• Je něco špatně v tomto záznamu ?

Molecular basis for the diversification of lincosamide biosynthesis by pyridoxal phosphate-dependent enzymes

T. Mori, Y. Moriwaki, K. Sakurada, S. Lyu, S. Kadlcik, J. Janata, A. Mazumdar, M. Koberska, T. Terada, Z. Kamenik, I. Abe

. 2025 ; 17 (2) : 256-264. [pub] 20241206

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010079

Grantová podpora
JSPS KAKENHI Grant Number JP20H00490, JP22H05126, JP23H00393, and JP23H02641 Japan Society for the Promotion of Science London (JSPS London)

The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010079
003      
CZ-PrNML
005      
20250429135300.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41557-024-01687-7 $2 doi
035    __
$a (PubMed)39643667
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Mori, Takahiro $u Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. tmori@mol.f.u-tokyo.ac.jp $u Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan. tmori@mol.f.u-tokyo.ac.jp $u PRESTO, Japan Science and Technology Agency, Saitama, Japan. tmori@mol.f.u-tokyo.ac.jp $u FOREST, Japan Science and Technology Agency, Saitama, Japan. tmori@mol.f.u-tokyo.ac.jp $1 https://orcid.org/0000000227545858
245    10
$a Molecular basis for the diversification of lincosamide biosynthesis by pyridoxal phosphate-dependent enzymes / $c T. Mori, Y. Moriwaki, K. Sakurada, S. Lyu, S. Kadlcik, J. Janata, A. Mazumdar, M. Koberska, T. Terada, Z. Kamenik, I. Abe
520    9_
$a The biosynthesis of the lincosamide antibiotics lincomycin A and celesticetin involves the pyridoxal-5'-phosphate (PLP)-dependent enzymes LmbF and CcbF, which are responsible for bifurcation of the biosynthetic pathways. Despite recognizing the same S-glycosyl-L-cysteine structure of the substrates, LmbF catalyses thiol formation through β-elimination, whereas CcbF produces S-acetaldehyde through decarboxylation-coupled oxidative deamination. The structural basis for the diversification mechanism remains largely unexplored. Here we conduct structure-function analyses of LmbF and CcbF. X-ray crystal structures, docking and molecular dynamics simulations reveal that active-site aromatic residues play important roles in controlling the substrate binding mode and the reaction outcome. Furthermore, the reaction selectivity and oxygen-utilization of LmbF and CcbF were rationally engineered through structure- and calculation-based mutagenesis. Thus, the catalytic function of CcbF was switched to that of LmbF, and, remarkably, both LmbF and CcbF variants gained the oxidative-amidation activity to produce an unnatural S-acetamide derivative of lincosamide.
650    12
$a pyridoxalfosfát $x metabolismus $x chemie $7 D011732
650    12
$a linkosamidy $x chemie $x biosyntéza $x metabolismus $7 D055231
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a katalytická doména $7 D020134
650    _2
$a simulace molekulového dockingu $7 D062105
655    _2
$a časopisecké články $7 D016428
700    1_
$a Moriwaki, Yoshitaka $u Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan. moriwaki.yoshitaka@tmd.ac.jp $u Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. moriwaki.yoshitaka@tmd.ac.jp $u Medical Research Laboratory, Institute of Science Tokyo, Tokyo, Japan. moriwaki.yoshitaka@tmd.ac.jp $1 https://orcid.org/0000000304489790
700    1_
$a Sakurada, Kosuke $u Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan $1 https://orcid.org/0009000467358469
700    1_
$a Lyu, Shuang $u Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan $1 https://orcid.org/0009000180823458
700    1_
$a Kadlcik, Stanislav $u Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Janata, Jiri $u Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Mazumdar, Aninda $u Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000249857115
700    1_
$a Koberska, Marketa $u Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000297874227
700    1_
$a Terada, Tohru $u Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan. tterada@bi.a.u-tokyo.ac.jp $u Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. tterada@bi.a.u-tokyo.ac.jp $1 https://orcid.org/0000000270910646
700    1_
$a Kamenik, Zdenek $u Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic. kamenik@biomed.cas.cz $1 https://orcid.org/0000000253630597
700    1_
$a Abe, Ikuro $u Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. abei@mol.f.u-tokyo.ac.jp $u Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan. abei@mol.f.u-tokyo.ac.jp $1 https://orcid.org/000000023640888X
773    0_
$w MED00182190 $t Nature chemistry $x 1755-4349 $g Roč. 17, č. 2 (2025), s. 256-264
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39643667 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135256 $b ABA008
999    __
$a ok $b bmc $g 2311442 $s 1247160
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 17 $c 2 $d 256-264 $e 20241206 $i 1755-4349 $m Nature chemistry $n Nat Chem $x MED00182190
GRA    __
$a JSPS KAKENHI Grant Number JP20H00490, JP22H05126, JP23H00393, and JP23H02641 $p Japan Society for the Promotion of Science London (JSPS London)
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...