Application Potential of Trichoderma in the Degradation of Phenolic Acid-Modified Chitosan
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BIOdegradable PACKaging materials research group
Nicolaus Copernicus University in Torun
PubMed
37835322
PubMed Central
PMC10572696
DOI
10.3390/foods12193669
PII: foods12193669
Knihovny.cz E-zdroje
- Klíčová slova
- Trichoderma, biodegradation, chitosan,
- Publikační typ
- časopisecké články MeSH
The aim of the study was to determine the potential use of fungi of the genus Trichoderma for the degradation of phenolic acid-modified chitosan in compost. At the same time, the enzymatic activity in the compost was checked after the application of a preparation containing a suspension of the fungi Trichoderma (spores concentration 105/mL). The Trichoderma strains were characterized by high lipase and aminopeptidase activity, chitinase, and β-1,3-glucanases. T. atroviride TN1 and T. citrinoviride TN3 metabolized the modified chitosan films best. Biodegradation of modified chitosan films by native microorganisms in the compost was significantly less effective than after the application of a formulation composed of Trichoderma TN1 and TN3. Bioaugmentation with a Trichoderma preparation had a significant effect on the activity of all enzymes in the compost. The highest oxygen consumption in the presence of chitosan with tannic acid film was found after the application of the consortium of these strains (861 mg O2/kg after 21 days of incubation). Similarly, chitosan with gallic acid and chitosan with ferulic acid were found after the application of the consortium of these strains (849 mgO2/kg and 725 mg O2/kg after 21 days of incubation). The use of the Trichoderma consortium significantly increased the chitinase activity. The application of Trichoderma also offers many possibilities in sustainable agriculture. Trichoderma can not only degrade chitosan films, but also protect plants against fungal pathogens by synthesizing chitinases and β-1,3 glucanases with antifungal properties.
Zobrazit více v PubMed
Vroman I., Tighzert L. Biodegradable Polymers. Materials. 2009;2:307–344. doi: 10.3390/ma2020307. DOI
Priyadarshi R., Rhim J.W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020;62:102346. doi: 10.1016/j.ifset.2020.102346. DOI
Wang W., Xue C., Mao X. Chitosan: Structural modification, biological activity and application. Int. J. Biol. Macromol. 2020;164:4532–4546. doi: 10.1016/j.ijbiomac.2020.09.042. PubMed DOI
Kaczmarek-Szczepańska B., Michalska-Sionkowska M., Mazur O., Świątczak J., Swiontek Brzezinska M. The role of microorganisms in biodegradation of chitosan/tannic acid materials. Int. J. Biol. Macromol. 2021;184:584–592. doi: 10.1016/j.ijbiomac.2021.06.133. PubMed DOI
Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244. PubMed DOI
Kaczmarek-Szczepańska B., Wekwejt M., Mazur O., Zasada L., Pałubicka A., Olewnik-Kruszkowska E. The physicochemical and antibacterial properties of chitosan-based materials modified with phenolic acids irradiated by UVC light. Int. J. Mol. Sci. 2021;22:6472. doi: 10.3390/ijms22126472. PubMed DOI PMC
Richert A., Olewnik-Kruszkowska E., Dąbrowska G.B., Dąbrowski H.P. The Role of Birch Tar in Changing the Physicochemical and Biocidal Properties of Polylactide-Based Films. Int. J. Mol. Sci. 2022;23:268. doi: 10.3390/ijms23010268. PubMed DOI PMC
Richert A., Kalwasińska A., Jankiewicz U., Swiontek Brzezinska M. Effect of birch tar embedded in polylactide on its biodegradation. Int. J. Biol. Macromol. 2023;239:124226. doi: 10.1016/j.ijbiomac.2023.124226. PubMed DOI
Janczak K., Dąbrowska G.B., Raszkowska-Kaczor A., Kaczor D., Hrynkiewicz K., Richert A. Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. Int. Biodeterior. Biodegrad. 2020;155:1050. doi: 10.1016/j.ibiod.2020.105087. DOI
Richert A., Dąbrowska G.B. Bacterial biofilm on PLA films and methods of its identification. Ecol. Quest. 2020;31:31–38. doi: 10.12775/EQ.2020.020. DOI
Dąbrowska G.B., Garstecka Z., Olewnik-Kruszkowska E., Szczepańska G., Ostrowski M., Mierek-Adamska A. Comparative study of structural changes of polylactide and poly(ethylene terephthalate) in the presence of Trichoderma viride. Int. J. Mol. Sci. 2021;22:3491. doi: 10.3390/ijms22073491. PubMed DOI PMC
Richert A., Dąbrowska G.B. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. Int. J. Biol. Macromol. 2021;176:226–232. doi: 10.1016/j.ijbiomac.2021.01.202. PubMed DOI
Abdel-Motaal F.F., El-Sayed M.A., El-Zayat S.A., Ito S.I. Biodegradation of poly (-caprolactone) (PCL) film and foam plastic by Pseudozyma japonica sp. nov., a novel cutinolytic ustilaginomycetous yeast species. 3 Biotech. 2014;4:507–512. doi: 10.1007/s13205-013-0182-9. PubMed DOI PMC
Znajewska Z., Dąbrowska G.B., Hrynkiewicz K., Janczak K. Biodegradation of polycaprolactone by Trichoderma viride fungi. Chem. Ind. 2018;97:1676–1679. doi: 10.15199/62.2018.10.8. DOI
Kannahi M., Thamizhmarai T. Biodegradation of plastic by Aspergillus sp. Int. J. Trend Sci. Res. Dev. 2018;2:683–690. doi: 10.31142/ijtsrd7026. DOI
Vivi V.K., Martins-Franchetti S.M., Attili-Angelis D. Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol. 2019;64:1–7. doi: 10.1007/s12223-018-0621-4. PubMed DOI
Ohkawa K., Yamada M., Nishida A., Nishi N., Yamamoto H. Biodegradation of chitosan-gellan and poly (L-lysine)-gellan polyion complex fibers by pure cultures of soil filamentous fungi. J. Polym. Environ. 2000;8:59–66. doi: 10.1023/A:1011517903510. DOI
Znajewska Z., Dąbrowska G.B., Narbutt O. Trichoderma viride stains stimulating the growth and development of winter rapeseed (Brassica napus L.) Prog. Plant Prot. 2018;58:264–269. doi: 10.14199/ppp-2018-036. DOI
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004;2:43–56. doi: 10.1038/nrmicro797. PubMed DOI
Janczak K., Dąbrowska G., Znajewska Z., Hrynkiewicz K. Searching for the fungi capable to grow on polymeric materials. Przemysł Chem. 2014;93:1206–1209. doi: 10.12916/przemchem.2014.1206. DOI
Kaczmarek-Szczepańska B., Polkowska I., Paździor-Czapula K., Nowicka B., Gierszewska M., Michalska-Sionkowska M., Otrocka-Domagała I. Chitosan/Phenolic Compounds Scaffolds for Connective Tissue Regeneration. J. Funct. Biomater. 2023;14:69. doi: 10.3390/jfb14020069. PubMed DOI PMC
Vancov T., Keen B. Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiol. Lett. 2009;296:91–96. doi: 10.1111/j.1574-6968.2009.01621.x. PubMed DOI
Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. Fungal identification using molecular tools: A primer from the natural products research community. J. Nat. Prod. 2017;80:756–770. doi: 10.1021/acs.jnatprod.6b01085. PubMed DOI PMC
Hoppe H.G. Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 1983;11:299–308. doi: 10.3354/meps011299. DOI
Freeman C., Liska G., Ostle N.J., Jones S.E., Lock M.A. The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant Soil. 1995;175:147–152. doi: 10.1007/BF02413020. DOI
Niemi R.M., Vepsäläinen M. Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils. J. Microbiol. Methods. 2005;60:195–205. doi: 10.1016/j.mimet.2004.09.010. PubMed DOI
Wu Q., Dou X., Wang Q., Guan Z., Cai Y., Liao X. Isolation of β-1,3-Glucanase-Producing Microorganisms from Poria cocos Cultivation Soil via Molecular Biology. Molecules. 2018;23:1555. doi: 10.3390/molecules23071555. PubMed DOI PMC
Swiontek Brzezinska M., Jankiewicz U., Walczak M. Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int. Biodeterior. Biodegrad. 2013;84:104–110. doi: 10.1016/j.ibiod.2012.05.038. DOI
Swiontek Brzezinska M., Richert A., Kalwasińska A., Świątczak J., Deja-Sikora E., Walczak M., Michalska-Sionkowska M., Piekarska K., Kaczmarek-Szczepańska B. Microbial degradation of polyhydroxybutarate with embedded polyhexamethylene guanidine derivatives. Int. J. Biol. Macromol. 2021;187:309–318. doi: 10.1016/j.ijbiomac.2021.07.135. PubMed DOI
Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. Badania Ekologiczno-Gleboznawcze. Wydawnictwo Naukowe PWN; Warszawa, Poland: 2004.
Determination of Organic Carbon Content by Oxidation With Dichromate (VI) in Sulphuric Acid Medium. Polish Committee for Standardisation; Warsaw, Poland: 2003. (In Polish)
Chemical and Agricultural Analysis of Soil—Determination of Available Potassium in Mineral Soils. Polish Committee for Standardisation; Warsaw, Poland: 1996. (In Polish)
Soil Chemical and Agricultural Analysis, Sampling and Determination of Nitrogen and Ammonium Ions in Mineral Soils. Polish Committee for Standardisation; Warsaw, Poland: 1997. (In Polish)
Soil Chemical and Agricultural Analysis -Determination of Available Potassium in Mineral Soils. Polish Committee for Standardisation; Warsaw, Poland: 2002. (In Polish)
Chemical and Agricultural Analysis of Soil—Determination of Available Magnesium Content. Polish Committee for Standardisation; Warsaw, Poland: 2004. (In Polish)
Platen H., Wirtz A. WTW/OxiTopR/Appliance. Fachbereich KMUB, Umwelt-und Hygienetechnik und Zentrum f¸r Umwelttechnologie; Giessen, Germany: 1999. The measurement of respiration activity soil with a respirometric method (measuring system Oxi Top Control)
Adam G., Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001;33:943–951. doi: 10.1016/S0038-0717(00)00244-3. DOI
Hammer Ř., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001;4:9.
Savitha M.J., Sriram S. Morphological and molecular identification of Trichoderma isolates with biocontrol potential against Phytophthora blight in red pepper. Pest Manag. Hortic. Ecosyst. 2015;21:194–202.
Soesanto L., Sri-Utami D., Rahayuniati R.F. Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Can. J. Sci. Ind. Res. 2011;2:294–306.
Choi I.-Y., Hong S.-B., Yadav M.C. Molecular and morphological characterization of green mold, Trichoderma spp. isolated from oyster mushrooms. Mycobiology. 2003;31:74–80. doi: 10.4489/MYCO.2003.31.2.074. DOI
Narayan K., Kotasthane A. Genetic relatedness among Trichoderma isolates inhibiting a pathogenic fungi Rhizoctonia solani. J. Biotechnol. 2006;5:580–584.
Lücking R., Aime M.C., Robbertse B., Miller A.N., Ariyawansa H.A., Aoki T., Cardinali G., Crous P.W., Druzhinina I.S., Geiser D.M., et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus. 2020;11:14. doi: 10.1186/s43008-020-00033-z. PubMed DOI PMC
Contreras-Cornejo H.A., López-Bucio J.S., Méndez-Bravo A., Macías-Rodríguez L., Ramos-Vega M., Guevara-García A.A., López-Bucio J. Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride. Mol. Plant Microbe Interact. 2015;28:701–710. doi: 10.1094/MPMI-01-15-0005-R. PubMed DOI
Cherkupally R., Amballa H., Bhoomi N.R. In vitro screening for enzymatic activity of Trichoderma species for biocontrol potential. Ann. Plant Sci. 2017;6:1784–1789. doi: 10.21746/aps.2017.6.11.11. DOI
Xia W., Liu P., Liu J. Advance in chitosan hydrolysis by non-specific cellulases. Bioresour. Technol. 2008;99:6751–6762. doi: 10.1016/j.biortech.2008.01.011. PubMed DOI
Win T.T., Bo B., Malec P., Khan S., Fu P. Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential bio-control agent to suppress Fusarium soil borne fungal phytopathogens. J. Plant Pathol. 2021;103:549–561. doi: 10.1007/s42161-021-00780-x. DOI
Gruber S., Seidl-Seiboth V. Self versus non-self: Fungal cell wall degradation in Trichoderma. Microbiology. 2021;158:26–34. doi: 10.1099/mic.0.052613-0. PubMed DOI
Vázquez M.B., Barrera V., Bianchinotti V. Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils in Argentina, and their abilities to detoxify in vitro metsulfuron methyl. Botany. 2015;93:793–800. doi: 10.1139/cjb-2015-0085. DOI
Abdenaceur R., Farida B.T., Mourad D., Rima H., Zahia O., Fatma S.H. Effective biofertilizer Trichoderma spp. isolates with enzymatic activity and metabolites enhancing plant growth. Int. Microbiol. 2022;25:817–829. doi: 10.1007/s10123-022-00263-8. PubMed DOI
Wang Y., Ma R., Li S., Gong M., Yao B., Bai Y., Gu J. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry. AMB Expres. 2018;8:95. doi: 10.1186/s13568-018-0618-z. PubMed DOI PMC
Qian Y., Zhong L., Sun Y., Sun N., Zhang L., Liu W., Zhong Y. Enhancement of cellulase production in Trichoderma reesei via disruption of multiple protease genes identified by comparative secretomics. Front. Microbiol. 2019;10:2784. doi: 10.3389/fmicb.2019.02784. PubMed DOI PMC
Deng J.J., Huang W.Q., Li Z.W., Lu D.L., Zhang Y., Luo X.C. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzym. Microb. Technol. 2018;112:35–42. doi: 10.1016/j.enzmictec.2018.02.002. PubMed DOI
Aranaz I., Mengibar M., Harris R., Panos I., Miralles B., Acosta N., Gemma G., Heras A. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009;3:203–230. doi: 10.2174/187231309788166415. DOI
Islam S., Bhuiyan M.R., Islam M.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2017;25:854–866. doi: 10.1007/s10924-016-0865-5. DOI
Klaykruayat B., Siralertmukul K., Srikulkit K. Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric. Carbohydr. Polym. 2010;80:197–207. doi: 10.1016/j.carbpol.2009.11.013. DOI
Babaee M., Garavand F., Rehman A., Jafarazadeh S., Amini E., Cacciotti I. Biodegradability, physical, mechanical and antimicrobial attributes of starch nanocomposites containing chitosan nanoparticles. Int. J. Biol. Macromol. 2022;195:49–58. doi: 10.1016/j.ijbiomac.2021.11.162. PubMed DOI
Stoleru E., Hitruc E.G., Vasile C., Oprică L. Biodegradation of poly (lactic acid)/chitosan stratified composites in presence of the Phanerochaete chrysosporium fungus. Polym. Degrad. Stab. 2017;143:118–129. doi: 10.1016/j.polymdegradstab.2017.06.023. DOI
Mathew S., Abraham T.E. Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocoll. 2008;22:826–835. doi: 10.1016/j.foodhyd.2007.03.012. DOI
Rui L., Xie M., Hu B., Zhou L., Yin D., Zeng X. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr. Polym. 2017;173:473–481. doi: 10.1016/j.carbpol.2017.05.072. PubMed DOI
Qin Z., Huang Y., Xiao S., Zhang H., Lu Y., Xu K. Preparation and characterization of high mechanical strength chitosan/oxidized tannic acid composite film with Schiff base and hydrogen bond crosslinking. Int. J. Mol. Sci. 2022;23:9284. doi: 10.3390/ijms23169284. PubMed DOI PMC
Sun X., Wang Z., Kadouh H., Zhou K. The antimicrobial, mechanical, physical and structural properties of chitosan–gallic acid films. LWT-Food Sci. Technol. 2014;57:83–89. doi: 10.1016/j.lwt.2013.11.037. DOI
Rivero S., Garcia M.A., Pinotti A. Physical and chemical treatments on chitosan matrix to modify film properties and kinetics of biodegradation. J. Mater. Phys. Chem. 2013;1:51–57.
Poorna Chandrika K.S.V., Prasad R.D., Godbole V. Development of chitosan-PEG blended films using Trichoderma: Enhancement of antimicrobial activity and seed quality. Int. J. Biol. Macromol. 2019;126:282–290. doi: 10.1016/j.ijbiomac.2018.12.208. PubMed DOI
Cheng M., Wang J., Zhang R., Kong R., Lu W., Wang X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 2019;141:259–267. doi: 10.1016/j.ijbiomac.2019.08.215. PubMed DOI
Altun E., Çelik E., Ersan H.Y. Tailoring the microbial community for improving the biodegradation of chitosan films in composting environment. J. Polym. Environ. 2020;28:1548–1559. doi: 10.1007/s10924-020-01711-0. DOI
Ahmad R., Jilan G., Arshad M., Zahir Z.A., Khalid A. Bio-conversion of organic wastes for their recycling in agriculture: An overview of perspectives and prospects. Ann. Microbiol. 2007;57:471–479. doi: 10.1007/BF03175343. DOI
Klose S., Acosta-Martínez V., Ajwa H.A. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol. Biochem. 2006;38:1243–1254. doi: 10.1016/j.soilbio.2005.09.025. DOI
Su S., Zeng X., Bai L., Williams P.N., Wang Y., Zhang L., Wu C. Inoculating chlamydospores of Trichoderma asperellum SM-12F1 changes arsenic availability and enzyme activity in soils and improves water spinach growth. Chemosphere. 2017;175:497–504. doi: 10.1016/j.chemosphere.2017.02.048. PubMed DOI
Yedidia I., Benhamou N., Kapulnik Y., Chet I. Induction and accumulation of PR proteins activityduring early stages of root colonizationby the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 2000;38:863–873. doi: 10.1016/S0981-9428(00)01198-0. DOI
Henry H.A. Reprint of “Soil extracellular enzyme dynamics in a changing climate”. Soil Biol. Biochem. 2013;56:53–59. doi: 10.1016/j.soilbio.2012.10.022. DOI
García-Ruiz R., Ochoa V., Vinegla B., Hinojosa M.B., Pena-Santiago R., Liébanas G., Linares J.C., Carreira J.A. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming: Influence of seasonality and site features. Appl. Soil Ecol. 2009;41:305–314. doi: 10.1016/j.apsoil.2008.12.004. DOI
Burke D.J., Weintraub M.N., Hewins C.R., Kalisz S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 2011;43:795–803. doi: 10.1016/j.soilbio.2010.12.014. DOI