Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent. Recently, whole-genome analysis identified alterations involving genes of MAPK-RAS pathway in a subset, but no major pathogenic alterations have been discovered in prior whole transcriptome analyses. Considering the limited understanding of the molecular features of JxGCTs, we sought to assess a collaborative series with a multiomic approach to further define the molecular characteristics of this entity. Fifteen tumors morphologically compatible with JxGCTs were evaluated using immunohistochemistry for renin, single-nucleotide polymorphism array (SNP), low-pass whole-genome sequencing, and RNA sequencing (fusion assay). In addition, methylation analysis comparing JxGCT, GT, and SFT was performed. All cases tested with renin (n=11) showed positive staining. Multiple chromosomal abnormalities were identified in all cases analyzed (n=8), with gains of chromosomes 1p, 10, 17, and 19 and losses of chromosomes 9, 11, and 21 being recurrent. A pathogenic HRAS mutation was identified in one case as part of the SNP array analysis. Thirteen tumors were analyzed by RNA sequencing, with 2 revealing in-frame gene fusions: TFG::GPR128 (interpreted as stochastic) and NAB2::STAT6 . The latter, originally diagnosed as JxGCT, was reclassified as SFT and excluded from the series. No fusions were detected in the remaining 11 cases; of note, no case harbored NOTCH fusions previously described in GT. Genomic methylation analysis showed that JxGCT, GT, and SFT form separate clusters, confirming that JxGCT represents a distinct entity (ie, different from GT). The results of our study show that JxGCTs are a distinct tumor type with a recurrent pattern of chromosomal imbalances that may play a role in oncogenesis, with MAPK-RAS pathway activation being likely a driver in a relatively small subset.
- MeSH
- Adult MeSH
- Epigenesis, Genetic MeSH
- Epigenomics MeSH
- Gene Fusion * MeSH
- Genetic Predisposition to Disease MeSH
- Genomics MeSH
- Immunohistochemistry MeSH
- Polymorphism, Single Nucleotide MeSH
- Juxtaglomerular Apparatus pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation MeSH
- Biomarkers, Tumor * genetics MeSH
- Kidney Neoplasms * genetics pathology chemistry MeSH
- Whole Genome Sequencing MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
- MeSH
- Diet, High-Fat * MeSH
- Insulin Resistance MeSH
- Liver drug effects metabolism pathology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Obesity * chemically induced MeSH
- Pregnane X Receptor * metabolism genetics MeSH
- Fungicides, Industrial * toxicity MeSH
- Triazoles * toxicity MeSH
- Triglycerides blood metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Fatty Liver * chemically induced MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Penile squamous cell carcinoma (pSCC) represents an uncommon malignancy characterized by stagnant mortality, psychosexual distress, and a highly variable prognosis. Currently, the World Health Organization distinguishes between human papillomavirus (HPV)-related and HPV-independent pSCC. Recently, there has been an evolving line of research documenting the enrichment of HPV-independent pSCC with a high tumor mutational burden (TMB) and programmed death ligand-1 expression, as well as clusters of genes associated with HPV status. In this study, we conducted comprehensive next-generation sequencing DNA profiling of 146 pSCC samples using a panel consisting of 355 genes associated with tumors. This profiling was correlated with immunohistochemical markers and prognostic clinical data. A survival analysis of recurrent genomic events (found in ≥10 cases) was performed. TP53, CDKN2A, ATM, EPHA7, POT1, CHEK1, GRIN2A, and EGFR alterations were associated with significantly shortened overall survival in univariate and multivariate analysis. HPV positivity, diagnosed through both p16 immunohistochemistry and HPV DNA analysis, displayed no impact on survival but was associated with high-grade, lymphatic invasion, programmed death ligand-1 negativity/weak expression, and low TMB. FAT1, TP53, CDKN2A, CASP8, and HRAS were more often mutated in HPV-independent pSCC. In contrast, HPV-associated pSCCs were enriched by EPHA7, ATM, GRIN2A, and CHEK1 mutations. PIK3CA, FAT1, FBXW7, and KMT2D mutations were associated with high TMB. NOTCH1, TP53, CDKN2A, POT1, KMT2D, ATM, CHEK1, EPHA3, and EGFR alterations were related to adverse clinicopathologic signs, such as advanced stage, high tumor budding, and lymphovascular invasion. We detected 160 alterations with potential treatment implications, with 21.2% of samples showing alterations in the homologous recombination repair pathway. To the best of our knowledge, this study describes the largest cohort of pSCC with complex molecular pathologic, clinical, and prognostic analysis correlating with prognosis.
- MeSH
- Ataxia Telangiectasia Mutated Proteins genetics MeSH
- Adult MeSH
- ErbB Receptors genetics MeSH
- Papillomavirus Infections MeSH
- Cyclin-Dependent Kinase Inhibitor p16 genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation MeSH
- Biomarkers, Tumor * genetics analysis MeSH
- Tumor Suppressor Protein p53 genetics MeSH
- Penile Neoplasms * genetics mortality pathology virology MeSH
- Prognosis MeSH
- Telomere-Binding Proteins MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Shelterin Complex MeSH
- Carcinoma, Squamous Cell * genetics mortality pathology virology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
Global obesity rates have risen dramatically, now exceeding deaths from starvation. Metabolic and bariatric surgery (MBS), initially for severe obesity (BMI ≥35 kg/m2), is performed globally over 500 000 times annually, offering significant metabolic benefits beyond weight loss. However, varying eligibility criteria globally impact patient care and healthcare resources. Updated in 2022, ASMBS and IFSO guidelines aim to standardise MBS indications, reflecting current understanding and emphasising comprehensive preoperative assessments. Yet, clinical variability persists, necessitating consensus-based recommendations. This modified Delphi study engaged 45 global experts to establish consensus on perioperative management in MBS. Experts selected from bariatric societies possessed expertise in MBS and participated in a two-round Delphi protocol. Consensus was achieved on 90 of 169 statements (53.3%), encompassing multidisciplinary team composition, patient selection criteria, preoperative testing, and referral pathways. The agreement highlighted the critical role of comprehensive preoperative assessments and the integration of healthcare professionals in MBS. These findings offer essential insights to standardise perioperative practices and advocate for evidence-based guidelines in MBS globally. The study underscores the need for unified protocols to optimise outcomes and guide future research in MBS.
- MeSH
- Bariatric Surgery * standards methods MeSH
- Delphi Technique * MeSH
- Consensus * MeSH
- Humans MeSH
- Obesity, Morbid surgery MeSH
- Preoperative Care * standards methods MeSH
- Patient Selection MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
- MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Genital Neoplasms, Female * genetics therapy MeSH
- Prognosis MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis. A total of 150 missense, 19 stop-gain, 22 frameshift and 13 canonical splice site variants fulfilled our filtering criteria. The STRING analysis identified 20 DNA repair/cell cycle proteins as the main cluster, related to genes CHEK2, EXO1, FAAP24, FANCI, MCPH1, POLL, PRC1, RECQL, RECQL5, RRM2, SHCBP1, SMC2, XRCC1, in addition to CDK18, ENDOV, ZW10 and the known mismatch repair genes. Another STRING network included extracellular matrix genes and TGFβ signaling genes. In the nine whole-exome sequenced patients, eight harbored at least two candidate DNA repair/cell cycle/TGFβ signaling gene variants. The number of families is too small to provide evidence for individual variants but, considering the known role of DNA repair/cell cycle genes in CRC, the clustering of multiple deleterious variants in the present families suggests that these, perhaps jointly, contributed to CRC development in these families.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease * MeSH
- Colorectal Neoplasms * genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Repair genetics MeSH
- Pedigree MeSH
- Exome Sequencing * methods MeSH
- Aged MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.
BACKGROUND: Spasticity is a common feature in patients with disruptions in corticospinal pathways. However, the term is used ambiguously. Here, spasticity is defined as enhanced velocity-dependent stretch reflexes and placed within the context of deforming spastic paresis encompassing other forms of muscle overactivity. OBJECTIVE: This scoping review aims at evaluating the clinimetric quality of clinical outcome assessments (COAs) for spasticity across different pathologies and to make recommendations for their use. METHODS: A literature search was conducted to identify COAs used to assess spasticity. An international expert panel evaluated the measurement properties in the included COAs. Recommendations were based on the MDS-COA program methodology based on three criteria: if the COA was (1) applied to patients with spastic paresis, (2) used by others beyond the developers, and (3) determined to be reliable, valid, and sensitive to change in patients with spasticity. RESULTS: We identified 72 COAs of which 17 clinician-reported outcomes (ClinROs) and 6 patient-reported outcomes (PROs) were reviewed. The Tardieu Scale was the only ClinRO recommended for assessing spasticity. One ClinRO-Composite Spasticity Index-and two PROs-Spasticity 0-10 Numeric Rating Scale and 88-Item Multiple Sclerosis Spasticity Scale-were recommended with caveats. The Ashworth-derived COAs were excluded after evaluation due to their focus on muscle tone rather than spasticity, as defined in this review. CONCLUSIONS: The Tardieu Scale is recommended for assessing spasticity, and two PROs are recommended with caveats. Consistent terminology about the various types of muscle overactivity is necessary to facilitate their assessment and treatment. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
- MeSH
- Outcome Assessment, Health Care * standards MeSH
- Humans MeSH
- Muscle Spasticity * physiopathology diagnosis etiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Adult granulosa cell tumors (AGCTs) of the ovary are characterized by their propensity for late recurrences and are primarily managed surgically due to the limited efficacy of systemic treatment. The FOXL2 p.C134W somatic mutation has been identified in ∼95% of AGCT cases, and TERT promoter alterations have been linked to worse overall survival. This study highlights the potential prognostic significance of FOXO1 mutations, suggesting that they may be associated with poorer overall survival and shorter time to recurrence. A total of 183 primary AGCTs and 44 recurrences without corresponding primary tumors were analyzed. The primary AGCTs were categorized into 3 groups: 77 nonrecurrent tumors, 18 tumors that later recurred (including 9 cases with matched primary-recurrence pairs), and 88 tumors with unknown recurrence status. Targeted next-generation sequencing was conducted on 786 cancer-related genes to investigate their genetic profile. The study aimed to identify the molecular alterations associated with AGCT pathogenesis and recurrence rate, comparing primary versus recurrent tumors, and primary recurrent versus primary nonrecurrent cases. Our findings confirmed the high prevalence (99%) of the FOXL2 p.C134W mutation in AGCTs. Secondary truncating FOXL2 mutations were observed in 5% of cases. Two cases with typical AGCT morphology were FOXL2 wild-type, harboring mutations in KRAS or KMT2D instead, suggesting alternative genetic pathways. TERT promoter mutations were found in 43% of cases, more frequently in recurrences. Other recurrent mutations detected in the cohort included KMT2D (10%), FOXO1 (7%), CHEK2 (5%), TP53 (3.5%), PIK3CA (3.5%), and AKT1 (3%). Two recurrent, FOXL2-mutated cases also carried DICER1 mutations. One tumor exhibited MSI-high status and a tumor mutation burden of 19 mut/Mb.Our results indicate the need for further investigation into the role of FOXO1 as a potential prognostic marker in AGCTs.
- MeSH
- Adult MeSH
- Forkhead Box Protein O1 * genetics metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Neoplasm Recurrence, Local * genetics MeSH
- Mutation * MeSH
- Granulosa Cell Tumor * genetics pathology MeSH
- Ovarian Neoplasms * genetics pathology MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Forkhead Box Protein L2 genetics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Telomerase genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Modafinil is primarily used to treat narcolepsy but is also used as an off-label cognitive enhancer. Functional magnetic resonance imaging studies indicate that modafinil modulates the connectivity of neocortical networks primarily involved in attention and executive functions. However, much less is known about the drug's effects on subcortical structures. Following preliminary findings, we evaluated modafinil's activity on the connectivity of distinct cerebellar regions with the neocortex. We assessed the spatial relationship of these effects with the expression of neurotransmitter receptors/transporters. METHODS: Patterns of resting-state functional magnetic resonance imaging connectivity were estimated in 50 participants from scans acquired pre- and postadministration of a single (100 mg) dose of modafinil (n = 25) or placebo (n = 25). Using specific cerebellar regions as seeds for voxelwise analyses, we examined modafinil's modulation of cerebellar-neocortical connectivity. Next, we conducted a quantitative evaluation of the spatial overlap between the modulation of cerebellar-neocortical connectivity and the expression of neurotransmitter receptors/transporters obtained by publicly available databases. RESULTS: Modafinil increased the connectivity of crus I and vermis IX with prefrontal regions. Crus I connectivity changes were associated with the expression of dopaminergic D2 receptors. The vermis I-II showed enhanced coupling with the dorsal anterior cingulate cortex and matched the expression of histaminergic H3 receptors. The vermis VII-VIII displayed increased connectivity with the visual cortex, an activity associated with dopaminergic and histaminergic neurotransmission. CONCLUSIONS: Our study reveals modafinil's modulatory effects on cerebellar-neocortical connectivity. The modulation mainly involves crus I and the vermis and spatially overlaps the distribution of dopaminergic and histaminergic receptors.
- MeSH
- Adult MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Young Adult MeSH
- Modafinil * pharmacology administration & dosage MeSH
- Cerebellum * drug effects diagnostic imaging metabolism MeSH
- Neocortex drug effects metabolism diagnostic imaging MeSH
- Neural Pathways drug effects metabolism MeSH
- Wakefulness-Promoting Agents pharmacology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH