Trophoblast Differentiation Affects Crucial Nutritive Functions of Placental Membrane Transporters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35273963
PubMed Central
PMC8901483
DOI
10.3389/fcell.2022.820286
PII: 820286
Knihovny.cz E-zdroje
- Klíčová slova
- cell differentiation, fetal programming, membrane transport, nutrients, placental barrier, pregnancy pathology, trophoblast,
- Publikační typ
- časopisecké články MeSH
Cytotrophoblasts are progenitor cells that proliferate and fuse to form the multinucleated syncytiotrophoblast layer, implicated in placental endocrine and transport functions. While membrane transporters play a critical role in the distribution of nutrients, hormones, and xenobiotics at the maternal-fetal interface, their selectivity to the syncytiotrophoblast layer is poorly characterized. We aimed to evaluate the regulation of placental transporters in response to trophoblast differentiation in vitro. Experiments were carried out in isolated primary human trophoblast cells before and after syncytialization. Gene expression of six molecular markers and thirty membrane transporters was investigated by qPCR analysis. Subsequently, functional expression was evaluated for proteins involved in the transplacental transfer of essential nutrients i.e., cholesterol (ABCA1, ABCG1), glucose (SLC2A1), leucine (SLC3A2, SLC7A5), and iron (transferrin receptor, TfR1). We identified that human chorionic gonadotropin, placental lactogen, endoglin, and cadherin-11 serve as optimal gene markers for the syncytialization process. We showed that trophoblast differentiation was associated with differential gene expression (mostly up-regulation) of several nutrient and drug transporters. Further, we revealed enhanced protein expression and activity of ABCG1, SLC3A2, SLC7A5, and TfR1 in syncytialized cells, with ABCA1 and GLUT1 displaying no change. Taken together, these results indicate that the syncytiotrophoblast has a dominant role in transporting essential nutrients cholesterol, leucine, and iron. Nonetheless, we present evidence that the cytotrophoblast cells may also be linked to transport functions that could be critical for the cell fusion processes. Our findings collectively yield new insights into the cellular functions associated with or altered by the trophoblast fusion. Importantly, defective syncytialization could lead to nutrient transfer imbalance, ultimately compromising fetal development and programming.
Division of Gynecology and Obstetrics Lindenhofgruppe Bern Switzerland
Institute of Biochemistry and Molecular Medicine University of Bern Bern Switzerland
Swiss National Centre of Competence in Research NCCR TransCure University of Bern Bern Switzerland
Zobrazit více v PubMed
Apáti Á., Szebényi K., Erdei Z., Várady G., Orbán T. I., Sarkadi B. (2016). The Importance of Drug Transporters in Human Pluripotent Stem Cells and in Early Tissue Differentiation. Expert Opin. Drug Metab. Toxicol. 12 (1), 77–92. 10.1517/17425255.2016.1121382 PubMed DOI
Azar C., Valentine M., Trausch-Azar J., Druley T., Nelson D. M., Schwartz A. L. (2018). RNA-seq Identifies Genes Whose Proteins Are Transformative in the Differentiation of Cytotrophoblast to Syncytiotrophoblast, in Human Primary Villous and BeWo Trophoblasts. Sci. Rep. 8 (1), 5142. 10.1038/s41598-018-23379-2 PubMed DOI PMC
Balkovetz D. F., Tiruppathi C., Leibach F. H., Mahesh V. B., Ganapathy V. (1989). Evidence for an Imipramine-Sensitive Serotonin Transporter in Human Placental Brush-Border Membranes. J. Biol. Chem. 264 (4), 2195–2198. 10.1016/s0021-9258(18)94161-x PubMed DOI
Barker D. J. P., Godfrey K. M., Gluckman P. D., Harding J. E., Owens J. A., Robinson J. S. (1993). Fetal Nutrition and Cardiovascular Disease in Adult Life. The Lancet. 341 (8850), 938–941. 10.1016/0140-6736(93)91224-a PubMed DOI
Barker J. P. D., Eriksson G. J., Kajantie E., Alwasel H. S., Fall H. D. C., Roseboom J. T., et al. (2010). The Placenta and Human Developmental Programming. Cambridge: Cambridge University Press.
Bloise E., Ortiga-Carvalho T. M., Reis F. M., Lye S. J., Gibb W., Matthews S. G. (2016). ATP-Binding Cassette Transporters in Reproduction: a New Frontier. Hum. Reprod. Update. 22 (2), 164–181. 10.1093/humupd/dmv049 PubMed DOI PMC
Bocchetta S., Maillard P., Yamamoto M., Gondeau C., Douam F., Lebreton S., et al. (2014). Up-Regulation of the ATP-Binding Cassette Transporter A1 Inhibits Hepatitis C Virus Infection. PLOS ONE. 9 (3), e92140. 10.1371/journal.pone.0092140 PubMed DOI PMC
Bodoy S., Fotiadis D., Stoeger C., Kanai Y., Palacín M. (2013). The Small SLC43 Family: Facilitator System L Amino Acid Transporters and the Orphan EEG1. Mol. Aspects Med. 34 (2-3), 638–645. 10.1016/j.mam.2012.12.006 PubMed DOI
Burton G. J., Fowden A. L. (2015). The Placenta: a Multifaceted, Transient Organ. Phil. Trans. R. Soc. B. 370 (1663), 20140066. 10.1098/rstb.2014.0066 PubMed DOI PMC
Cantor J., Browne C. D., Ruppert R., Féral C. C., Fässler R., Rickert R. C., et al. (2009). CD98hc Facilitates B Cell Proliferation and Adaptive Humoral Immunity. Nat. Immunol. 10 (4), 412–419. 10.1038/ni.1712 PubMed DOI PMC
Carter A. M. (2000). Placental Oxygen Consumption. Part I: In Vivo Studies-A Review. Placenta. 21 (Suppl. A), S31–S37. 10.1053/plac.1999.0513 PubMed DOI
Christiansen-Weber T. A., Voland J. R., Wu Y., Ngo K., Roland B. L., Nguyen S., et al. (2000). Functional Loss of ABCA1 in Mice Causes Severe Placental Malformation, Aberrant Lipid Distribution, and Kidney Glomerulonephritis as Well as High-Density Lipoprotein Cholesterol Deficiency. Am. J. Pathol. 157 (3), 1017–1029. 10.1016/s0002-9440(10)64614-7 PubMed DOI PMC
Cleal J. K., Lofthouse E. M., Sengers B. G., Lewis R. M. (2018). A Systems Perspective on Placental Amino Acid Transport. J. Physiol. 596 (23), 5511–5522. 10.1113/jp274883 PubMed DOI PMC
Costa M. A. (2016). The Endocrine Function of Human Placenta: an Overview. Reprod. BioMedicine Online. 32 (1), 14–43. 10.1016/j.rbmo.2015.10.005 PubMed DOI
Dallmann A., Liu X. I., Burckart G. J., van den Anker J. (2019). Drug Transporters Expressed in the Human Placenta and Models for Studying Maternal-Fetal Drug Transfer. J. Clin. Pharmacol. 59 (Suppl. 1), S70–S81. 10.1002/jcph.1491 PubMed DOI PMC
Desoye G., Gauster M., Wadsack C. (2011). Placental Transport in Pregnancy Pathologies. Am. J. Clin. Nutr. 94 (6 Suppl. l), 1896s–1902s. 10.3945/ajcn.110.000851 PubMed DOI
Dupressoir A., Vernochet C., Bawa O., Harper F., Pierron G., Opolon P., et al. (2009). Syncytin-A Knockout Mice Demonstrate the Critical Role in Placentation of a Fusogenic, Endogenous Retrovirus-Derived, Envelope Gene. Proc. Natl. Acad. Sci. 106 (29), 12127–12132. 10.1073/pnas.0902925106 PubMed DOI PMC
Evseenko D. A., Paxton J. W., Keelan J. A. (2006). ABC Drug Transporter Expression and Functional Activity in Trophoblast-Like Cell Lines and Differentiating Primary Trophoblast. Am. J. Physiology-Regulatory, Integr. Comp. Physiol. 290 (5), R1357–R1365. 10.1152/ajpregu.00630.2005 PubMed DOI
Feliubadaló L., Font M., Purroy J., Rousaud F., Estivill X., Nunes V., et al. (1999). Non-type I Cystinuria Caused by Mutations in SLC7A9, Encoding a Subunit (bo,+AT) of rBAT. Nat. Genet. 23 (1), 52–57. 10.1038/12652 PubMed DOI
Fotiadis D., Kanai Y., Palacín M. (2013). The SLC3 and SLC7 Families of Amino Acid Transporters. Mol. Aspects Med. 34 (2-3), 139–158. 10.1016/j.mam.2012.10.007 PubMed DOI
Frank H.-G., Morrish D. W., Pötgens A., Genbacev O., Kumpel B., Caniggia I. (2001). Cell Culture Models of Human Trophoblast: Primary Culture of Trophoblast—A Workshop Report. Placenta. 22, S107–S109. 10.1053/plac.2001.0644 PubMed DOI
Fuenzalida B., Cantin C., Kallol S., Carvajal L., Pastén V., Contreras-Duarte S., et al. (2020). Cholesterol Uptake and Efflux Are Impaired in Human Trophoblast Cells from Pregnancies with Maternal Supraphysiological Hypercholesterolemia. Sci. Rep. 10 (1), 5264. 10.1038/s41598-020-61629-4 PubMed DOI PMC
Fuenzalida B., Sobrevia B., Cantin C., Carvajal L., Salsoso R., Gutiérrez J., et al. (2018). Maternal Supraphysiological Hypercholesterolemia Associates with Endothelial Dysfunction of the Placental Microvasculature. Sci. Rep. 8 (1), 7690. 10.1038/s41598-018-25985-6 PubMed DOI PMC
Furesz T. C., Smith C. H., Moe A. J. (1993). ASC System Activity Is Altered by Development of Cell Polarity in Trophoblast from Human Placenta. Am. J. Physiol. 265 (1 Pt 1), C212–C217. 10.1152/ajpcell.1993.265.1.C212 PubMed DOI
Gaccioli F., Lager S., Powell T. L., Jansson T. (2013). Placental Transport in Response to Altered Maternal Nutrition. J. Dev. Orig Health Dis. 4 (2), 101–115. 10.1017/s2040174412000529 PubMed DOI PMC
Gambling L., Danzeisen R., Gair S., Lea R. G., Charania Z., Solanky N., et al. (2001). Effect of Iron Deficiency on Placental Transfer of Iron and Expression of Iron Transport Proteins In Vivo and In Vitro . Biochem. J. 356 (Pt 3), 883–889. 10.1042/0264-6021:3560883 PubMed DOI PMC
Häfliger P., Graff J., Rubin M., Stooss A., Dettmer M. S., Altmann K.-H., et al. (2018). The LAT1 Inhibitor JPH203 Reduces Growth of Thyroid Carcinoma in a Fully Immunocompetent Mouse Model. J. Exp. Clin. Cancer Res. 37 (1), 234. 10.1186/s13046-018-0907-z PubMed DOI PMC
Hassan H. H., Denis M., Lee D.-Y. D., Iatan I., Nyholt D., Ruel I., et al. (2007). Identification of an ABCA1-Dependent Phospholipid-Rich Plasma Membrane Apolipoprotein A-I Binding Site for Nascent HDL Formation: Implications for Current Models of HDL Biogenesis. J. Lipid Res. 48 (11), 2428–2442. 10.1194/jlr.m700206-jlr200 PubMed DOI
Huang X., Anderle P., Hostettler L., Baumann M. U., Surbek D. V., Ontsouka E. C., et al. (2018). Identification of Placental Nutrient Transporters Associated with Intrauterine Growth Restriction and Pre-Eclampsia. BMC Genomics. 19 (1), 173. 10.1186/s12864-018-4518-z PubMed DOI PMC
Huppertz B. (2006). Molecular Markers for Human Placental Investigation. Methods Mol. Med. 121, 337–350. 10.1385/1-59259-983-4:335 PubMed DOI
Huppertz B. (2011). Trophoblast Differentiation, Fetal Growth Restriction and preeclampsiaPregnancy Hypertension. Pregnancy Hypertens. Int. J. Women's Cardiovasc. Health. 1 (1), 79–86. 10.1016/j.preghy.2010.10.003 PubMed DOI
Illsley N. P. (2000). CURRENT TOPIC: Glucose Transporters in the Human Placenta. Placenta. 21 (1), 14–22. 10.1053/plac.1999.0448 PubMed DOI
Jeong J., Eide D. J. (2013). The SLC39 Family of Zinc Transporters. Mol. Aspects Med. 34 (2-3), 612–619. 10.1016/j.mam.2012.05.011 PubMed DOI PMC
Jeschke U., Richter D., Hammer A., Briese V., Friese K., Karsten U. (2002). Expression of the Thomsen-Friedenreich Antigen and of its Putative Carrier Protein Mucin 1 in the Human Placenta and in Trophoblast Cells In Vitro . Histochem. Cel Biol. 117 (3), 219–226. 10.1007/s00418-002-0383-5 PubMed DOI
Kallol S., Huang X., Müller S., Ontsouka C. E., Albrecht C. (2018a). Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int. J. Mol. Sci. 19 (8), 2334. 10.3390/ijms19082334 PubMed DOI PMC
Kallol S., Moser-Haessig R., Ontsouka C. E., Albrecht C. (2018b). Comparative Expression Patterns of Selected Membrane Transporters in Differentiated BeWo and Human Primary Trophoblast Cells. Placenta. 72-73, 48–52. 10.1016/j.placenta.2018.10.008 PubMed DOI
Kallol S., Albrecht C. (2020). Materno-fetal Cholesterol Transport during Pregnancy. Biochem. Soc. Trans. 48 (3), 775–786. 10.1042/bst20190129 PubMed DOI
Kanai Y., Clémençon B., Simonin A., Leuenberger M., Lochner M., Weisstanner M., et al. (2013). The SLC1 High-Affinity Glutamate and Neutral Amino Acid Transporter Family. Mol. Aspects Med. 34 (2-3), 108–120. 10.1016/j.mam.2013.01.001 PubMed DOI
Keelan J. A., Aye I. L. M. H., Mark P. J., Waddell B. J. (2011). ABCA1 and Placental Cholesterol Efflux. Placenta. 32 (9), 708–709. 10.1016/j.placenta.2011.06.004 PubMed DOI
Kliman H. J., Nestler J. E., Sermasi E., Sanger J. M., Strauss J. F., 3rd (1986). Purification, Characterization, Andin vitroDifferentiation of Cytotrophoblasts from Human Term Placentae. Endocrinology. 118 (4), 1567–1582. 10.1210/endo-118-4-1567 PubMed DOI
Knöfler M., Haider S., Saleh L., Pollheimer J., Gamage T. K. J. B., James J. (2019). Human Placenta and Trophoblast Development: Key Molecular Mechanisms and Model Systems. Cell. Mol. Life Sci. 76 (18), 3479–3496. 10.1007/s00018-019-03104-6 PubMed DOI PMC
Koepsell H. (2020). Organic Cation Transporters in Health and Disease. Pharmacol. Rev. 72 (1), 253–319. 10.1124/pr.118.015578 PubMed DOI
Kolahi K. S., Valent A. M., Thornburg K. L. (2017). Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci. Rep. 7, 42941. 10.1038/srep42941 PubMed DOI PMC
MacCalman C. D., Furth E. E., Omigbodun A., Bronner M., Coutifaris C., Strauss J. F., 3rd (1996). Regulated Expression of Cadherin-11 in Human Epithelial Cells: a Role for Cadherin-11 in Trophoblast-Endometrium Interactions. Dev. Dyn. 206 (2), 201–211. 10.1002/(sici)1097-0177(199606)206:2<201:aid-aja9>3.0.co;2-m PubMed DOI
Melhem H., Kallol S., Huang X., Lüthi M., Ontsouka C. E., Keogh A., et al. (2019). Placental Secretion of Apolipoprotein A1 and E: the Anti-Atherogenic Impact of the Placenta. Sci. Rep. 9 (1), 6225. 10.1038/s41598-019-42522-1 PubMed DOI PMC
Montalbetti N., Simonin A., Kovacs G., Hediger M. A. (2013). Mammalian Iron Transporters: Families SLC11 and SLC40. Mol. Aspects Med. 34 (2-3), 270–287. 10.1016/j.mam.2013.01.002 PubMed DOI
Nagao K., Tomioka M., Ueda K. (2011). Function and Regulation of ABCA1 - Membrane Meso-Domain Organization and Reorganization. FEBS J. 278 (18), 3190–3203. 10.1111/j.1742-4658.2011.08170.x PubMed DOI
Napolitano L., Scalise M., Galluccio M., Pochini L., Albanese L. M., Indiveri C. (2015). LAT1 Is the Transport Competent Unit of the LAT1/CD98 Heterodimeric Amino Acid Transporter. Int. J. Biochem. Cel Biol. 67, 25–33. 10.1016/j.biocel.2015.08.004 PubMed DOI
Ohgaki R., Ohmori T., Hara S., Nakagomi S., Kanai-Azuma M., Kaneda-Nakashima K., et al. (2017). Essential Roles of L-type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol. Cel Biol. 37 (11), e00427–00416. 10.1128/MCB.00427-16 PubMed DOI PMC
Pötgens A. J. G., Drewlo S., Kokozidou M., Kaufmann P. (2004). Syncytin: the Major Regulator of Trophoblast Fusion? Recent Developments and Hypotheses on its Action. Hum. Reprod. Update. 10 (6), 487–496. 10.1093/humupd/dmh039 PubMed DOI
Pötgens A. J., Kataoka H., Ferstl S., Frank H. G., Kaufmann P. (2003). A Positive Immunoselection Method to Isolate Villous Cytotrophoblast Cells from First Trimester and Term Placenta to High Purity. Placenta. 24 (4), 412–423. 10.1053/plac.2002.0914 PubMed DOI
Sangkhae V., Nemeth E. (2019). Placental Iron Transport: The Mechanism and Regulatory Circuits. Free Radic. Biol. Med. 133, 254–261. 10.1016/j.freeradbiomed.2018.07.001 PubMed DOI PMC
Sata R., Ohtani H., Tsujimoto M., Murakami H., Koyabu N., Nakamura T., et al. (2005). Functional Analysis of Organic Cation Transporter 3 Expressed in Human Placenta. J. Pharmacol. Exp. Ther. 315 (2), 888–895. 10.1124/jpet.105.086827 PubMed DOI
Scalise M., Galluccio M., Console L., Pochini L., Indiveri C. (2018). The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and its Relevance to Human Health. Front. Chem. 6, 243. 10.3389/fchem.2018.00243 PubMed DOI PMC
Schiöth H. B., Roshanbin S., Hägglund M. G., Fredriksson R. (2013). Evolutionary Origin of Amino Acid Transporter Families SLC32, SLC36 and SLC38 and Physiological, Pathological and Therapeutic Aspects. Mol. Aspects Med. 34 (2-3), 571–585. 10.1016/j.mam.2012.07.012 PubMed DOI
Smith D. E., Clémençon B., Hediger M. A. (2013). Proton-coupled Oligopeptide Transporter Family SLC15: Physiological, Pharmacological and Pathological Implications. Mol. Aspects Med. 34 (2-3), 323–336. 10.1016/j.mam.2012.11.003 PubMed DOI PMC
Sreckovic I., Birner-Gruenberger R., Obrist B., Stojakovic T., Scharnagl H., Holzer M., et al. (2013). Distinct Composition of Human Fetal HDL Attenuates its Anti-Oxidative Capacity. Biochim. Biophys. Acta (Bba) - Mol. Cel Biol. Lipids. 1831 (4), 737–746. 10.1016/j.bbalip.2012.12.015 PubMed DOI
Szilagyi A., Gelencser Z., Romero R., Xu Y., Kiraly P., Demeter A., et al. (2020). Placenta-Specific Genes, Their Regulation during Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int. J. Mol. Sci. 21 (2), 628. 10.3390/ijms21020628 PubMed DOI PMC
Takesono A., Moger J., Farooq S., Cartwright E., Dawid I. B., Wilson S. W., et al. (2012). Solute Carrier Family 3 Member 2 (Slc3a2) Controls Yolk Syncytial Layer (YSL) Formation by Regulating Microtubule Networks in the Zebrafish Embryo. Proc. Natl. Acad. Sci. 109 (9), 3371–3376. 10.1073/pnas.1200642109 PubMed DOI PMC
Vähäkangas K. H., Veid J., Karttunen V., Partanen H., Sieppi E., Kummu M., et al. (2011). “Chapter 79 - the Significance of ABC Transporters in Human Placenta for the Exposure of the Fetus to Xenobiotics,” in Reproductive and Developmental Toxicology. Editor Gupta R. C. (San Diego: Academic Press; ), 1051–1065.
Vähäkangas K., Myllynen P. (2009). Drug Transporters in the Human Blood-Placental Barrier. Br. J. Pharmacol. 158 (3), 665–678. 10.1111/j.1476-5381.2009.00336.x PubMed DOI PMC
Walker N., Filis P., Soffientini U., Bellingham M., O’Shaughnessy P. J., Fowler P. A. (2017). Placental Transporter Localization and Expression in the Human: the Importance of Species, Sex, and Gestational Age Differences†. Biol. Reprod. 96 (4), 733–742. 10.1093/biolre/iox012 PubMed DOI PMC
Woollett L. A. (2011). Review: Transport of Maternal Cholesterol to the Fetal Circulation. Placenta. 32 (Suppl. 2), S218–S221. 10.1016/j.placenta.2011.01.011 PubMed DOI PMC
Zaugg J., Huang X., Ziegler F., Rubin M., Graff J., Müller J., et al. (2020a). Small Molecule Inhibitors Provide Insights into the Relevance of LAT1 and LAT2 in Materno‐foetal Amino Acid Transport. J. Cel. Mol. Med. 24 (21), 12681–12693. 10.1111/jcmm.15840 PubMed DOI PMC
Zaugg J., Melhem H., Huang X., Wegner M., Baumann M., Surbek D., et al. (2020b). Gestational Diabetes Mellitus Affects Placental Iron Homeostasis: Mechanism and Clinical Implications. FASEB j. 34 (6), 7311–7329. 10.1096/fj.201903054r PubMed DOI
Zaugg J., Ziegler F., Nuoffer J.-M., Moser-Hässig R., Albrecht C. (2021). Counter-directed Leucine Gradient Promotes Amino Acid Transfer across the Human Placenta. J. Nutr. Biochem. 96, 108760. 10.1016/j.jnutbio.2021.108760 PubMed DOI
Zhang Y., Zhang Y., Sun K., Meng Z., Chen L. (2018). The SLC Transporter in Nutrient and Metabolic Sensing, Regulation, and Drug Development. J. Mol. Cel Biol. 11 (1), 1–13. 10.1093/jmcb/mjy052 PubMed DOI PMC
Zhao R., Goldman I. D. (2013). Folate and Thiamine Transporters Mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors. Mol. Aspects Med. 34 (2-3), 373–385. 10.1016/j.mam.2012.07.006 PubMed DOI PMC