Comparative analyses of angiosperm secretomes identify apoplastic pollen tube functions and novel secreted peptides
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33258014
PubMed Central
PMC7902602
DOI
10.1007/s00497-020-00399-5
PII: 10.1007/s00497-020-00399-5
Knihovny.cz E-zdroje
- Klíčová slova
- Amborella, CRP, Cell wall, Maize, Pollen tube, Proteomics, Secretome, Signaling, Tobacco,
- MeSH
- kukuřice setá MeSH
- Magnoliopsida * MeSH
- peptidy MeSH
- pylová láčka * MeSH
- tabák MeSH
- vajíčko rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy MeSH
Analyses of secretomes of in vitro grown pollen tubes from Amborella, maize and tobacco identified many components of processes associated with the cell wall, signaling and metabolism as well as novel small secreted peptides. Flowering plants (angiosperms) generate pollen grains that germinate on the stigma and produce tubes to transport their sperm cells cargo deep into the maternal reproductive tissues toward the ovules for a double fertilization process. During their journey, pollen tubes secrete many proteins (secreted proteome or secretome) required, for example, for communication with the maternal reproductive tissues, to build a solid own cell wall that withstands their high turgor pressure while softening simultaneously maternal cell wall tissue. The composition and species specificity or family specificity of the pollen tube secretome is poorly understood. Here, we provide a suitable method to obtain the pollen tube secretome from in vitro grown pollen tubes of the basal angiosperm Amborella trichopoda (Amborella) and the Poaceae model maize. The previously published secretome of tobacco pollen tubes was used as an example of eudicotyledonous plants in this comparative study. The secretome of the three species is each strongly different compared to the respective protein composition of pollen grains and tubes. In Amborella and maize, about 40% proteins are secreted by the conventional "classic" pathway and 30% by unconventional pathways. The latter pathway is expanded in tobacco. Proteins enriched in the secretome are especially involved in functions associated with the cell wall, cell surface, energy and lipid metabolism, proteolysis and redox processes. Expansins, pectin methylesterase inhibitors and RALFs are enriched in maize, while tobacco secretes many proteins involved, for example, in proteolysis and signaling. While the majority of proteins detected in the secretome occur also in pollen grains and pollen tubes, and correlate in the number of mapped peptides with relative gene expression levels, some novel secreted small proteins were identified. Moreover, the identification of secreted proteins containing pro-peptides indicates that these are processed in the apoplast. In conclusion, we provide a proteome resource from three distinct angiosperm clades that can be utilized among others to study the localization, abundance and processing of known secreted proteins and help to identify novel pollen tube secreted proteins for functional studies.
Zobrazit více v PubMed
Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome: unlocking secrets of the secreted proteins. Proteomics. 2010;10:799–827. doi: 10.1002/pmic.200900514. PubMed DOI
Alché JdD, M’rani-Alaoui M, Castro AJ, Rodríguez-García MI. Ole e 1, the major allergen from olive (Olea europaea L.) pollen, increases its expression and is released to the culture medium during in vitro germination. Plant Cell Physiol. 2004;45:1149–1157. doi: 10.1093/pcp/pch127. PubMed DOI
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. J Exp Bot. 2016;67:4849–4861. doi: 10.1093/jxb/erw271. PubMed DOI
Bokvaj P, Hafidh S, Honys D. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom Data. 2015;3:106–111. doi: 10.1016/j.gdata.2014.12.002. PubMed DOI PMC
Campbell L, Turner SR. A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front Plant Sci. 2017;8:37. doi: 10.3389/fpls.2017.00037. PubMed DOI PMC
Chae K, Lord EM. Pollen tube growth and guidance: roles of small secreted proteins. Annals Bot. 2011;108:627–636. doi: 10.1093/aob/mcr015. PubMed DOI PMC
Chae K, Gonong BJ, Kim S-C, Kieslich CA, Morikis D, Balasubramanian S, Lord EM. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot. 2010;61:4277–4290. doi: 10.1093/jxb/erq228. PubMed DOI PMC
Cheung AY, et al. Pollen–pistil interactions in Nicotiana tabacum. Annals Bot. 2000;85:29–37. doi: 10.1006/anbo.1999.1016. DOI
Chevallet M, Luche S, Rabilloud T. Silver staining of proteins in polyacrylamide gels. Nat Protoc. 2006;1:1852–1858. doi: 10.1038/nprot.2006.288. PubMed DOI PMC
Conze LL, Berlin S, Le Bail A, Kost B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genomics. 2017;18:581. doi: 10.1186/s12864-017-3972-3. PubMed DOI PMC
Cosgrove DJ. Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 2015;25:162–172. doi: 10.1016/j.pbi.2015.05.014. PubMed DOI PMC
da Costa ML, Pereira LG, Coimbra S. Growth media induces variation in cell wall associated gene expression in Arabidopsis thaliana pollen tube. Plants. 2013;2:429–440. doi: 10.3390/plants2030429. PubMed DOI PMC
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of cell wall polymers in tip-growing land plant gametophytes: composition, distribution, functional aspects and their remodeling. Front Plant Sci. 2019;10:441. doi: 10.3389/fpls.2019.00441. PubMed DOI PMC
Dresselhaus T, Franklin-Tong N. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant. 2013;6:1018–1036. doi: 10.1093/mp/sst061. PubMed DOI
Dresselhaus T, Sprunck S, Wessel GM. Fertilization mechanisms in flowering plants. Curr Biol. 2016;26:R125–139. doi: 10.1016/j.cub.2015.12.032. PubMed DOI PMC
Flores-Tornero M, Proost S, Mutwil M, Scutt CP, Dresselhaus T, Sprunck S. Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. Plant Reprod. 2019;32:15–27. doi: 10.1007/s00497-019-00361-0. PubMed DOI
Flores-Tornero M, et al. Transcriptomic and proteomic insights into Amborella trichopoda male gametophyte functions. Plant Physiol. 2020 doi: 10.1104/pp.20.00837. PubMed DOI PMC
Ge Z, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science. 2017;358:1596–1600. doi: 10.1126/science.aao3642. PubMed DOI PMC
Gomez-Anduro G, Ceniceros-Ojeda EA, Casados-Vazquez LE, Bencivenni C, Sierra-Beltran A, Murillo-Amador B, Tiessen A. Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73) Plant Mol Biol. 2011;77:159–183. doi: 10.1007/s11103-011-9800-2. PubMed DOI
Hafidh S, Potesil D, Fila J, Capkova V, Zdrahal Z, Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol. 2016;17:81. doi: 10.1186/s13059-016-0928-x. PubMed DOI PMC
Honta H, Inamura T, Konishi T, Satoh S, Iwai H. UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum. J Plant Res. 2018;131:307–317. doi: 10.1007/s10265-017-0985-6. PubMed DOI
Huang Q, Dresselhaus T, Gu H, Qu LJ. Active role of small peptides in arabidopsis reproduction: expression evidence. J Integr Plant Biol. 2015;57:518–521. doi: 10.1111/jipb.12356. PubMed DOI
Johnson MA, Harper JF, Palanivelu R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol. 2019;70:809–837. doi: 10.1146/annurev-arplant-050718-100133. PubMed DOI
Krause C, Richter S, Knoll C, Jürgens G. Plant secretome - from cellular process to biological activity. Biochimica Biophysica Acta. 2013;1834:2429–2441. doi: 10.1016/j.bbapap.2013.03.024. PubMed DOI
Maruyama D, Higashiyama T. The end of temptation: the elimination of persistent synergid cell identity. Curr Opin Plant Biol. 2016;34:122–126. doi: 10.1016/j.pbi.2016.10.011. PubMed DOI
Mecchia MA, et al. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science. 2017;358:1600. doi: 10.1126/science.aao5467. PubMed DOI
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants. 2013;2:107–147. doi: 10.3390/plants2010107. PubMed DOI PMC
Muschietti J, Dircks L, Vancanneyt G, McCormick S. LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J. 1994;6:321–338. doi: 10.1046/j.1365-313X.1994.06030321.x. PubMed DOI
Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell. 2000;12:151–164. doi: 10.1105/tpc.12.1.151. PubMed DOI PMC
Prado N, Alche Jde D, Casado-Vela J, Mas S, Villalba M, Rodriguez R, Batanero E. Nanovesicles are secreted during pollen germination and pollen tube growth: a possible role in fertilization. Mol Plant. 2014;7:573–577. doi: 10.1093/mp/sst153. PubMed DOI
Prior N, et al. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. Plant Reprod. 2019;32:153–166. doi: 10.1007/s00497-018-0348-z. PubMed DOI PMC
Qin Y, et al. Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet. 2009;5:e1000621. doi: 10.1371/journal.pgen.1000621. PubMed DOI PMC
Qu LJ, Li L, Lan Z, Dresselhaus T. Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot. 2015;66:5139–5150. doi: 10.1093/jxb/erv275. PubMed DOI
Salminen TA, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta. 2016;244:971–997. doi: 10.1007/s00425-016-2585-4. PubMed DOI PMC
Tan H, Zhang J, Qi X, Ye W, Wang X, Xiang X. Integrated metabolite profiling and transcriptome analysis reveals a dynamic metabolic exchange between pollen tubes and the style during fertilization of Brassica napus. Plant Mol Biol. 2018;97:325–335. doi: 10.1007/s11103-018-0740-y. PubMed DOI
Williams JH. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am J Bot. 2009;96:144–165. doi: 10.3732/ajb.0800070. PubMed DOI
Wormit A, Usadel B. The multifaceted role of pectin methylesterase inhibitors (PMEIs) Intern J Mol Sci. 2018 doi: 10.3390/ijms19102878. PubMed DOI PMC
Zhang J, et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat Plants. 2017;3:17079. doi: 10.1038/nplants.2017.79. PubMed DOI PMC
Zhang P, Wang H, Qin X, Chen K, Zhao J, Zhao Y, Yue B. Genome-wide identification, phylogeny and expression analysis of the PME and PMEI gene families in maize. Sci Rep. 2019;9:19918. doi: 10.1038/s41598-019-56254-9. PubMed DOI PMC
Zhou LZ, Dresselhaus T. Friend or foe: signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol. 2019;131:453–496. doi: 10.1016/bs.ctdb.2018.11.013. PubMed DOI
Zhou LZ, Juranic M, Dresselhaus T. Germline development and fertilization mechanisms in maize. Mol Plant. 2017;10:389–401. doi: 10.1016/j.molp.2017.01.012. PubMed DOI