Europium (III) as a Circularly Polarized Luminescence Probe of DNA Structure
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30705327
PubMed Central
PMC6355874
DOI
10.1038/s41598-018-37680-7
PII: 10.1038/s41598-018-37680-7
Knihovny.cz E-zdroje
- MeSH
- deoxyguaninnukleotidy chemie MeSH
- DNA chemie MeSH
- europium chemie MeSH
- luminiscence MeSH
- Ramanova spektroskopie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deoxyguaninnukleotidy MeSH
- DNA MeSH
- europium MeSH
We report as a proof-of-concept the first application of circularly polarized luminescence (CPL) measured with a Raman optical activity (ROA) spectrometer to differentiate several DNA structures without need of sensitizing complexes. The ROA/CPL approach provides sufficiently high CPL intensity to use hydrated Eu3+ ions, thus avoiding DNA structural changes associated with binding of sensitizers and overcoming the sensitizer quenching issue. We showed that deoxyguanosine monophosphate (dGMP), single- and double-stranded DNA provide different CPL spectra, which could be used for their discrimination. Our results demonstrate that ROA/CPL method is a promising approach to measure CPL spectra of complex biomolecules when the use of sensitizers is not possible. The method can be extended to other biomolecules, such as proteins, lipids, sugars, etc.
Zobrazit více v PubMed
Yonuschot G, Mushrush GW. Terbium as a Fluorescent-Probe for DNA and Chromatin. Biochemistry. 1975;14:1677–1681. doi: 10.1021/bi00679a020. PubMed DOI
Gross DS, Simpkins H. Evidence for 2-Site Binding in the Terbium(Iii)-Nucleic Acid Interaction. J. Biol. Chem. 1981;256:9593–9598. PubMed
Gersanovski D, Colson P, Houssier C, Fredericq E. Terbium(3+) as a Probe of Nucleic-Acids Structure - Does It Alter the DNA Conformation in Solution. Biochim. Biophys. Acta. 1985;824:313–323. doi: 10.1016/0167-4781(85)90037-5. PubMed DOI
Balcarova Z, Brabec V. Reinterpretation of Fluorescence of Terbium Ion-DNA Complexes. Biophys. Chem. 1989;33:55–61. doi: 10.1016/0301-4622(89)80007-9. PubMed DOI
Klakamp SL, Horrocks WD. Lanthanide Ion Luminescence as a Probe of DNA-Structure .1. Guanine-Containing Oligomers and Nucleotides. J. Inorg. Biochem. 1992;46:175–192. doi: 10.1016/0162-0134(92)80028-T. PubMed DOI
Klakamp SL, Horrocks WD. Lanthanide Ion Luminescence as a Probe of DNA-Structure .2. Non-Guanine-Containing Oligomers and Nucleotides. J. Inorg. Biochem. 1992;46:193–205. doi: 10.1016/0162-0134(92)80029-U. PubMed DOI
Morrow, J. R. & Andolina, C. M. In Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences Vol. 10 Metal Ions in Life Sciences (eds Sigel, A., Sigel, H. & Sigel, R. K. O.) 171–199 (Springer Science + Business Media B. V., 2012).
Muller, G. Luminescent chiral lanthanide(III) complexes as potential molecular probes. Dalton Trans. 9692–9707 (2009). PubMed PMC
Carr R, Evans NH, Parker D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem. Soc. Rev. 2012;41:7673–7686. doi: 10.1039/c2cs35242g. PubMed DOI
Bobba G, Kean SD, Parker D, Beeby A, Baker G. DNA binding studies of cationic lanthanide complexes bearing a phenanthridinium group. J. Chem. Soc., Perkin Trans. 2001;2:1738–1741. doi: 10.1039/b104795g. DOI
Bobba G, et al. Chiroptical, ESMS and NMR spectroscopic study of the interaction of enantiopure lanthanide complexes with selected self-complementary dodecamer oligonucleotides. J. Chem. Soc., Perkin Trans. 2001;2:1729–1737. doi: 10.1039/b104796p. DOI
Bobba, G., Frias, J. C. & Parker, D. Highly emissive, nine-coordinate enantiopure lanthanide complexes incorporating tetraazatriphenylenes as probes for DNA. Chem. Commun. 890–891 (2002). PubMed
Wu T, Kapitán J, Mašek V, Bouř P. Detection of Circularly Polarized Luminescence of a Cs-Eu-III Complex in Raman Optical Activity Experiments. Angew. Chem. Int. Ed. 2015;54:14933–14936. doi: 10.1002/anie.201508120. PubMed DOI
Wu T, Kessler J, Bouř P. Chiral sensing of amino acids and proteins chelating with Eu-III complexes by Raman optical activity spectroscopy. Phys. Chem. Chem. Phys. 2016;18:23803–23811. doi: 10.1039/C6CP03968E. PubMed DOI
Wu T, et al. Detection of Sugars via Chirality Induced in Europium(III) Compounds. Anal. Chem. 2016;88:8878–8885. doi: 10.1021/acs.analchem.6b02505. PubMed DOI
Binnemans K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015;295:1–45. doi: 10.1016/j.ccr.2015.02.015. DOI
Zinna F, Di Bari L. Lanthanide Circularly Polarized Luminescence: Bases and Applications. Chirality. 2015;27:1–13. doi: 10.1002/chir.22382. PubMed DOI
Hudecová J, et al. CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J. Chem. Theory Comput. 2013;9:3096–3108. doi: 10.1021/ct400285n. PubMed DOI
Profant V, Pazderková M, Pazderka T, Malon P, Baumruk V. Relative intensity correction of Raman optical activity spectra facilitates extending the spectral region. J. Raman Spectrosc. 2014;45:603–609. doi: 10.1002/jrs.4503. DOI
Tajmir-Riahi HA. Interaction of La (III) and Tb (III) ions with purine nucleotides: evidence for metal chelation (N-7-M-PO3) and the effect of macrochelate formation on the nucleotide sugar conformation. Biopolymers. 1991;31:1065–1075. doi: 10.1002/bip.360310906. PubMed DOI
Bell AF, Hecht L, Barron LD. Vibrational Raman optical activity of DNA and RNA. J. Am. Chem. Soc. 1998;120:5820–5821. doi: 10.1021/ja980851v. DOI
Tsuboi M. Application of Infrared Spectroscopy to Structure Studies of Nucleic Acids. Appl. Spectrosc. Rev. 1969;3:45–90. doi: 10.1080/05704927008081687. DOI
Taillandier, E., Liquier, J. & Taboury, J. A. In Advances in Infrared and Raman Spectroscopy Vol. 12 (eds Clark, R. J. H. & Hester, R. E.) 65–114 (Wiley-Heyden, 1985).
Tajmir-Riahi HA, Naoui M, Ahmad R. The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by Fourier transform IR difference spectroscopy. Biopolymers. 1993;33:1819–1827. doi: 10.1002/bip.360331208. PubMed DOI
Keiderling, T. A. In Circular Dichroism and the Conformational Analysis of Biomolecules (ed. Fasman, G. D.) 555–597 (Plenum Press, 1996).
Andrushchenko V, Leonenko Z, Cramb D, van de Sande H, Wieser H. Vibrational CD (VCD) and atomic force microscopy (AFM) study of DNA interaction with Cr3+ ions: VCD and AFM evidence of DNA condensation. Biopolymers. 2001;61:243–260. doi: 10.1002/bip.10159. PubMed DOI
Tajmir-Riahi HA, Ahmad R, Naoui M, Diamantoglou S. The effect of HCl on the solution structure of calf thymus DNA: a comparative study of DNA denaturation by proton and metal cations using Fourier transform IR difference spectroscopy. Biopolymers. 1995;35:493–501. doi: 10.1002/bip.360350508. PubMed DOI
Kypr J, Kejnovska I, Renciuk D, Vorlíčková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–1725. doi: 10.1093/nar/gkp026. PubMed DOI PMC
Wu T, Kapitán J, Andrushchenko V, Bouř P. Identification of Lanthanide(III) Luminophores in Magnetic Circularly Polarized Luminescence Using Raman Optical Activity Instrumentation. Anal. Chem. 2017;89:5043–5049. doi: 10.1021/acs.analchem.7b00435. PubMed DOI
Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity