Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33072756
PubMed Central
PMC7530341
DOI
10.3389/fcell.2020.574034
Knihovny.cz E-zdroje
- Klíčová slova
- fetal programming, kynurenine pathway, placenta–brain axis, serotonin pathway, trophoblast, tryptophan metabolism,
- Publikační typ
- časopisecké články MeSH
L-Tryptophan is an essential amino acid and a precursor of several physiologically active metabolites. In the placenta, the serotonin and kynurenine metabolic pathways of tryptophan metabolism have been identified, giving rise to various molecules of neuroactive or immunoprotective properties, such as serotonin, melatonin, kynurenine, kynurenic acid, or quinolinic acid. Current literature suggests that optimal levels of these molecules in the fetoplacental unit are crucial for proper placenta functions, fetal development and programming. Placenta is a unique endocrine organ that, being equipped with a battery of biotransformation enzymes and transporters, precisely orchestrates homeostasis of tryptophan metabolic pathways. However, because pregnancy is a dynamic process and placental/fetal needs are continuously changing throughout gestation, placenta must adapt to these changes and ensure proper communication in the feto-placental unit. Therefore, in this study we investigated alterations of placental tryptophan metabolic pathways throughout gestation. Quantitative polymerase chain reaction (PCR) analysis of 21 selected genes was carried out in first trimester (n = 13) and term (n = 32) placentas. Heatmap analysis with hierarchical clustering revealed differential gene expression of serotonin and kynurenine pathways across gestation. Subsequently, digital droplet PCR, Western blot, and functional analyses of the rate-limiting enzymes suggest preferential serotonin synthesis early in pregnancy with a switch to kynurenine production toward term. Correspondingly, increased function and/or protein expression of serotonin degrading enzyme and transporters at term indicates efficient placental uptake and metabolic degradation of serotonin. Lastly, gene expression analysis in choriocarcinoma-derived cell lines (BeWo, BeWo b30, JEG-3) revealed dissimilar expression patterns and divergent effect of syncytialization compared to primary trophoblast cells isolated from human term placentas; these findings show that the commonly used in vitro placental models are not suitable to study placental handling of tryptophan. Altogether, our data provide the first comprehensive evidence of changes in placental homeostasis of tryptophan and its metabolites as a function of gestational age, which is critical for proper placental function and fetal development.
Institute of Biochemistry and Molecular Medicine University of Bern Bern Switzerland
Swiss National Centre of Competence in Research TransCure University of Bern Bern Switzerland
Zobrazit více v PubMed
Arevalo R., Afonso D., Castro R., Rodriguez M. (1991). Fetal brain serotonin synthesis and catabolism is under control by mother intake of tryptophan. Life Sci. 49 53–66. 10.1016/0024-3205(91)90579-z PubMed DOI
Baban B., Chandler P., Mccool D., Marshall B., Munn D. H., Mellor A. L. (2004). Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61 67–77. 10.1016/j.jri.2003.11.003 PubMed DOI
Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A., et al. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44 W147–W153. PubMed PMC
Badawy A. A. (2015). Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 35:e00261. PubMed PMC
Barker D. J. P., Eriksson J. G., Kajantie E., Alwasel S. H., Fall C. H. D., Roseboom T. J., et al. (2010). “The maternal and placental origins of chronic disease,” in The Placenta and Human Developmental Programming, eds Burton G. J., Barker D. J. P., Moffett A., Thornburg K. (Cambridge: Cambridge University Press; ), 5–17.
Benirschke K., Kaufmann P., Baergen R. (2016). Pathology of the Human Placenta. New York, NY: Springer.
Blaschitz A., Gauster M., Fuchs D., Lang I., Maschke P., Ulrich D., et al. (2011). Vascular endothelial expression of indoleamine 2,3-dioxygenase 1 forms a positive gradient towards the feto-maternal interface. PLoS One 6:e21774. 10.1371/journal.pone.0021774 PubMed DOI PMC
Bonnin A., Goeden N., Chen K., Wilson M. L., King J., Shih J. C., et al. (2011). A transient placental source of serotonin for the fetal forebrain. Nature 472 347–350. 10.1038/nature09972 PubMed DOI PMC
Bonnin A., Levitt P. (2011). Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197 1–7. 10.1016/j.neuroscience.2011.10.005 PubMed DOI PMC
Carrasco G., Cruz M. A., Dominguez A., Gallardo V., Miguel P., Gonzalez C. (2000). The expression and activity of monoamine oxidase A, but not of the serotonin transporter, is decreased in human placenta from pre-eclamptic pregnancies. Life Sci. 67 2961–2969. 10.1016/s0024-3205(00)00883-3 PubMed DOI
Cote F., Fligny C., Bayard E., Launay J. M., Gershon M. D., Mallet J., et al. (2007). Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. U.S.A. 104 329–334. 10.1073/pnas.0606722104 PubMed DOI PMC
Cox B., Leavey K., Nosi U., Wong F., Kingdom J. (2015). Placental transcriptome in development and pathology: expression, function, and methods of analysis. Am. J. Obstet Gynecol. 213 S138–S151. PubMed
Cvitic S., Longtine M. S., Hackl H., Wagner K., Nelson M. D., Desoye G., et al. (2013). The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS One 8:e79233. 10.1371/journal.pone.0079233 PubMed DOI PMC
Daneman R., Zhou L., Kebede A. A., Barres B. A. (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468 562–566. 10.1038/nature09513 PubMed DOI PMC
Dong M., Ding G., Zhou J., Wang H., Zhao Y., Huang H. (2008). The effect of trophoblasts on T lymphocytes: possible regulatory effector molecules–a proteomic analysis. Cell Physiol. Biochem. 21 463–472. 10.1159/000129639 PubMed DOI
Entrican G., Wattegedera S., Chui M., Oemar L., Rocchi M., Mcinnes C. (2002). Gamma interferon fails to induce expression of indoleamine 2,3-dioxygenase and does not control the growth of Chlamydophila abortus in BeWo trophoblast cells. Infect. Immun. 70 2690–2693. 10.1128/iai.70.5.2690-2693.2002 PubMed DOI PMC
Fitzpatrick P. F. (1999). Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 68 355–381. 10.1146/annurev.biochem.68.1.355 PubMed DOI
Foster A. C., Vezzani A., French E. D., Schwarcz R. (1984). Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci. Lett. 48 273–278. 10.1016/0304-3940(84)90050-8 PubMed DOI
Gaccioli F., Aye I. L. M. H., Roos S., Lager S., Ramirez V. I., Kanai Y., et al. (2015). Expression and functional characterisation of System L amino acid transporters in the human term placenta. Reproduct. Biol. Endocrinol. 13 57–57. PubMed PMC
Gao K., Mu C. L., Farzi A., Zhu W. Y. (2020). Tryptophan metabolism: a link between the gut microbiota and brain. Adv. Nutr. 11 709–723. 10.1093/advances/nmz127 PubMed DOI PMC
Gleason G., Liu B., Bruening S., Zupan B., Auerbach A., Mark W., et al. (2010). The serotonin1A receptor gene as a genetic and prenatal maternal environmental factor in anxiety. Proc. Natl. Acad. Sci. U.S.A. 107 7592–7597. 10.1073/pnas.0914805107 PubMed DOI PMC
Goeden N., Notarangelo F. M., Pocivavsek A., Beggiato S., Bonnin A., Schwarcz R. (2017). Prenatal dynamics of kynurenine pathway metabolism in mice: focus on kynurenic acid. Dev. Neurosci. 39 519–528. 10.1159/000481168 PubMed DOI PMC
Goeden N., Velasquez J., Arnold K. A., Chan Y., Lund B. T., Anderson G. M., et al. (2016). Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci. 36 6041–6049. 10.1523/jneurosci.2534-15.2016 PubMed DOI PMC
Hannan N. J., Bambang K., Kaitu’u-Lino T. U. J., Konje J. C., Tong S. (2014). A bioplex analysis of cytokines and chemokines in first trimester maternal plasma to screen for predictors of miscarriage. PLoS One 9:e93320. 10.1371/journal.pone.0093320 PubMed DOI PMC
Holtan S. G., Chen Y., Kaimal R., Creedon D. J., Enninga E. A., Nevala W. K., et al. (2015). Growth modeling of the maternal cytokine milieu throughout normal pregnancy: macrophage-derived chemokine decreases as inflammation/counterregulation increases. J. Immunol. Res. 2015:952571. PubMed PMC
Honig A., Rieger L., Kapp M., Sutterlin M., Dietl J., Kammerer U. (2004). Indoleamine 2,3-dioxygenase (IDO) expression in invasive extravillous trophoblast supports role of the enzyme for materno-fetal tolerance. J. Reprod. Immunol. 61 79–86. 10.1016/j.jri.2003.11.002 PubMed DOI
Huang X., Luthi M., Ontsouka E. C., Kallol S., Baumann M. U., Surbek D. V., et al. (2016). Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Mol. Hum. Reprod. 22 442–456. 10.1093/molehr/gaw018 PubMed DOI
Iwanaga N., Yamamasu S., Tachibana D., Nishio J., Nakai Y., Shintaku H., et al. (2004). Activity of synthetic enzymes of tetrahydrobiopterin in the human placenta. Int. J. Mol. Med. 13 117–120. PubMed
Iwasaki S., Nakazawa K., Sakai J., Kometani K., Iwashita M., Yoshimura Y., et al. (2005). Melatonin as a local regulator of human placental function. J. Pineal Res. 39 261–265. 10.1111/j.1600-079x.2005.00244.x PubMed DOI
Jiraskova L., Cerveny L., Karbanova S., Ptackova Z., Staud F. (2018). Expression of concentrative nucleoside transporters (SLC28A) in the human placenta: effects of gestation age and prototype differentiation-affecting agents. Mol. Pharm. 15 2732–2741. 10.1021/acs.molpharmaceut.8b00238 PubMed DOI
Kallol S., Moser-Haessig R., Ontsouka C. E., Albrecht C. (2018). Comparative expression patterns of selected membrane transporters in differentiated BeWo and human primary trophoblast cells. Placenta 7 48–52. 10.1016/j.placenta.2018.10.008 PubMed DOI
Karahoda R., Horackova H., Kastner P., Matthios A., Cerveny L., Kucera R., et al. (2020). Serotonin homeostasis in the materno-fetal interface at term: role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiolo. 229:e13478. PubMed PMC
Kaur H., Bose C., Mande S. S. (2019). Tryptophan metabolism by gut microbiome and gut-brain-axis: an in silico analysis. Front. Neurosci. 13:1365. 10.3389/fnins.2019.01365 PubMed DOI PMC
Kingdom J., Huppertz B., Seaward G., Kaufmann P. (2000). Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 92 35–43. 10.1016/s0301-2115(00)00423-1 PubMed DOI
Kolahi K. S., Valent A. M., Thornburg K. L. (2017). Cytotrophoblast, not syncytiotrophoblast, dominates glycolysis and oxidative phosphorylation in human term placenta. Sci. Rep. 7:42941. PubMed PMC
Kudo Y., Boyd C. A., Spyropoulou I., Redman C. W., Takikawa O., Katsuki T., et al. (2004). Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J. Reprod. Immunol. 61 87–98. 10.1016/j.jri.2003.11.004 PubMed DOI
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685. 10.1038/227680a0 PubMed DOI
Lanoix D., Beghdadi H., Lafond J., Vaillancourt C. (2008). Human placental trophoblasts synthesize melatonin and express its receptors. J. Pineal Res. 45 50–60. 10.1111/j.1600-079x.2008.00555.x PubMed DOI
Laurent L., Deroy K., St-Pierre J., Cote F., Sanderson J. T., Vaillancourt C. (2017). Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie 140 159–165. 10.1016/j.biochi.2017.07.008 PubMed DOI
Lee N., Hebert M. F., Prasad B., Easterling T. R., Kelly E. J., Unadkat J. D., et al. (2013). Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy. Drug Metab. Disposit. 41 2225–2232. 10.1124/dmd.113.054072 PubMed DOI PMC
Li L., Schust D. J. (2015). Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod. Biol. Endocrinol. 13:71. PubMed PMC
Ligam P., Manuelpillai U., Wallace E. M., Walker D. (2005). Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta 26 498–504. 10.1016/j.placenta.2004.08.009 PubMed DOI
Maldonado-Estrada J., Menu E., Roques P., Barre-Sinoussi F., Chaouat G. (2004). Evaluation of Cytokeratin 7 as an accurate intracellular marker with which to assess the purity of human placental villous trophoblast cells by flow cytometry. J. Immunol. Methods 286 21–34. 10.1016/j.jim.2003.03.001 PubMed DOI
Mckinney J., Knappskog P. M., Haavik J. (2005). Different properties of the central and peripheral forms of human tryptophan hydroxylase. J. Neurochem. 92 311–320. 10.1111/j.1471-4159.2004.02850.x PubMed DOI
Mikheev A. M., Nabekura T., Kaddoumi A., Bammler T. K., Govindarajan R., Hebert M. F., et al. (2008). Profiling gene expression in human placentae of different gestational ages: an OPRU Network and UW SCOR Study. Reproduct. Sci. (Thousand Oaks Calif). 15 866–877. 10.1177/1933719108322425 PubMed DOI PMC
Mori M., Ishikawa G., Luo S. S., Mishima T., Goto T., Robinson J. M., et al. (2007). The cytotrophoblast layer of human chorionic villi becomes thinner but maintains its structural integrity during gestation. Biol. Reprod. 76 164–172. 10.1095/biolreprod.106.056127 PubMed DOI
Muller C. L., Anacker A. M., Rogers T. D., Goeden N., Keller E. H., Forsberg C. G., et al. (2017). Impact of maternal serotonin transporter genotype on placental serotonin, fetal forebrain serotonin, and neurodevelopment. Neuropsychopharmacology 42 427–436. 10.1038/npp.2016.166 PubMed DOI PMC
Munn D. H., Zhou M., Attwood J. T., Bondarev I., Conway S. J., Marshall B., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281 1191–1193. 10.1126/science.281.5380.1191 PubMed DOI
Murthi P., Wallace E. M., Walker D. W. (2017). Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta 52 62–70. 10.1016/j.placenta.2017.02.013 PubMed DOI
Nagai R., Watanabe K., Wakatsuki A., Hamada F., Shinohara K., Hayashi Y., et al. (2008). Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced oxidative/nitrosative mitochondrial damage in the placenta. J. Pineal Res. 45 271–276. 10.1111/j.1600-079x.2008.00586.x PubMed DOI
Notarangelo F. M., Beggiato S., Schwarcz R. (2019). Assessment of prenatal kynurenine metabolism using tissue slices: focus on the neosynthesis of kynurenic acid in mice. Dev. Neurosci. 41 102–111. 10.1159/000499736 PubMed DOI PMC
Petroff M. G., Phillips T. A., Ka H., Pace J. L., Hunt J. S. (2006). “Isolation and culture of term human trophoblast cells,” in Placenta and Trophoblast: Methods and Protocols, eds Soares M. J., Hunt J. S. (Totowa, NJ: Humana Press; ). PubMed
Ranzil S., Ellery S., Walker D. W., Vaillancourt C., Alfaidy N., Bonnin A., et al. (2019). Disrupted placental serotonin synthetic pathway and increased placental serotonin: potential implications in the pathogenesis of human fetal growth restriction. Placenta 84 74–83. 10.1016/j.placenta.2019.05.012 PubMed DOI PMC
Rosenfeld C. S. (2020a). The placenta-brain-axis. J. Neurosci. Res. 10.1002/jnr.24603 [Epub ahead of print]. PubMed DOI PMC
Rosenfeld C. S. (2020b). Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol. Reprod. 102 532–538. 10.1093/biolre/ioz204 PubMed DOI PMC
Sano M., Ferchaud-Roucher V., Kaeffer B., Poupeau G., Castellano B., Darmaun D. (2016). Maternal and fetal tryptophan metabolism in gestating rats: effects of intrauterine growth restriction. Amino Acids 48 281–290. 10.1007/s00726-015-2072-4 PubMed DOI
Schwarcz R., Bruno J. P., Muchowski P. J., Wu H. Q. (2012). Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13 465–477. 10.1038/nrn3257 PubMed DOI PMC
Sedlmayr P., Blaschitz A., Stocker R. (2014). The role of placental tryptophan catabolism. Front. Immunol. 5:230–230. PubMed PMC
Sedlmayr P., Blaschitz A., Wintersteiger R., Semlitsch M., Hammer A., Mackenzie C. R., et al. (2002). Localization of indoleamine 2,3-dioxygenase in human female reproductive organs and the placenta. Mol. Hum. Reprod. 8 385–391. 10.1093/molehr/8.4.385 PubMed DOI
Seron-Ferre M., Mendez N., Abarzua-Catalan L., Vilches N., Valenzuela F. J., Reynolds H. E., et al. (2012). Circadian rhythms in the fetus. Mol. Cell Endocrinol. 349 68–75. PubMed
Simner C., Novakovic B., Lillycrop K. A., Bell C. G., Harvey N. C., Cooper C., et al. (2017). DNA methylation of amino acid transporter genes in the human placenta. Placenta 60 64–73. 10.1016/j.placenta.2017.10.010 PubMed DOI PMC
Sitras V., Fenton C., Paulssen R., Vårtun Å, Acharya G. (2012). Differences in gene expression between first and third trimester human placenta: a microarray study. PLoS One 7:e33294. 10.1371/journal.pone.0033294 PubMed DOI PMC
Staud F., Karahoda R. (2018). Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 105 35–40. 10.1016/j.biocel.2018.09.016 PubMed DOI
Takikawa O., Kuroiwa T., Yamazaki F., Kido R. (1988). Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Chem. 263 2041–2048. PubMed
Uuskula L., Mannik J., Rull K., Minajeva A., Koks S., Vaas P., et al. (2012). Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One 7:e49248. 10.1371/journal.pone.0049248 PubMed DOI PMC
Wakx A., Nedder M., Tomkiewicz-Raulet C., Dalmasso J., Chissey A., Boland S., et al. (2018). Expression, localization, and activity of the aryl hydrocarbon receptor in the human placenta. Int. J. Mol. Sci. 19:3762. 10.3390/ijms19123762 PubMed DOI PMC
Zanetta L., Marcus S. G., Vasile J., Dobryansky M., Cohen H., Eng K., et al. (2000). Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int. J. Cancer 85 281–288. 10.1002/(SICI)1097-0215(20000115)85:23C281::AID-IJC213E3.0.CO;2-3 PubMed DOI
Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†
Developmental expression of catecholamine system in the human placenta and rat fetoplacental unit
Revisiting Steroidogenic Pathways in the Human Placenta and Primary Human Trophoblast Cells
Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation