Metabolomic analysis of the human placenta reveals perturbations in amino acids, purine metabolites, and small organic acids in spontaneous preterm birth

. 2024 ; 23 () : 264-282. [epub] 20240213

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38487084

Spontaneous preterm delivery presents one of the most complex challenges in obstetrics and is a leading cause of perinatal morbidity and mortality. Although it is a common endpoint for multiple pathological processes, the mechanisms governing the etiological complexity of spontaneous preterm birth and the placental responses are poorly understood. This study examined placental tissues collected between May 2019 and May 2022 from a well-defined cohort of women who experienced spontaneous preterm birth (n = 72) and healthy full-term deliveries (n = 30). Placental metabolomic profiling of polar metabolites was performed using Ultra-High Performance Liquid Chromatography/Mass Spectrometry (UHPLC/MS) analysis. The resulting data were analyzed using multi- and univariate statistical methods followed by unsupervised clustering. A comprehensive metabolomic evaluation of the placenta revealed that spontaneous preterm birth was associated with significant changes in the levels of 34 polar metabolites involved in intracellular energy metabolism and biochemical activity, including amino acids, purine metabolites, and small organic acids. We found that neither the preterm delivery phenotype nor the inflammatory response explain the reported differential placental metabolome. However, unsupervised clustering revealed two molecular subtypes of placentas from spontaneous preterm pregnancies exhibiting differential enrichment of clinical parameters. We also identified differences between early and late preterm samples, suggesting distinct placental functions in early spontaneous preterm delivery. Altogether, we present evidence that spontaneous preterm birth is associated with significant changes in the level of placental polar metabolites. Dysregulation of the placental metabolome may underpin important (patho)physiological mechanisms involved in preterm birth etiology and long-term neonatal outcomes.

Zobrazit více v PubMed

Abad C, Karahoda R, Orbisova A, Kastner P, Daniel H, Kucera R, et al. Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C. Biol Reprod. 2023:Epub 20231225. doi: 10.1093/biolre/ioad181. doi: 10.1093/biolre/ioad181. Available from: PubMed DOI PMC

ACOG Committee Opinion No 579. Definition of term pregnancy. Obstet Gynecol. 2013;122:1139–1140. doi: 10.1097/01.AOG.0000437385.88715.4a. doi: 10.1097/01.AOG.0000437385.88715.4a. Available from: PubMed DOI

Anderssohn M, Maass LM, Diemert A, Lüneburg N, Atzler D, Hecher K, et al. Severely decreased activity of placental dimethylarginine dimethylaminohydrolase in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2012;161:152–156. doi: 10.1016/j.ejogrb.2011.12.032. doi: 10.1016/j.ejogrb.2011.12.032. Available from: PubMed DOI

Araújo JR, Correia-Branco A, Pereira AC, Pinho MJ, Keating E, Martel F. Oxidative stress decreases uptake of neutral amino acids in a human placental cell line (BeWo cells) Reprod Toxicol. 2013;40:76–81. doi: 10.1016/j.reprotox.2013.06.073. doi: 10.1016/j.reprotox.2013.06.073. Available from: PubMed DOI

Arias F, Rodriquez L, Rayne SC, Kraus FT. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol. 1993;168:585–591. doi: 10.1016/0002-9378(93)90499-9. doi: 10.1016/0002-9378(93)90499-9. Available from: PubMed DOI

Badawy AA, Guillemin G. The plasma [kynurenine]/ [tryptophan] ratio and indoleamine 2,3-dioxygenase: time for appraisal. Int J Tryptophan Res. 2019;12:1178646919868978. doi: 10.1177/1178646919868978. doi: 10.1177/1178646919868978. Available from: PubMed DOI PMC

Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller A-B, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. The Lancet. 2012;379(9832):2162–2172. doi: 10.1016/S0140-6736(12)60820-4. doi: 10.1016/S0140-6736(12)60820-4. Available from: PubMed DOI

Bode-Böger SM, Scalera F, Ignarro LJ. The L-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol Ther. 2007;114:295–306. doi: 10.1016/j.pharmthera.2007.03.002. doi: 10.1016/j.pharmthera.2007.03.002. Available from: PubMed DOI

Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience. 2011;197:1–7. doi: 10.1016/j.neuroscience.2011.10.005. doi: 10.1016/j.neuroscience.2011.10.005. Available from: PubMed DOI PMC

Bonnin A, Torii M, Wang L, Rakic P, Levitt P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci. 2007;10:588–597. doi: 10.1038/nn1896. doi: 10.1038/nn1896. Available from: PubMed DOI

Brockway HM, Kallapur SG, Buhimschi IA, Buhimschi CS, Ackerman WE, Muglia LJ, et al. Unique transcriptomic landscapes identified in idiopathic spontaneous and infection related preterm births compared to normal term births. PLoS One. 2019;14(11):e0225062. doi: 10.1371/journal.pone.0225062. doi: 10.1371/journal.pone.0225062. Available from: PubMed DOI PMC

Broekhuizen M, Danser AHJ, Reiss IKM, Merkus D. The function of the kynurenine pathway in the placenta: a novel pharmacotherapeutic target? Int J Environ Res Public Health. 2021;18(21):11545. doi: 10.3390/ijerph182111545. doi: 10.3390/ijerph182111545. Available from: PubMed DOI PMC

Burton GJ, Barker DJP, Moffett A, Thornburg K. The placenta and human developmental programming. Cambridge: Cambridge Univ. Press; 2010.

Carter RA, Pan K, Harville EW, McRitchie S, Sumner S. Metabolomics to reveal biomarkers and pathways of preterm birth: a systematic review and epidemiologic perspective. Metabolomics. 2019;15(9):124. doi: 10.1007/s11306-019-1587-1. doi: 10.1007/s11306-019-1587-1. Available from: PubMed DOI PMC

Cercillieux A, Ciarlo E, Canto C. Balancing NAD(+) deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci. 2022;79(8):463. doi: 10.1007/s00018-022-04499-5. doi: 10.1007/s00018-022-04499-5. Available from: PubMed DOI PMC

Couture C, Brien ME, Boufaied I, Duval C, Soglio DD, Enninga EAL, et al. Proinflammatory changes in the maternal circulation, maternal-fetal interface, and placental transcriptome in preterm birth. Am J Obstet Gynecol. 2023;228:332. doi: 10.1016/j.ajog.2022.08.035. doi: 10.1016/j.ajog.2022.08.035. Available from: PubMed DOI

Dai Y, Zhang J, Liu R, Xu N, Yan SB, Chen Y, et al. The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis. J Assist Reprod Genet. 2020;37:1083–1095. doi: 10.1007/s10815-020-01750-5. doi: 10.1007/s10815-020-01750-5. Available from: PubMed DOI PMC

Elshenawy S, Pinney SE, Stuart T, Doulias P-T, Zura G, Parry S, et al. The metabolomic signature of the placenta in spontaneous preterm birth. Int J Mol Sci. 2020;21(3):1043. doi: 10.3390/ijms21031043. doi: 10.3390/ijms21031043. Available from: PubMed DOI PMC

Faupel-Badger JM, Fichorova RN, Allred EN, Hecht JL, Dammann O, Leviton A, et al. Cluster analysis of placental inflammatory proteins can distinguish preeclampsia from preterm labor and premature membrane rupture in singleton deliveries less than 28 weeks of gestation. Am J Reprod Immunol. 2011;66:488–494. doi: 10.1111/j.1600-0897.2011.01023.x. doi: 10.1111/j.1600-0897.2011.01023.x. Available from: PubMed DOI PMC

Ghartey J, Bastek JA, Brown AG, Anglim L, Elovitz MA. Women with preterm birth have a distinct cervicovaginal metabolome. Am J Obstet Gynecol. 2015;212:776. doi: 10.1016/j.ajog.2015.03.052. doi: 10.1016/j.ajog.2015.03.052. Available from: PubMed DOI PMC

Goeden N, Velasquez JC, Bonnin A. Placental tryptophan metabolism as a potential novel pathway for the developmental origins of mental diseases. Trans Dev Psychiatry. 2013;1(1):20593. doi: 10.3402/tdp.v1i0.20593. doi: 10.3402/tdp.v1i0.20593. Available from: DOI

Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi: 10.1016/s0140-6736(08)60074-4. doi: 10.1016/s0140-6736(08)60074-4. Available from: PubMed DOI PMC

Graça G, Goodfellow BJ, Barros AS, Diaz S, Duarte IF, Spagou K, et al. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers. Mol Biosyst. 2012;8:1243–1254. doi: 10.1039/c2mb05424h. doi: 10.1039/c2mb05424h. Available from: PubMed DOI

Holden DP, Fickling SA, Whitley GS, Nussey SS. Plasma concentrations of asymmetric dimethylarginine, a natural inhibitor of nitric oxide synthase, in normal pregnancy and preeclampsia. Am J Obstet Gynecol. 1998;178:551–556. doi: 10.1016/s0002-9378(98)70437-5. doi: 10.1016/s0002-9378(98)70437-5. Available from: PubMed DOI

Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011;25:604–615. doi: 10.1016/j.bbi.2010.12.017. doi: 10.1016/j.bbi.2010.12.017. Available from: PubMed DOI PMC

Iriyama T, Sun K, Parchim NF, Li J, Zhao C, Song A, et al. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia. Circulation. 2015;131:730–741. doi: 10.1161/circulationaha.114.013740. doi: 10.1161/circulationaha.114.013740. Available from: PubMed DOI PMC

Jaiman S, Romero R, Bhatti G, Jung E, Gotsch F, Suksai M, et al. The role of the placenta in spontaneous preterm labor and delivery with intact membranes. J Perinat Med. 2022;50:553–566. doi: 10.1515/jpm-2021-0681. doi: 10.1515/jpm-2021-0681. Available from: PubMed DOI PMC

Jaiman S, Romero R, Pacora P, Erez O, Jung E, Tarca AL, et al. Disorders of placental villous maturation are present in one-third of cases with spontaneous preterm labor. J Perinat Med. 2021;49:412–430. doi: 10.1515/jpm-2020-0138. doi: 10.1515/jpm-2020-0138. Available from: PubMed DOI PMC

Jehan F, Sazawal S, Baqui AH, Nisar MI, Dhingra U, Khanam R, et al. Multiomics characterization of preterm birth in low- and middle-income countries. JAMA Netw Open. 2020;3(12):e2029655. doi: 10.1001/jamanetworkopen.2020.29655. doi: 10.1001/jamanetworkopen.2020.29655. Available from: PubMed DOI PMC

Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25. doi: 10.1038/nrm.2016.25. Available from: PubMed DOI PMC

Karahoda R, Robles M, Marushka J, Stranik J, Abad C, Horackova H, et al. Prenatal inflammation as a link between placental expression signature of tryptophan metabolism and preterm birth. Hum Mol Genet. 2021;30:2053–2067. doi: 10.1093/hmg/ddab169. doi: 10.1093/hmg/ddab169. Available from: PubMed DOI PMC

Kindschuh WF, Baldini F, Liu MC, Liao J, Meydan Y, Lee HH, et al. Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome. Nat Microbiol. 2023;8:246–259. doi: 10.1038/s41564-022-01293-8. doi: 10.1038/s41564-022-01293-8. Available from: PubMed DOI PMC

Knijnenburg TA, Vockley JG, Chambwe N, Gibbs DL, Humphries C, Huddleston KC, et al. Genomic and molecular characterization of preterm birth. Proc Natl Acad Sci U S A. 2019;116:5819–5827. doi: 10.1073/pnas.1716314116. doi: 10.1073/pnas.1716314116. Available from: PubMed DOI PMC

Leiper JM, Santa Maria J, Chubb A, MacAllister RJ, Charles IG, Whitley GS, et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J. 1999;343:209–214. PubMed PMC

Lien YC, Zhang Z, Cheng Y, Polyak E, Sillers L, Falk MJ, et al. Human Placental transcriptome reveals critical alterations in inflammation and energy metabolism with fetal sex differences in spontaneous preterm birth. Int J Mol Sci. 2021;22(15):7899. doi: 10.3390/ijms22157899. doi: 10.3390/ijms22157899. Available from: PubMed DOI PMC

Lísa M, Cífková E, Khalikova M, Ovčačíková M, Holčapek M. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J Chromatogr A. 2017;1525:96–108. doi: 10.1016/j.chroma.2017.10.022. doi: 10.1016/j.chroma.2017.10.022. Available from: PubMed DOI

Maguire MH, Szabo I, Slegel P, King CR. Determination of concentrations of adenosine and other purines in human term placenta by reversed-phase high-performance liquid chromatography with photodiode-array detection: evidence for pathways of purine metabolism in the placenta. J Chromatogr. 1992;575:243–253. doi: 10.1016/0378-4347(92)80152-g. doi: 10.1016/0378-4347(92)80152-g. Available from: PubMed DOI

Manuelpillai U, Ligam P, Smythe G, Wallace EM, Hirst J, Walker DW. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol. 2005;192(1):280–288. doi: 10.1016/j.ajog.2004.06.090. doi: 10.1016/j.ajog.2004.06.090. Available from: PubMed DOI

Many A, Hubel CA, Roberts JM. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol. 1996;174:288–291. doi: 10.1016/s0002-9378(96)70410-6. doi: 10.1016/s0002-9378(96)70410-6. Available from: PubMed DOI

Martin A, Faes C, Debevec T, Rytz C, Millet G, Pialoux V. Preterm birth and oxidative stress: Effects of acute physical exercise and hypoxia physiological responses. Redox Biol. 2018;17:315–322. doi: 10.1016/j.redox.2018.04.022. doi: 10.1016/j.redox.2018.04.022. Available from: PubMed DOI PMC

Menon R, Jones J, Gunst PR, Kacerovsky M, Fortunato SJ, Saade GR, et al. Amniotic fluid metabolomic analysis in spontaneous preterm birth. Reprod Sci. 2014;21:791–803. doi: 10.1177/1933719113518987. doi: 10.1177/1933719113518987. Available from: PubMed DOI PMC

Morgan TK. Placental insufficiency is a leading cause of preterm labor. NeoReviews. 2014;15(12):e518–ee25. doi: 10.1542/neo.15-12-e518. doi: 10.1542/neo.15-12-e518. Available from: DOI

Musilova I, Andrys C, Holeckova M, Kolarova V, Pliskova L, Drahosova M, et al. Interleukin-6 measured using the automated electrochemiluminescence immunoassay method for the identification of intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2020;33:1919–1926. doi: 10.1080/14767058.2018.1533947. doi: 10.1080/14767058.2018.1533947. Available from: PubMed DOI

Nilsson AK, Tebani A, Malmodin D, Pedersen A, Hellgren G, Löfqvist C, et al. Longitudinal serum metabolomics in extremely premature infants: relationships with gestational age, nutrition, and morbidities. Front Neurosci. 2022;16:830884. doi: 10.3389/fnins.2022.830884. doi: 10.3389/fnins.2022.830884. Available from: PubMed DOI PMC

Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69(6):E1–E8. doi: 10.1001/archgenpsychiatry.2011.1374. doi: 10.1001/archgenpsychiatry.2011.1374. Available from: PubMed DOI

Paquette AG, Brockway HM, Price ND, Muglia LJ. Comparative transcriptomic analysis of human placentae at term and preterm delivery. Biol Reprod. 2018;98(1):89–101. doi: 10.1093/biolre/iox163. doi: 10.1093/biolre/iox163. Available from: PubMed DOI PMC

Paquette AG, MacDonald J, Bammler T, Day DB, Loftus CT, Buth E, et al. Placental transcriptomic signatures of spontaneous preterm birth. Am J Obstet Gynecol. 2023;228(1):73. doi: 10.1016/j.ajog.2022.07.015. doi: 10.1016/j.ajog.2022.07.015. Available from: PubMed DOI PMC

Perrone S, Negro S, Laschi E, Calderisi M, Giordano M, De Bernardo G, et al. Metabolomic profile of young adults born preterm. Metabolites. 2021;11(10):697. doi: 10.3390/metabo11100697. doi: 10.3390/metabo11100697. Available from: PubMed DOI PMC

Romero R, Kusanovic JP, Chaiworapongsa T, Hassan SS. Placental bed disorders in preterm labor, preterm PROM, spontaneous abortion and abruptio placentae. Best Pract Res Clin Obstet Gynaecol. 2011;25:313–327. doi: 10.1016/j.bpobgyn.2011.02.006. doi: 10.1016/j.bpobgyn.2011.02.006. Available from: PubMed DOI PMC

Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Chaiworapongsa T, Gomez R, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010;23:1344–1359. doi: 10.3109/14767058.2010.482618. doi: 10.3109/14767058.2010.482618. Available from: PubMed DOI PMC

Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–269. doi: 10.1016/s0140-6736(08)60136-1. doi: 10.1016/s0140-6736(08)60136-1. Available from: PubMed DOI

Salafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989;73:383–389. PubMed

Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, et al. Adenosine and preeclampsia. Mol Aspects Med. 2017;55:126–139. doi: 10.1016/j.mam.2016.12.003. doi: 10.1016/j.mam.2016.12.003. Available from: PubMed DOI

Savvidou MD, Hingorani AD, Tsikas D, Frölich JC, Vallance P, Nicolaides KH. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet. 2003;361(9368):1511–1517. doi: 10.1016/s0140-6736(03)13177-7. doi: 10.1016/s0140-6736(03)13177-7. Available from: PubMed DOI

Sedlmayr P, Blaschitz A, Stocker R. The role of placental tryptophan catabolism. Front Immunol. 2014;5:230. doi: 10.3389/fimmu.2014.00230. doi: 10.3389/fimmu.2014.00230. Available from: PubMed DOI PMC

Sferruzzi-Perri AN, Camm EJ. The programming power of the placenta. Front Physiol. 2016;7:33. doi: 10.3389/fphys.2016.00033. doi: 10.3389/fphys.2016.00033. Available from: PubMed DOI PMC

Staud F, Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016. doi: 10.1016/j.biocel.2018.09.016. Available from: PubMed DOI

Stranik J, Kacerovsky M, Andrys C, Soucek O, Bolehovska R, Holeckova M, et al. Intra-amniotic infection and sterile intra-amniotic inflammation are associated with elevated concentrations of cervical fluid interleukin-6 in women with spontaneous preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2022;35:4861–4869. doi: 10.1080/14767058.2020.1869932. doi: 10.1080/14767058.2020.1869932. Available from: PubMed DOI

Stranik J, Kacerovsky M, Soucek O, Kolackova M, Musilova I, Pliskova L, et al. IgGFc-binding protein in pregnancies complicated by spontaneous preterm delivery: a retrospective cohort study. Sci Rep. 2021;11(1):6107. doi: 10.1038/s41598-021-85473-2. doi: 10.1038/s41598-021-85473-2. Available from: PubMed DOI PMC

Teune MJ, Bakhuizen S, Gyamfi Bannerman C, Opmeer BC, van Kaam AH, van Wassenaer AG, et al. A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gynecol. 2011;205:374. doi: 10.1016/j.ajog.2011.07.015. doi: 10.1016/j.ajog.2011.07.015. Available from: PubMed DOI

Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339(8793):572–575. doi: 10.1016/0140-6736(92)90865-z. doi: 10.1016/0140-6736(92)90865-z. Available from: PubMed DOI

van Baaren GJ, Vis JY, Wilms FF, Oudijk MA, Kwee A, Porath MM, et al. Predictive value of cervical length measurement and fibronectin testing in threatened preterm labor. Obstet Gynecol. 2014;123:1185–1192. doi: 10.1097/aog.0000000000000229. doi: 10.1097/aog.0000000000000229. Available from: PubMed DOI

Visiedo F, Bugatto F, Quintero-Prado R, Cózar-Castellano I, Bartha JL, Perdomo G. Glucose and fatty acid metabolism in placental explants from pregnancies complicated with gestational diabetes mellitus. Reprod Sci. 2015;22:798–801. doi: 10.1177/1933719114561558. doi: 10.1177/1933719114561558. Available from: PubMed DOI

Ward RM, Beachy JC. Neonatal complications following preterm birth. BJOG. 2003;110(Suppl 20):8–16. doi: 10.1016/s1470-0328(03)00012-0. doi: 10.1016/s1470-0328(03)00012-0. Available from: PubMed DOI

Wilson K, Hawken S, Ducharme R, Potter BK, Little J, Thébaud B, et al. Metabolomics of prematurity: analysis of patterns of amino acids, enzymes, and endocrine markers by categories of gestational age. Pediatr Res. 2014;75:367–373. doi: 10.1038/pr.2013.212. doi: 10.1038/pr.2013.212. Available from: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...