Functional reorganization of monoamine transport systems during villous trophoblast differentiation: evidence of distinct differences between primary human trophoblasts and BeWo cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-13017S
Grantová Agentura České Republiky
20-13017S
Grantová Agentura České Republiky
20-13017S
Grantová Agentura České Republiky
20-13017S
Grantová Agentura České Republiky
20-13017S
Grantová Agentura České Republiky
PubMed
35927731
PubMed Central
PMC9351077
DOI
10.1186/s12958-022-00981-8
PII: 10.1186/s12958-022-00981-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cell differentiation, Membrane transport, Monoamines, Neuroplacentology, Placenta, Trophoblast,
- MeSH
- dopamin metabolismus MeSH
- lidé MeSH
- noradrenalin farmakologie MeSH
- placenta metabolismus MeSH
- serotonin * metabolismus farmakologie MeSH
- těhotenství MeSH
- trofoblasty * metabolismus MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dopamin MeSH
- noradrenalin MeSH
- serotonin * MeSH
BACKGROUND: Three primary monoamines-serotonin, norepinephrine, and dopamine-play major roles in the placenta-fetal brain axis. Analogously to the brain, the placenta has transport mechanisms that actively take up these monoamines into trophoblast cells. These transporters are known to play important roles in the differentiated syncytiotrophoblast layer, but their status and activities in the undifferentiated, progenitor cytotrophoblast cells are not well understood. Thus, we have explored the cellular handling and regulation of monoamine transporters during the phenotypic transitioning of cytotrophoblasts along the villous pathway. METHODS: Experiments were conducted with two cellular models of syncytium development: primary trophoblast cells isolated from the human term placenta (PHT), and the choriocarcinoma-derived BeWo cell line. The gene and protein expression of membrane transporters for serotonin (SERT), norepinephrine (NET), dopamine (DAT), and organic cation transporter 3 (OCT3) was determined by quantitative PCR and Western blot analysis, respectively. Subsequently, the effect of trophoblast differentiation on transporter activity was analyzed by monoamine uptake into cells. RESULTS: We present multiple lines of evidence of changes in the transcriptional and functional regulation of monoamine transporters associated with trophoblast differentiation. These include enhancement of SERT and DAT gene and protein expression in BeWo cells. On the other hand, in PHT cells we report negative modulation of SERT, NET, and OCT3 protein expression. We show that OCT3 is the dominant monoamine transporter in PHT cells, and its main functional impact is on serotonin uptake, while passive transport strongly contributes to norepinephrine and dopamine uptake. Further, we show that a wide range of selective serotonin reuptake inhibitors affect serotonin cellular accumulation, at pharmacologically relevant drug concentrations, via their action on both OCT3 and SERT. Finally, we demonstrate that BeWo cells do not well reflect the molecular mechanisms and properties of healthy human trophoblast cells. CONCLUSIONS: Collectively, our findings provide insights into the regulation of monoamine transport during trophoblast differentiation and present important considerations regarding appropriate in vitro models for studying monoamine regulation in the placenta.
Institute of Biochemistry and Molecular Medicine University of Bern Bern Switzerland
Swiss National Centre of Competence in Research NCCR TransCure University of Bern Bern Switzerland
Zobrazit více v PubMed
Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86(2):157–164. doi: 10.1038/s41390-019-0405-9. PubMed DOI
Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. doi: 10.1038/nature09972. PubMed DOI PMC
Gratz MJ, Stavrou S, Kuhn C, Hofmann S, Hermelink K, Heidegger H, et al. Dopamine synthesis and dopamine receptor expression are disturbed in recurrent miscarriages. Endocr Connect. 2018;7(5):727–738. doi: 10.1530/EC-18-0126. PubMed DOI PMC
Manyonda IT, Slater DM, Fenske C, Hole D, Choy MY, Wilson C. A role for noradrenaline in pre-eclampsia: towards a unifying hypothesis for the pathophysiology. Br J Obstet Gynaecol. 1998;105(6):641–648. doi: 10.1111/j.1471-0528.1998.tb10179.x. PubMed DOI
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99(1):271–283. doi: 10.1002/jnr.24603. PubMed DOI PMC
Lauder JM. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993;16(6):233–240. doi: 10.1016/0166-2236(93)90162-F. PubMed DOI
Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260. doi: 10.3389/fncel.2013.00260. PubMed DOI PMC
Shi CZ, Zhuang LZ. Norepinephrine regulates human chorionic gonadotrophin production by first trimester trophoblast tissue in vitro. Placenta. 1993;14(6):683–693. doi: 10.1016/S0143-4004(05)80385-6. PubMed DOI
Elmetwally MA, Lenis Y, Tang W, Wu G, Bazer FW. Effects of catecholamines on secretion of interferon tau and expression of genes for synthesis of polyamines and apoptosis by ovine trophectoderm. Biol Reprod. 2018;99(3):611–628. doi: 10.1093/biolre/ioy085. PubMed DOI
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Frontiers in physiology. 2018;9:1091. doi: 10.3389/fphys.2018.01091. PubMed DOI PMC
Staud F, Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016. PubMed DOI
Balkovetz DF, Tiruppathi C, Leibach FH, Mahesh VB, Ganapathy V. Evidence for an imipramine-sensitive serotonin transporter in human placental brush-border membranes. J Biol Chem. 1989;264(4):2195–2198. doi: 10.1016/S0021-9258(18)94161-X. PubMed DOI
Prasad PD, Hoffmans BJ, Moe AJ, Smith CH, Leibach FH, Ganapathy V. Functional expression of the plasma membrane serotonin transporter but not the vesicular monoamine transporter in human placental trophoblasts and choriocarcinoma cells. Elsevier. 1996;17(4):201–207. PubMed
Ramamoorthy S, Prasad PD, Kulanthaivel P, Leibach FH, Blakely RD, Ganapathy V. Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry. 1993;32(5):1346–1353. doi: 10.1021/bi00056a021. PubMed DOI
Ganapathy V, Ramamoorthy S, Leibach FH. Transport and metabolism of monoamines in the human placenta: A review. Placenta. 1993;14:35–51. doi: 10.1016/S0143-4004(05)80281-4. DOI
Karahoda R, Horackova H, Kastner P, Matthios A, Cerveny L, Kucera R, et al. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020;229(4):e13478. doi: 10.1111/apha.13478. PubMed DOI PMC
Duan H, Wang J. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010;335(3):743–753. doi: 10.1124/jpet.110.170142. PubMed DOI PMC
Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, et al. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998;273(49):32776–32786. doi: 10.1074/jbc.273.49.32776. PubMed DOI
Knofler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–3496. doi: 10.1007/s00018-019-03104-6. PubMed DOI PMC
Rouault C, Clement K, Guesnon M, Henegar C, Charles MA, Heude B, et al. Transcriptomic signatures of villous cytotrophoblast and syncytiotrophoblast in term human placenta. Placenta. 2016;44:83–90. doi: 10.1016/j.placenta.2016.06.001. PubMed DOI
Azar C, Valentine M, Trausch-Azar J, Druley T, Nelson DM, Schwartz AL. RNA-Seq identifies genes whose proteins are transformative in the differentiation of cytotrophoblast to syncytiotrophoblast, in human primary villous and BeWo trophoblasts. Sci Rep. 2018;8(1):5142. doi: 10.1038/s41598-018-23379-2. PubMed DOI PMC
Gormley M, Oliverio O, Kapidzic M, Ona K, Hall S, Fisher SJ. RNA profiling of laser microdissected human trophoblast subtypes at mid-gestation reveals a role for cannabinoid signaling in invasion. Development. 2021;148(20):dev199626. doi: 10.1242/dev.199626. PubMed DOI PMC
Robinson JF, Kapidzic M, Gormley M, Ona K, Dent T, Seifikar H, et al. Transcriptional Dynamics of Cultured Human Villous Cytotrophoblasts. Endocrinology. 2017;158(6):1581–1594. doi: 10.1210/en.2016-1635. PubMed DOI PMC
Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS ONE. 2016;11(4):e0153522. doi: 10.1371/journal.pone.0153522. PubMed DOI PMC
Malek A, Sager R, Willi A, Muller J, Hanggi W, Leiser R, et al. Production of protein hormones by cultured trophoblast cells isolated from term and early placentae. Am J Reprod Immunol. 2000;43(5):278–284. doi: 10.1111/j.8755-8920.2000.430506.x. PubMed DOI
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, et al. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci. 2020;21(2):628. doi: 10.3390/ijms21020628. PubMed DOI PMC
Oufkir T, Arseneault M, Sanderson JT, Vaillancourt C. The 5-HT 2A serotonin receptor enhances cell viability, affects cell cycle progression and activates MEK-ERK1/2 and JAK2-STAT3 signalling pathways in human choriocarcinoma cell lines. Placenta. 2010;31(5):439–447. doi: 10.1016/j.placenta.2010.02.019. PubMed DOI
Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014;267:1–10. doi: 10.1016/j.neuroscience.2014.02.021. PubMed DOI
Sieber-Blum M, Ren Z. Norepinephrine transporter expression and function in noradrenergic cell differentiation. Mol Cell Biochem. 2000;212(1–2):61–70. doi: 10.1023/A:1007100803568. PubMed DOI
Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990;186(2):306–316. doi: 10.1016/0014-4827(90)90310-7. PubMed DOI
Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L, et al. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front Cell Dev Biol. 2020;8:574034. doi: 10.3389/fcell.2020.574034. PubMed DOI PMC
Huppertz B. Molecular markers for human placental investigation. Methods Mol Med. 2006;121:337–350. PubMed
Karahoda R, Zaugg J, Fuenzalida B, Kallol S, Moser-Haessig R, Staud F, et al. Trophoblast Differentiation Affects Crucial Nutritive Functions of Placental Membrane Transporters. Front Cell Dev Biol. 2022;10:820286. doi: 10.3389/fcell.2022.820286. PubMed DOI PMC
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685. doi: 10.1038/227680a0. PubMed DOI
Berger P, Elsworth JD, Arroyo J, Roth RH. Interaction of [3H]GBR 12935 and GBR 12909 with the dopamine uptake complex in nucleus accumbens. Eur J Pharmacol. 1990;177(1–2):91–94. doi: 10.1016/0014-2999(90)90554-J. PubMed DOI
Zhou J. Norepinephrine transporter inhibitors and their therapeutic potential. Drugs Future. 2004;29(12):1235–1244. doi: 10.1358/dof.2004.029.12.855246. PubMed DOI PMC
Goeden N, Velasquez JC, Bonnin A. Placental tryptophan metabolism as a potential novel pathway for the developmental origins of mental diseases. Transl Dev Psychiatry. 2013;1(1):20593. doi: 10.3402/tdp.v1i0.20593. DOI
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, et al. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci. 2020;21(2):628. doi: 10.3390/ijms21020628. PubMed DOI PMC
Handwerger S, Aronow B. Dynamic changes in gene expression during human trophoblast differentiation. Recent Prog Horm Res. 2003;58:263–281. doi: 10.1210/rp.58.1.263. PubMed DOI
Novakovic B, Gordon L, Wong NC, Moffett A, Manuelpillai U, Craig JM, et al. Wide-ranging DNA methylation differences of primary trophoblast cell populations and derived cell lines: implications and opportunities for understanding trophoblast function. Mol Hum Reprod. 2011;17(6):344–353. doi: 10.1093/molehr/gar005. PubMed DOI PMC
Cool DR, Leibach FH, Bhalla VK, Mahesh VB, Ganapathy V. Expression and cyclic AMP-dependent regulation of a high affinity serotonin transporter in the human placental choriocarcinoma cell line (JAR) J Biol Chem. 1991;266(24):15750–15757. doi: 10.1016/S0021-9258(18)98473-5. PubMed DOI
Hornbachner R, Lackner A, Papuchova H, Haider S, Knöfler M, Mechtler K, et al. MSX2 safeguards syncytiotrophoblast fate of human trophoblast stem cells. Proc Natl Acad Sci U S A. 2021;118(37):e2105130118. doi: 10.1073/pnas.2105130118. PubMed DOI PMC
Hasegawa N, Furugen A, Ono K, Koishikawa M, Miyazawa Y, Nishimura A, et al. Cellular uptake properties of lamotrigine in human placental cell lines: Investigation of involvement of organic cation transporters (SLC22A1-5) Drug Metab Pharmacokinet. 2020;35(3):266–273. doi: 10.1016/j.dmpk.2020.01.005. PubMed DOI
Kliman HJ, Quaratella SB, Setaro AC, Siegman EC, Subha ZT, Tal R, et al. Pathway of Maternal Serotonin to the Human Embryo and Fetus. Endocrinology. 2018;159(4):1609–1629. doi: 10.1210/en.2017-03025. PubMed DOI
Popolo M, McCarthy DM, Bhide PG. Influence of dopamine on precursor cell proliferation and differentiation in the embryonic mouse telencephalon. Dev Neurosci. 2004;26(2–4):229–244. doi: 10.1159/000082140. PubMed DOI PMC
Caragher SP, Hall RR, Ahsan R, Ahmed AU. Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol. 2018;20(8):1014–1025. doi: 10.1093/neuonc/nox210. PubMed DOI PMC
Jaques S, Jr, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res. 1987;47(15):3920–3928. PubMed
Hösli E, Hösli L. Autoradiographic studies on the uptake of 3H-dopamine by neurons and astrocytes in explant and primary cultures of rat CNS: effects of uptake inhibitors. Int J Dev Neurosci. 1997;15(1):45–53. doi: 10.1016/S0736-5748(96)00070-6. PubMed DOI
Soares-da-Silva P, Vieira-Coelho MA, Serrao MP. Uptake of L-3,4-dihydroxyphenylalanine and dopamine formation in cultured renal epithelial cells. Biochem Pharmacol. 1997;54(9):1037–1046. doi: 10.1016/S0006-2952(97)00318-3. PubMed DOI
Ramamoorthy S, Leibach FH, Mahesh VB, Ganapathy V. Active transport of dopamine in human placental brush-border membrane vesicles. Am J Physiol. 1992;262(5 Pt 1):C1189–C1196. doi: 10.1152/ajpcell.1992.262.5.C1189. PubMed DOI
Omenn GS, Smith LT. A common uptake system for serotonin and dopamine in human platelets. J Clin Invest. 1978;62(2):235–240. doi: 10.1172/JCI109121. PubMed DOI PMC
Charlton RA, Jordan S, Pierini A, Garne E, Neville AJ, Hansen AV, et al. Selective serotonin reuptake inhibitor prescribing before, during and after pregnancy: a population-based study in six European regions. BJOG. 2015;122(7):1010–1020. doi: 10.1111/1471-0528.13143. PubMed DOI
Boukhris T, Sheehy O, Mottron L, Bérard A. Antidepressant Use During Pregnancy and the Risk of Autism Spectrum Disorder in Children. JAMA Pediatr. 2016;170(2):117–124. doi: 10.1001/jamapediatrics.2015.3356. PubMed DOI
Malm H, Brown AS, Gissler M, Gyllenberg D, Hinkka-Yli-Salomäki S, McKeague IW, et al. Gestational Exposure to Selective Serotonin Reuptake Inhibitors and Offspring Psychiatric Disorders: A National Register-Based Study. J Am Acad Child Adolesc Psychiatry. 2016;55(5):359–366. doi: 10.1016/j.jaac.2016.02.013. PubMed DOI PMC
Horackova H, Karahoda R, Cerveny L, Vachalova V, Ebner R, Abad C, et al. Effect of Selected Antidepressants on Placental Homeostasis of Serotonin: Maternal and Fetal Perspectives. Pharmaceutics. 2021;13(8):1306. doi: 10.3390/pharmaceutics13081306. PubMed DOI PMC
Baković P, Kesić M, Perić M, Bečeheli I, Horvatiček M, George M, et al. Differential Serotonin Uptake Mechanisms at the Human Maternal-Fetal Interface. Int J Mol Sci. 2021;22(15):7807. doi: 10.3390/ijms22157807. PubMed DOI PMC
Zhu HJ, Appel DI, Grundemann D, Richelson E, Markowitz JS. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacol Res. 2012;65(4):491–496. doi: 10.1016/j.phrs.2012.01.008. PubMed DOI
Kolahi KS, Valent AM, Thornburg KL. Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci Rep. 2017;7:42941. doi: 10.1038/srep42941. PubMed DOI PMC
Robins JC, Heizer A, Hardiman A, Hubert M, Handwerger S. Oxygen tension directs the differentiation pathway of human cytotrophoblast cells. Placenta. 2007;28(11–12):1141–1146. doi: 10.1016/j.placenta.2007.05.006. PubMed DOI
Developmental expression of catecholamine system in the human placenta and rat fetoplacental unit