Transcriptomic and Proteomic Insights into Amborella trichopoda Male Gametophyte Functions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32989009
PubMed Central
PMC7723084
DOI
10.1104/pp.20.00837
PII: pp.20.00837
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- biologická evoluce MeSH
- klíčení genetika fyziologie MeSH
- Magnoliopsida genetika růst a vývoj MeSH
- proteomika MeSH
- pyl genetika růst a vývoj MeSH
- pylová láčka genetika růst a vývoj MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Flowering plants (angiosperms) are characterized by pollen tubes (PTs; male gametophytes) carrying two immobile sperm cells that grow over long distances through the carpel toward the ovules, where double fertilization is executed. It is not understood how these reproductive structures evolved, which genes occur de novo in male gametophytes of angiosperms, and to which extent PT functions are conserved among angiosperms. To contribute to a deeper understanding of the evolution of gametophyte functions, we generated RNA sequencing data from seven reproductive and two vegetative control tissues of the basal angiosperm Amborella trichopoda and complemented these with proteomic data of pollen grains (PGs) and PTs. The eudicot model plant Arabidopsis (Arabidopsis thaliana) served as a reference organism for data analysis, as more than 200 genes have been associated with male gametophyte functions in this species. We describe methods to collect bicellular A. trichopoda PGs, to induce their germination in vitro, and to monitor PT growth and germ cell division. Transcriptomic and proteomic analyses indicate that A. trichopoda PGs are prepared for germination requiring lipids, energy, but likely also reactive oxygen species, while PTs are especially characterized by catabolic/biosynthetic and transport processes including cell wall biosynthesis and gene regulation. Notably, a number of pollen-specific genes were lacking in Arabidopsis, and the number of genes involved in pollen signaling is significantly reduced in A. trichopoda In conclusion, we provide insight into male gametophyte functions of the most basal angiosperm and establish a valuable resource for future studies on the evolution of flowering plants.
Cell Biology and Plant Biochemistry University of Regensburg 93053 Regensburg Germany
RECETOX Faculty of Science Masaryk University CZ 62500 Brno Czech Republic
School of Biological Sciences Nanyang Technological University Singapore 637551 Singapore
Zobrazit více v PubMed
Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342: 1241089. PubMed
Backues SK, Korasick DA, Heese A, Bednarek SY(2010) The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. Plant Physiol 22: 3218–3231 PubMed PMC
Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA(2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133: 713–725 PubMed PMC
Benjamini Y, Hochberg Y(1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300
Berthomé R, Thomasset M, Maene M, Bourgeois N, Froger N, Budar F(2008) pur4 mutations are lethal to the male, but not the female, gametophyte and affect sporophyte development in Arabidopsis. Plant Physiol 147: 650–660 PubMed PMC
Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U(2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136: 3279–3288 PubMed PMC
Bokvaj P, Hafidh S, Honys D(2015) Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom Data 3: 106–111 PubMed PMC
Brownfield DL, Todd CD, Deyholos MK(2008) Analysis of Arabidopsis arginase gene transcription patterns indicates specific biological functions for recently diverged paralogs. Plant Mol Biol 67: 429–440 PubMed
Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W(2013) Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res 12: 4892–4903 PubMed
Chevallet M, Luche S, Rabilloud T(2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1: 1852–1858 PubMed PMC
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, et al. (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17: 13. PubMed PMC
Dai S, Li L, Chen T, Chong K, Xue Y, Wang T(2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6: 2504–2529 PubMed
Damineli DS, Portes MT, Feijó JA(2017) One thousand and one oscillators at the pollen tube tip: The quest for a central pacemaker revisited In Obermeyer G, and Feijó J, eds, Pollen Tip Growth: From Biophysical Aspects to Systems Biology. Springer International Publishing, Cham, Switzerland, pp 391–413
Davidson RM, Hansey CN, Gowda M, Childs KL, Lin H, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N, et al. (2011) Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome 4: 191–203
Delmas F, Séveno M, Northey JGB, Hernould M, Lerouge P, McCourt P, Chevalier C(2008) The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation. J Exp Bot 59: 2639–2647 PubMed PMC
Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N(2006) Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. Plant Physiol 142: 1480–1492 PubMed PMC
Drew BT, Ruhfel BR, Smith SA, Moore MJ, Briggs BG, Gitzendanner MA, Soltis PS, Soltis DE(2014) Another look at the root of the angiosperms reveals a familiar tale. Syst Biol 63: 368–382 PubMed
Egli B, Kölling K, Köhler C, Zeeman SC, Streb S(2010) Loss of cytosolic phosphoglucomutase compromises gametophyte development in Arabidopsis. Plant Physiol 154: 1659–1671 PubMed PMC
Fabrice TN, Vogler H, Draeger C, Munglani G, Gupta S, Herger AG, Knox P, Grossniklaus U, Ringli C(2018) LRX proteins play a crucial role in pollen grain and pollen tube cell wall development. Plant Physiol 176: 1981–1992 PubMed PMC
Fíla J, Záveská Drábková L, Gibalová A, Honys D(2017) When simple meets complex: Pollen and the -omics In Obermeyer G, and Feijó J, eds, Pollen Tip Growth: From Biophysical Aspects to Systems Biology. Springer International Publishing, Cham, Switzerland, pp 247–292
Flores-Tornero M, Proost S, Mutwil M, Scutt CP, Dresselhaus T, Sprunck S(2019) Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. Plant Reprod 32: 15–27 PubMed
Galindo-Trigo S, Gray JE, Smith LM(2016) Conserved roles of CrRLK1L receptor-like kinases in cell expansion and reproduction from algae to angiosperms. Front Plant Sci 7: 1269. PubMed PMC
Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M-C, Luo X, Ruan H, García-Valencia LE, Zhong S, et al. (2017) Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358: 1596–1600 PubMed PMC
Ge Z, Dresselhaus T, Qu LJ(2019) How CrRLK1L receptor complexes perceive RALF signals. Trends Plant Sci 24: 978–981 PubMed
Geisler DA, Päpke C, Obata T, Nunes-Nesi A, Matthes A, Schneitz K, Maximova E, Araújo WL, Fernie AR, Persson S(2012) Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis. Plant Cell 24: 2792–2811 PubMed PMC
Greenbaum D, Colangelo C, Williams K, Gerstein M(2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4: 117. PubMed PMC
Grosse-Veldmann B, Korotkova N, Reinken B, Lobin W, Barthlott W(2011) Amborella trichopoda: Cultivation of the most ancestral angiosperm in botanic gardens. Sibbaldia: Int J Botanic Garden Hortic 9: 143–154
Hafidh S, Potěšil D, Müller K, Fíla J, Michailidis C, Herrmannová A, Feciková J, Ischebeck T, Valášek LS, Zdráhal Z, et al. (2018) Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol 178: 258–282 PubMed PMC
Hasegawa Y, Nakamura S, Uheda E, Nakamura N(2000) Immunolocalization and possible roles of pectins during pollen growth and callose plug formation in angiosperms. Grana 39: 46–55
He Y, Chen L, Zhou Y, Mawhinney TP, Chen B, Kang B-H, Hauser BA, Chen S(2011) Functional characterization of Arabidopsis thaliana isopropylmalate dehydrogenases reveals their important roles in gametophyte development. New Phytol 189: 160–175 PubMed
Heslop-Harrison J, Heslop-Harrison Y(1989) Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94: 319–325
Hesse M.(2001) Pollen characters of Amborella trichopoda (Amborellaceae): A reinvestigation. Int J Plant Sci 162: 201–208
Honys D, Twell D(2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132: 640–652 PubMed PMC
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijon M, Egelhofer V, Weckwerth W(2014) Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 13: 295–310 PubMed PMC
Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang X-Q, Yang W-C, Sundaresan V, Ye D(2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584–596 PubMed PMC
Johnson MA, Harper JF, Palanivelu R(2019) A fruitful journey: Pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70: 809–837 PubMed
Kang B-H, Rancour DM, Bednarek SY(2003) The dynamin-like protein ADL1C is essential for plasma membrane maintenance during pollen maturation. Plant J 35: 1–15 PubMed
Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, et al. (2016) Ensembl Genomes 2016: More genomes, more complexity. Nucleic Acids Res 44(D1): D574–D580 PubMed PMC
Kumar S, Stecher G, Tamura K(2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870–1874 PubMed PMC
Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T(2014) Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78: 94–106 PubMed
Li S, Ge F-R, Xu M, Zhao X-Y, Huang G-Q, Zhou L-Z, Wang J-G, Kombrink A, McCormick S, Zhang XS, et al. (2013) Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. Plant J 74: 486–497 PubMed
Li W-Q, Zhang X-Q, Xia C, Deng Y, Ye D(2010) MALE GAMETOPHYTE DEFECTIVE 1, encoding the FAd subunit of mitochondrial F1F0-ATP synthase, is essential for pollen formation in Arabidopsis thaliana. Plant Cell Physiol 51: 923–935 PubMed
Liu PL, Xie LL, Li PW, Mao JF, Liu H, Gao SM, Shi PH, Gong JQ(2016) Duplication and divergence of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in basal angiosperm Amborella trichopoda. Front Plant Sci 7: 1952. PubMed PMC
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S(2019) Insights into secrets along the pollen tube pathway in need to be discovered. J Exp Bot 70: 2979–2992 PubMed
Love MI, Huber W, Anders S(2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550. PubMed PMC
Lu Y, Wei L, Wang T(2015) Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis. Front Plant Sci 6: 391. PubMed PMC
Mangano S, Martínez Pacheco J, Marino-Buslje C, Estevez JM(2018) How does pH fit in with oscillating polar growth? Trends Plant Sci 23: 479–489 PubMed
Márton ML, Cordts S, Broadhvest J, Dresselhaus T(2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307: 573–576 PubMed
Márton ML, Fastner A, Uebler S, Dresselhaus T(2012) Overcoming hybridization barriers by the secretion of the maize pollen tube attractant ZmEA1 from Arabidopsis ovules. Curr Biol 22: 1194–1198 PubMed
McCue AD, Cresti M, Feijó JA, Slotkin RK(2011) Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: Potential roles of the male germ unit revisited. J Exp Bot 62: 1621–1631 PubMed
Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JP, et al. (2017) RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358: 1600–1603 PubMed
Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M(2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19: 1327–1331 PubMed
Muñoz-Bertomeu J, Cascales-Miñana B, Irles-Segura A, Mateu I, Nunes-Nesi A, Fernie AR, Segura J, Ros R(2010) The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Plant Physiol 152: 1830–1841 PubMed PMC
Nakamura S, Miki-Hirosige H, Iwanami Y(1982) Ultrastructural study of Camellia japonica pollen treated with myrmicacin, an ant-origin inhibitor. Am J Bot 69: 538–545
Nasrallah JB.(2019) Self-incompatibility in the Brassicaceae: Regulation and mechanism of self-recognition. Curr Top Dev Biol 131: 435–452 PubMed
Palevitz BA.(1993) Relationship between the generative cell and vegetative nucleus in pollen tubes of Nicotiana tabacum. Sex Plant Reprod 6: 1–10
Pang Z, Chong J, Li S, Xia J(2020) MetaboAnalystR 3.0: Toward an optimized workflow for global metabolomics. Metabolites 10: 186 PubMed PMC
Park J-I, Ishimizu T, Suwabe K, Sudo K, Masuko H, Hakozaki H, Nou I-S, Suzuki G, Watanabe Masao(2010) UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant Cell Physiol 51: 981–996 PubMed
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V(2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12: 2825–2830
Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R(2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5: e1000621. PubMed PMC
Qu LJ, Li L, Lan Z, Dresselhaus T(2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66: 5139–5150 PubMed
Read SM, Clarke AE, Bacic A(1993) Requirements for division of the generative nucleus in cultured pollen tubes of Nicotiana. Protoplasma 174: 101–115
Reyes F, León G, Donoso M, Brandizzí F, Weber APM, Orellana A(2010) The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J 61: 423–435 PubMed
Rhee SY, Osborne E, Poindexter PD, Somerville CR(2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133: 1170–1180 PubMed PMC
Rutley N, Twell D(2015) A decade of pollen transcriptomics. Plant Reprod 28: 73–89 PubMed PMC
Sauquet H, von Balthazar M, Magallon S, Doyle JA, Endress PK, Bailes EJ, Barroso de Morais E, Bull-Herenu K, Carrive L, Chartier M, et al. (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8: 16047. PubMed PMC
Scholz-Starke J, Büttner M, Sauer N(2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol 131: 70–77 PubMed PMC
Smyth GK.(2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 PubMed
Sørmo CG, Brembu T, Winge P, Bones AM(2011) Arabidopsis thaliana MIRO1 and MIRO2 GTPases are unequally redundant in pollen tube growth and fusion of polar nuclei during female gametogenesis. PLoS One 6: e18530. PubMed PMC
Synek L, Vukašinović N, Kulich I, Hála M, Aldorfová K, Fendrych M, Žárský V(2017) EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol 174: 223–240 PubMed PMC
Szumlanski AL, Nielsen E(2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21: 526–544 PubMed PMC
Takeuchi H, Higashiyama T(2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531: 245–248 PubMed
Tan QW, Mutwil M(2020) Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer. Biochim Biophys Acta Gene Regul Mech 1863: 194429. PubMed
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M(2004) MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37: 914–939 PubMed
Tian G-W, Chen M-H, Zaltsman A, Citovsky V(2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294: 83–91 PubMed
Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, et al. (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138: 1195–1204 PubMed PMC
Wallace S, Williams JH(2017) Evolutionary origins of pectin methylesterase genes associated with novel aspects of angiosperm pollen tube walls. Biochem Biophys Res Commun 487: 509–516 PubMed
Walley JW, Sartor RS, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, et al. (2016) Integration of omic networks in a developmental atlas of maize. Science 353: 814–818 PubMed PMC
Wang T, Liang L, Xue Y, Jia PF, Chen W, Zhang MX, Wang YC, Li HJ, Yang WC(2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531: 241–244 PubMed
Wang X, Wang K, Yin G, Liu X, Liu M, Cao N, Duan Y, Gao H, Wang W, Ge W, et al. (2018) Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiol 176: 1993–2006 PubMed PMC
Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T(2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11: 338. PubMed PMC
Williams JH.(2009) Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am J Bot 96: 144–165 PubMed
Williams JH.(2008) Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proc Natl Acad Sci USA 105: 11259–11263 PubMed PMC
Williams JH.(2012) The evolution of pollen germination timing in flowering plants: Austrobaileya scandens (Austrobaileyaceae). AoB Plants 2012: pls010. PubMed PMC
Williams JH, Taylor ML, O’Meara BC(2014) Repeated evolution of tricellular (and bicellular) pollen. Am J Bot 101: 559–571 PubMed
Wolf C, Hennig M, Romanovicz D, Steinebrunner I(2007) Developmental defects and seedling lethality in apyrase AtAPY1 and AtAPY2 double knockout mutants. Plant Mol Biol 64: 657–672 PubMed
Wu Y, Yan J, Zhang R, Qu X, Ren S, Chen N, Huang S(2010) Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22: 3745–3763 PubMed PMC
Yang YH, Qiu YL, Xie CT, Tian HQ, Zhang Z, Russell SD(2005) Isolation of two populations of sperm cells and microelectrophoresis of pairs of sperm cells from pollen tubes of tobacco (Nicotiana tabacum). Sex Plant Reprod 18: 47–53
Yatomi R, Nakamura S, Nakamura N(2002) Immunochemical and cytochemical detection of wall components of germinated pollen of gymnosperms. Grana 41: 21–28
Zhang H, Qu X, Bao C, Khurana P, Wang Q, Xie Y, Zheng Y, Chen N, Blanchoin L, Staiger CJ, et al. (2010) Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22: 2749–2767 PubMed PMC
Zhang M, Fan J, Taylor DC, Ohlrogge JB(2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21: 3885–3901 PubMed PMC
Zhong S, Qu LJ(2019) Peptide/receptor-like kinase-mediated signaling involved in male-female interactions. Curr Opin Plant Biol 51: 7–14 PubMed
Zhou LZ, Dresselhaus T(2019) Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 131: 453–496 PubMed
Zou J, Song L, Zhang W, Wang Y, Ruan S, Wu WH(2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51: 438–455 PubMed