Potential Peripartum Markers of Infectious-Inflammatory Complications in Spontaneous Preterm Birth
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26120581
PubMed Central
PMC4450245
DOI
10.1155/2015/343501
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- infekční komplikace v těhotenství genetika patologie MeSH
- lidé MeSH
- peptidové mapování MeSH
- peripartální období genetika MeSH
- plodová voda metabolismus MeSH
- předčasný porod genetika patologie MeSH
- proteom genetika MeSH
- těhotenství MeSH
- zánět komplikace genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
Spontaneous preterm birth significantly contributes to the overall neonatal morbidity associated with preterm deliveries. Nearly 50% of cases are associated with microbial invasion of the amniotic cavity followed by an inflammatory response. Robust diagnostic tools for neonates jeopardized by infection and inflammation may thus decrease the overall neonatal morbidity substantially. Amniotic fluid retrieved during labor retains fetal and pregnancy-related protein fingerprint and its sampling does not place any unwanted stress on women. Using exploratory and targeted methods we analyzed proteomes of amniotic fluid sampled at the end of spontaneous preterm labor prior to delivery from women with and without infection and inflammation. Exploratory data indicated several amniotic fluid proteins to be associated with infectious-inflammatory complications in spontaneous preterm birth. LC-SRM analysis subsequently verified statistically significant changes in lipocalin-1 (P = 0.047 and AUC = 0.67, P = 0.046), glycodelin (P = 0.013 and AUC = 0.73, P = 0.013), and nicotinamide phosphoribosyltransferase (P = 0.018 and AUC = 0.71, P = 0.01).
Zobrazit více v PubMed
World Health Organization. World Health Organization Technical Report Series. 457. Geneva, Switzerland: World Health Organization; 1970. The prevention of perinatal mortality and morbidity. Report of a WHO Expert Committee. PubMed
Wang M. L., Dorer D. J., Fleming M. P., Catlin E. A. Clinical outcomes of near-term infants. Pediatrics. 2004;114(2):372–376. doi: 10.1542/peds.114.2.372. PubMed DOI
Goldenberg R. L., Culhane J. F., Iams J. D., Romero R. Epidemiology and causes of preterm birth. The Lancet. 2008;371(9606):75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Martin J. A., Hamilton B. E., Ventura S. J., et al. Births: final data for 2009. National Vital Statistics Reports. 2011;60(1):1–70. PubMed
Huddy C. L. J., Johnson A., Hope P. L. Educational and behavioural problems in babies of 32–35 weeks gestation. Archives of Disease in Childhood. 2001;85(1):F23–F28. doi: 10.1136/adc.85.1.23. PubMed DOI PMC
Moutquin J.-M. Classification and heterogeneity of preterm birth. BJOG. 2003;110(supplement 20):30–33. doi: 10.1016/s1470-0328(03)00021-1. PubMed DOI
Morken N.-H., Magnus P., Jacobsson B. Subgroups of preterm delivery in the Norwegian Mother and Child Cohort Study. Acta Obstetricia et Gynecologica Scandinavica. 2008;87(12):1374–1377. doi: 10.1080/00016340802491508. PubMed DOI
Morken N.-H., Vogel I., Kallen K., et al. Reference population for international comparisons and time trend surveillance of preterm delivery proportions in three countries. BMC Women's Health. 2008;8, article 16 doi: 10.1186/1472-6874-8-16. PubMed DOI PMC
Mattison D. R., Damus K., Fiore E., Petrini J., Alter C. Preterm delivery: a public health perspective. Paediatric and Perinatal Epidemiology. 2001;15(supplement 2):7–16. doi: 10.1046/j.1365-3016.2001.00004.x. PubMed DOI
Goldenberg R. L., Hauth J. C., Andrews W. W. Intrauterine infection and preterm delivery. The New England Journal of Medicine. 2000;342(20):1500–1507. doi: 10.1056/nejm200005183422007. PubMed DOI
Iguchi H., Natori S., Nawata H. Effect of GRF and somatostatin on 7B2 secretion by rat GH1 cells. Endocrinologia Japonica. 1989;36(6):787–793. doi: 10.1507/endocrj1954.36.787. PubMed DOI
Angel T. E., Aryal U. K., Hengel S. M., et al. Mass spectrometry-based proteomics: existing capabilities and future directions. Chemical Society Reviews. 2012;41(10):3912–3928. doi: 10.1039/c2cs15331a. PubMed DOI PMC
Tambor V., Hunter C. L., Seymour S. L., Kacerovsky M., Stulik J., Lenco J. CysTRAQ—a combination of iTRAQ and enrichment of cysteinyl peptides for uncovering and quantifying hidden proteomes. Journal of Proteomics. 2012;75(3):857–867. doi: 10.1016/j.jprot.2011.09.027. PubMed DOI
Tambor V., Fučíková A., Lenčo J., et al. Application of proteomics in biomarker discovery: a primer for the clinician. Physiological Research. 2010;59(4):471–497. PubMed
Shi T., Su D., Liu T., et al. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics. 2012;12(8):1074–1092. doi: 10.1002/pmic.201100436. PubMed DOI PMC
Aye T. T., Low T. Y., Bjørlykke Y., Barsnes H., Heck A. J. R., Berven F. S. Use of stable isotope dimethyl labeling coupled to selected reaction monitoring to enhance throughput by multiplexing relative quantitation of targeted proteins. Analytical Chemistry. 2012;84(11):4999–5006. doi: 10.1021/ac300596r. PubMed DOI
Tang W. H., Shilov I. V., Seymour S. L. Nonlinear fitting method for determining local false discovery rates from decoy database searches. Journal of Proteome Research. 2008;7(9):3661–3667. doi: 10.1021/pr070492f. PubMed DOI
Shilov I. V., Seymourt S. L., Patel A. A., et al. The paragon algorithm, a next generation search engine that uses sequence temperature values sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular and Cellular Proteomics. 2007;6(9):1638–1655. doi: 10.1074/mcp.T600050-MCP200. PubMed DOI
MacLean B., Tomazela D. M., Shulman N., et al. Skyline: aAn open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–968. doi: 10.1093/bioinformatics/btq054.btq054 PubMed DOI PMC
Tambor V., Kacerovsky M., Andrys C., et al. Amniotic fluid cathelicidin in pprom pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis. PLoS ONE. 2012;7(7) doi: 10.1371/journal.pone.0041164.e41164 PubMed DOI PMC
Bujold E., Romero R., Kusanovic J. P., et al. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. Journal of Maternal-Fetal and Neonatal Medicine. 2008;21(10):697–713. doi: 10.1080/14767050802053289. PubMed DOI PMC
Buhimschi I. A., Christner R., Buhimschi C. S. Proteomic biomarker analysis of amniotic fluid for identification of intra-amniotic inflammation. BJOG: An International Journal of Obstetrics and Gynaecology. 2005;112(2):173–181. doi: 10.1111/j.1471-0528.2004.00340.x. PubMed DOI
Gravett M. G., Novy M. J., Rosenfeld R. G., et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. Journal of the American Medical Association. 2004;292(4):462–469. doi: 10.1001/jama.292.4.462. PubMed DOI
Evans C., Noirel J., Ow S. Y., et al. An insight into iTRAQ: where do we stand now? Analytical and Bioanalytical Chemistry. 2012;404(4):1011–1027. doi: 10.1007/s00216-012-5918-6. PubMed DOI
Kacerovsky M., Tambor V., Vajrychová M., et al. Amniotic fluid myeloperoxidase in pregnancies complicated by preterm prelabor rupture of membranes. Journal of Maternal-Fetal and Neonatal Medicine. 2013;26(5):463–468. doi: 10.3109/14767058.2012.735997. PubMed DOI
Hayashi M., Zhu K., Sagesaka T., Fukasawa I., Inaba N. Elevation of amniotic fluid macrophage colony-stimulating factor in normotensive pregnancies that delivered small-for-gestational-age infants. American Journal of Reproductive Immunology. 2007;57(6):488–494. doi: 10.1111/j.1600-0897.2007.00480.x. PubMed DOI
Kovanich D., Cappadona S., Raijmakers R., Mohammed S., Scholten A., Heck A. J. R. Applications of stable isotope dimethyl labeling in quantitative proteomics. Analytical and Bioanalytical Chemistry. 2012;404(4):991–1009. doi: 10.1007/s00216-012-6070-z. PubMed DOI
Percy A. J., Chambers A. G., Yang J., Domanski D., Borchers C. H. Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. Analytical and Bioanalytical Chemistry. 2012;404(4):1089–1101. doi: 10.1007/s00216-012-6010-y. PubMed DOI
Ericksen B., Wu Z., Lu W., Lehrer R. I. Antibacterial activity and specificity of the six human α-defensins. Antimicrobial Agents and Chemotherapy. 2005;49(1):269–275. doi: 10.1128/aac.49.1.269-275.2005. PubMed DOI PMC
Dartt D. A. Tear lipocalin: structure and function. Ocular Surface. 2011;9(3):126–138. doi: 10.1016/s1542-0124(11)70022-2. PubMed DOI PMC
Glasgow B. J., Gasymov O. K. Focus on molecules: tear lipocalin. Experimental Eye Research. 2011;92(4):242–243. doi: 10.1016/j.exer.2010.08.018. PubMed DOI PMC
van't Hof W., Blankenvoorde M. F. J., Veerman E. C. I., Nieuw Amerongen A. V. The salivary lipocalin von Ebner's gland protein is a cysteine proteinase inhibitor. Journal of Biological Chemistry. 1997;272(3):1837–1841. doi: 10.1074/jbc.272.3.1837. PubMed DOI
Seppälä M., Taylor R. N., Koistinen H., Koistinen R., Milgrom E. Glycodelin: a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocrine Reviews. 2002;23(4):401–430. doi: 10.1210/er.2001-0026. PubMed DOI
Lee C. L., Lam K. K. W., Koistinen H., et al. Glycodelin-A as a paracrine regulator in early pregnancy. Journal of Reproductive Immunology. 2011;90(1):29–34. doi: 10.1016/j.jri.2011.04.007. PubMed DOI
Julkunen M., Rutanen E.-M., Koskimies A., Ranta T., Bohn H., Seppälä M. Distribution of placental protein 14 in tissues and body fluids during pregnancy. BJOG. 1985;92(11):1145–1151. doi: 10.1111/j.1471-0528.1985.tb03027.x. PubMed DOI
Oggé G., Romero R., Lee D.-C., et al. Chronic chorioamnionitis displays distinct alterations of the amniotic fluid proteome. Journal of Pathology. 2011;223(4):553–565. doi: 10.1002/path.2825. PubMed DOI PMC
Samal B., Sun Y., Stearns G., Xie C., Suggs S., Mcniece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Molecular and Cellular Biology. 1994;14(2):1431–1437. PubMed PMC
Hug C., Lodish H. F. Visfatin: a new adipokine. Science. 2005;307(5708):366–367. doi: 10.1126/science.1106933. PubMed DOI
Mazaki-Tovi S., Romero R., Kusanovic J. P., et al. Visfatin/Pre-B cell colony-enhancing factor in amniotic fluid in normal pregnancy, spontaneous labor at term, preterm labor and prelabor rupture of membranes: an association with subclinical intrauterine infection in preterm parturition. Journal of Perinatal Medicine. 2008;36(6):485–496. doi: 10.1515/jpm.2008.084. PubMed DOI PMC
Kendal C. E., Bryant-Greenwood G. D. Pre-B-cell colony-enhancing factor (PBEF/Visfatin) gene expression is modulated by NF-kappaB and AP-1 in human amniotic epithelial cells. Placenta. 2007;28(4):305–314. doi: 10.1016/j.placenta.2006.03.011. PubMed DOI
Ognjanovic S., Bao S., Yamamoto S. Y., Garibay-Tupas J., Samal B., Bryant-Greenwood G. D. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. Journal of Molecular Endocrinology. 2001;26(2):107–117. doi: 10.1677/jme.0.0260107. PubMed DOI