler H. (2001). Floral quartets. Nature 409 (6819), 469–471. doi: 10.1038/35054172 PubMed DOI

Verma N. (2019). Transcriptional regulation of anther development in Arabidopsis . Gene 689, 202–209. doi: 10.1016/j.gene.2018.12.022 PubMed DOI

Wang K., Guo Z.-L., Zhou W.-T., Zhang C., Zhang Z.-Y., Lou Y., et al. . (2018). The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation. Plant Physiol. 178 (1), 283–294. doi: 10.1104/pp.18.00219 PubMed DOI PMC

Wang K.-Q., Yu Y.-H., Jia X.-L., Zhou S.-D., Zhang F., Zhao X., et al. . (2022). Delayed callose degradation restores the fertility of multiple P/TGMS lines in arabidopsis . J. Integr. Plant Biol. 64 (3), 717–730. doi: 10.1111/jipb.13205 PubMed DOI

Wang K., Zhao X., Pang C., Zhou S., Qian X., Tang N., et al. . (2021). IMPERFECTIVE EXINE FORMATION (IEF) is required for exine formation and male fertility in Arabidopsis . Plant Mol. Biol. 105 (6), 625–635. doi: 10.1007/s11103-020-01114-8 PubMed DOI

Weigel D., Alvarez J., Smyth D., Yanofsky M., Meyerowitz. E. (1992). LEAFY controls floral meristem identity in Arabidopsis . Cell 69 (5), 843–859. doi: 10.1016/0092-8674(92)90295-N PubMed DOI

Wilson Z., Morroll S., Dawson J., Swarup R., Tighe P. (2001). The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant Journal: For Cell Mol. Biol. 28 (1), 27–39. doi: 10.1046/j.1365-313x.2001.01125.x PubMed DOI

Wilson Z., Zhang D.-B. (2009). From Arabidopsis to rice: pathways in pollen development. J. Exp. Bot. 60 (5), 1479–1492. doi: 10.1093/jxb/erp095 PubMed DOI

Xiong S.-X., Zeng Q.-Y., Hou J.-Q., Hou L.-L., Zhu J., Yang M., et al. . (2020). The temporal regulation of TEK contributes to pollen wall exine patterning. PloS Genet. 16 (5), e1008807. doi: 10.1371/journal.pgen.1008807 PubMed DOI PMC

Xu Y., Iacuone S., Li S. F., Parish R. W. (2014). MYB80 homologues in Arabidopsis, cotton and brassica: regulation and functional conservation in tapetal and pollen development. BMC Plant Biol. 14, 271. doi: 10.1186/s12870-014-0278-3 PubMed DOI PMC

Xu X.-F., Wang B., Feng Y.-F., Xue J.-S., Qian X.-X., Liu S.-Q., et al. . (2019). AUXIN RESPONSE FACTOR17 directly regulates MYB108 for anther dehiscence. Plant Physiol. 181 (2), 645–655. doi: 10.1104/pp.19.00576 PubMed DOI PMC

Xu J., Yang C., Yuan Z., Zhang D., Gondwe M., Ding Z., et al. . (2010). The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana . Plant Cell 22 (1), 91–107. doi: 10.1105/tpc.109.071803 PubMed DOI PMC

Xu J., Zhiwen D., Gema V.-B., Jianxin S., Wanqi L., Zheng Y., et al. . (2014). ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis . . Plant Cell 26 (4), 1544–1556. doi: 10.1105/tpc.114.122986 PubMed DOI PMC

Xue J.-S., Qiu S., Jia X.-L., Shen S.-Y., Shen C.-W., Wang S., et al. . (2023). Stepwise changes in flavonoids in spores/pollen contributed to terrestrial adaptation of plants. Plant Physiol. 193 (1), 627–642. doi: 10.1093/plphys/kiad313 PubMed DOI

Xue J.-S., Yao C., Xu Q.-L., Sui C.-X., Jia X.-L., Hu W.-J., et al. . (2021). Development of the middle layer in the anther of Arabidopsis . Front. Plant Sci. 12. doi: 10.3389/fpls.2021.634114 PubMed DOI PMC

Yamaoka S., Nishihama R., Yoshitake Y., Ishida S., Inoue K., Saito M., et al. . (2018). Generative cell specification requires transcription factors evolutionarily conserved in land plants. Curr. Biol. 28 (3), 479–486.e5. doi: 10.1016/j.cub.2017.12.053 PubMed DOI

Yang L., Jing Z., Junna H., Yingying Q., Deping H., Ying D., et al. . (2014). ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis . PloS Genet. 10 (12), e1004791. doi: 10.1371/journal.pgen.1004791 PubMed DOI PMC

Yang X., Makaroff C., Ma. H. (2003). The arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell 15 (6), 1281–1295. doi: 10.1105/tpc.010447 PubMed DOI PMC

Yang C., Vizcay-Barrena G., Conner K., Wilson. Z. A. (2007. a). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19 (11), 3530–3548. doi: 10.1105/tpc.107.054981 PubMed DOI PMC

Yang S.-L., Xie L.-F., Mao H.-Z., Puah C. S., Yang W.-C., Jiang L., et al. . (2003). TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15 (12), 2792–2804. doi: 10.1105/tpc.016618 PubMed DOI PMC

Yang C., Xu Z., Song J., Conner K., Barrena G. V., Wilson Z. (2007. b). Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19 (2), 534–548. doi: 10.1105/tpc.106.046391 PubMed DOI PMC

Yang W.-C., Ye D., Xu J., Sundaresan. V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 13 (16), 2108–2117. doi: 10.1101/gad.13.16.2108 PubMed DOI PMC

Yanofsky M., Ma H., Bowman J., Drews G., Feldmann K., Meyerowitz E. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346 (6279), 35–39. doi: 10.1038/346035a0 PubMed DOI

Ye Q., Wenjiao Z., Lei L., Shanshan Z., Yanhai Y., Hong M., et al. . (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc. Natl. Acad. Sci. United States America 107 (13), 6100–6105. doi: 10.1073/pnas.0912333107 PubMed DOI PMC

Yin Y., Zhi-Yong W., Santiago M.-G., Jianming L., Shigeo Y., Tadao A., et al. . (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109 (2), 181–191. doi: 10.1016/S0092-8674(02)00721-3 PubMed DOI

Yoo S. K., Chung K. S., Kim J., Lee J. H., Hong S. M., Yoo S. J., et al. . (2005). CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis . Plant Physiol. 139 (2), 770–778. doi: 10.1104/pp.105.066928 PubMed DOI PMC

Yu H., Ito T., Wellmer F., Meyerowitz E. M. (2004). Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat. Genet. 36 (2), 157–161. doi: 10.1038/ng1286 PubMed DOI

Zhang X., He Y., Li L., Liu H., Hong G. (2021). Involvement of the R2R3-MYB transcription factor MYB21 and its homologs in regulating flavonol accumulation in Arabidopsis stamen. J. Exp. Bot. 72 (12), 4319–4332. doi: 10.1093/jxb/erab156 PubMed DOI PMC

Zhang J., Huang Q., Zhong S., Bleckmann A., Huang J., Guo X., et al. . (2017). Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat. Plants 3 (6), 17079. doi: 10.1038/nplants.2017.79 PubMed DOI PMC

Zhang D., Liu D., Lv X., Wang Y., Xun Z., Liu Z., et al. . (2014). The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis . Plant Cell 26 (7), 2939–2961. doi: 10.1105/tpc.114.127282 PubMed DOI PMC

Zhang W., Yujin S., Ljudmilla T., Changbin C., Ueli G., Hong M. (2006). Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133 (16), 3085–3095. doi: 10.1242/dev.02463 PubMed DOI

Zhang Z.-B., Zhu J., Gao J.-F., Wang C., Li H., Li H., et al. . (2007). Transcription factor atMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis: molecular cloning and functional analysis of atMYB103. Plant J. 52 (3), 528–538. doi: 10.1111/j.1365-313X.2007.03254.x PubMed DOI

Zhao D.-Z., Wang G.-F., Speal B., Ma. H. (2002). The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 16 (15), 2021–2031. doi: 10.1101/gad.997902 PubMed DOI PMC

Zheng L., Nagpal P., Villarino G., Trinidad B., Bird L., Huang Y., et al. . (2019). miR167 limits anther growth to potentiate anther dehiscence. Development 146 (14), dev174375. doi: 10.1242/dev.174375 PubMed DOI

Zhu J., Chen H., Li H., Gao J.-F., Jiang H., Wang C., et al. . (2008). Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis . Plant J. 55 (2), 266–277. doi: 10.1111/j.1365-313X.2008.03500.x PubMed DOI

Zhu L., He S., Liu Y., Shi J., Xu J. (2020). Arabidopsis FAX1 mediated fatty acid export is required for the transcriptional regulation of anther development and pollen wall formation. Plant Mol. Biol. 104 (1–2), 187–201. doi: 10.1007/s11103-020-01036-5 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...