Early-stage sugar beet taproot development is characterized by three distinct physiological phases

. 2020 Jul ; 4 (7) : e00221. [epub] 20200801

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32766510

Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.

Zobrazit více v PubMed

Appeldoorn, N. J. G. , de Bruijn, S. M. , Koot‐Gronsveld, E. A. M. , Visser, R. G. F. , Vreugdenhil, D. , & van der Plas, L. H. W. (1997). Developmental changes of enzymes involved in conversion of sucrose to hexose‐phosphate during early tuberisation of potato. Planta, 202, 220–226. 10.1007/s004250050122 DOI

Artschwager, E. (1926). Anatomy of the vegetative organs of the sugar beet. Journal of Agricultural Research, 33, 143–176.

Artschwager, E. (1930). A study of the structure of sugar beets in relation to sugar content and type. Journal of Agricultural Research, 40, 867–915.

Balibrea Lara, M.‐E. , Gonzalez Garcia, M. , Fatima, T. , Ehneß, R. , Lee, T. K. , Proels, R. , … Roitsch, T. (2004). Extracellular invertase is an essential component of cytokinin mediated delay of senescence. The Plant Cell, 16, 1276–1287. 10.1105/tpc.018929 PubMed DOI PMC

Beauvoit, B. P. , Colombié, S. , Monier, A. , Andrieu, M.‐H. , Biais, B. , Bénard, C. , … Gibon, Y. (2014). Model‐assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. The Plant Cell, 26, 3224–3242. 10.1105/tpc.114.127761 PubMed DOI PMC

Bell, C. I. , Milford, G. F. J. , & Leigh, R. A. (1996). Sugar beet In Schaffer A. A., & Zamski E. (Eds.), Photoassimilate distribution in plants and crops. Source‐sink relationships (pp. 691–707). New York, NY: Marcel Dekker.

Bellin, D. (2005). Macroarray analysis of gene transcription during sucrose accumulation in sugar beet (Beta vulgaris L.) root: Identification of developmental and metabolism related candidate genes. Cologne, Germany: University of Cologne. PhD thesis.

Bellin, D. , Schulz, B. , Soerensen, T. R. , Salamini, F. , & Schneider, K. (2007). Transcript profiles at different growth stages and tap‐root zones identify correlated developmental and metabolic pathways of sugar beet. Journal of Experimental Botany, 58, 699–715. 10.1093/jxb/erl245 PubMed DOI

Bellin, D. , Werber, M. , Theis, T. , Schulz, B. , Weisshaar, B. , & Schneider, K. (2002). EST sequencing, annotation and macroarray transcriptome analysis identify preferentially root‐expressed genes in sugar beet. Plant Biology, 4, 700–710. 10.1055/s-2002-37405 DOI

Bergen, P. (1967). Dry matter of the petiole as an index for the selection of sugar beet plants. Journal of the American Society of Sugar Beet Technologists, 14, 396–399. 10.5274/jsbr.14.5.396 DOI

Berta, M. , Giovannelli, A. , Sebastiani, F. , Camussi, A. , & Racchi, M. L. (2010). Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biology, 12, 341–354. 10.1111/j.1438-8677.2009.00320.x PubMed DOI

Bhalerao, R. P. , & Fischer, U. (2014). Auxin gradients across wood ‐ instructive or incidental? Physiologia Plantarum, 151, 43–51. 10.1111/ppl.12134 PubMed DOI

Bhalerao, R. P. , & Fischer, U. (2016). Environmental and hormonal control of cambial stem cell dynamics. Journal of Experimental Botany, 68, 79–87. 10.1093/jxb/erw466 PubMed DOI

Biais, B. , Bénard, C. , Beauvoit, B. , Colombié, S. , Prodhomme, D. , Ménard, G. , … Gibon, Y. (2014). Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiology, 164, 1204–1221. 10.1104/pp.113.231241 PubMed DOI PMC

Bonfig, K. B. , Gabler, A. , Simon, U. K. , Luschin‐Ebengreuth, N. , Hatz, M. , Berger, S. , … Roitsch, T. (2010). Post‐translational derepression of invertase activity in source leaves via down‐regulation of invertase inhibitor expression is part of the plant defense response. Molecular Plant, 3, 1037–1048. 10.1093/mp/ssq053 PubMed DOI

Bonfig, K. B. , Schreiber, U. , Gabler, A. , Roitsch, T. , & Berger, S. (2006). Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 225, 1–12. 10.1007/s00425-006-0303-3 PubMed DOI

Borisjuk, L. , Rolletschek, H. , Radchuk, R. , Weschke, W. , Wobus, U. , & Weber, H. (2004). Seed development and differentiation: A role for metabolic regulation. Plant Biology, 6, 375–386. 10.1055/s-2004-817908 PubMed DOI

Borisjuk, L. , Rolletschek, H. , Wobus, U. , & Weber, H. (2003). Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. Journal of Experimental Botany, 54, 503–512. 10.1093/jxb/erg051 PubMed DOI

Borisjuk, L. , Walenta, S. , Rolletschek, H. , Mueller‐Klieser, W. , Wobus, U. , & Weber, H. (2002). Spatial analysis of plant metabolism: Sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns. The Plant Journal, 29, 521–530. 10.1046/j.1365-313x.2002.01222.x PubMed DOI

Borisjuk, L. , Walenta, S. , Weber, H. , Mueller‐Klieser, W. , & Wobus, U. (1998). High‐resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: Glucose as a possible developmental trigger. The Plant Journal, 15, 583–591. 10.1046/j.1365-313X.1998.00214.x DOI

Bosemark, N. O. (2006). Genetics and breeding In Draycott A. P. (Ed.), Sugar beet (pp. 50–88). Oxford, UK: Blackwell.

Bourgis, F. , Kilaru, A. , Cao, X. , Ngando‐Ebongue, G. , Drira, N. , Ohlrogge, J. B. , & Arondel, V. (2011). Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proceedings of the National Academy of Sciences USA, 108, 12527–12532. 10.1073/pnas.1106502108 PubMed DOI PMC

Brackmann, K. , Qi, J. , Gebert, M. , Jouannet, V. , Schlamp, T. , Grünwald, K. , … Greb, T. (2018). Spatial specificity of auxin responses coordinates wood formation. Nature Communications, 9, 875 10.1038/s41467-018-03256-2 PubMed DOI PMC

Braun, D. M. , Wang, L. , & Ruan, Y. (2014). Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. Journal of Experimental Botany, 65, 1713–1735. 10.1093/jxb/ert416 PubMed DOI

Cai, B. , Li, Q. , Liu, F. , Bi, H. , & Ai, X. (2018). Decreasing fructose‐1,6‐bisphosphate aldolase activity reduces plant growth and tolerance to chilling stress in tomato seedlings. Physiologia Plantarum, 163, 247–258. 10.1111/ppl.12682 PubMed DOI

Cañas, R. A. , Yesbergenova‐Cuny, Z. , Simons, M. , Chardon, F. , Armengaud, P. , Quilleré, I. , … Hirel, B. (2017). Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. The Plant Cell, 29, 919–943. 10.1105/tpc.16.00613 PubMed DOI PMC

Chen, C. , Yuan, Y. , Zhang, C. , Li, H. , Ma, F. , & Li, M. (2017). Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit. Plant Science, 255, 40–50. 10.1016/j.plantsci.2016.11.011 PubMed DOI

Clarke, N. A. , Hetschkun, H. M. , Redfearn, M. , Thomas, T. H. , & Naumenko, V. (1995). Responses and tolerance of sugar beet to stress. Proceedings from the 28th Biennial Meeting of the American Society of Sugar Beet Technologists: 189–197.

Coleman, H. D. , Beamish, L. , Reid, A. , Park, J. , & Mansfield, S. D. (2010). Altered sucrose metabolism impacts plant biomass production and flower development. Transgenic Research, 19, 269–283. 10.1007/s11248-009-9309-5 PubMed DOI

Coleman, H. D. , Ellis, D. D. , Gilbert, M. , & Mansfield, S. D. (2006). Up‐regulation of sucrose synthase and UDP‐glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnology Journal, 4, 87–101. 10.1111/j.1467-7652.2005.00160.x PubMed DOI

Cuesta‐Seijo, J. A. , De Porcellinis, A. J. , Valente, A. H. , Striebeck, A. , Voss, C. , Marri, L. , … Braumann, I. (2019). Amylopectin chain length dynamics and activity signatures of key carbon metabolic enzymes highlight early maturation as culprit for yield reduction of barley endosperm starch after heat stress. Plant and Cell Physiology, 60, 2692–2706. 10.1093/pcp/pcz155 PubMed DOI PMC

Dai, N. , Cohen, S. , Portnoy, V. , Tzuri, G. , Harel‐Beja, R. , Pompan‐Lotan, M. , … Schaffer, A. A. (2011). Metabolism of soluble sugars in developing melon fruit: A global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 76, 1–18. 10.1007/s11103-011-9757-1 PubMed DOI

de Souza, G. A. , dos Santos Dias, D. C. F. , Pimenta, T. M. , Almeida, A. L. , de Toledo Picoli, E. A. , de Pádua, A. A. , & da Silva, J. C. F. (2018). Sugar metabolism and developmental stages of rubber tree (Hevea brasiliensis L.) seeds. Physiologia Plantarum, 162, 495–505. 10.1111/ppl.12650 PubMed DOI

Decker, D. , & Kleczkowski, L. A. (2019). UDP‐Sugar producing pyrophosphorylases: Distinct and essential enzymes with overlapping substrate specificities, providing de novo precursors for glycosylation reactions. Frontiers in Plant Science, 9, 1822 10.3389/fpls.2018.01822 PubMed DOI PMC

Doney, D. L. (1979). Seedling physiology and sugarbeet yield. Journal of the American Society of Sugar Beet Technologists, 20, 399–418. 10.5274/jsbr.20.4.399 DOI

Doney, D. L. , Wyse, R. E. , & Theurer, J. C. (1981). The relationship between cell size, yield, and sucrose concentration of the sugar beet root. Canadian Journal of Plant Science, 61, 447–453. 10.4141/cjps81-060 DOI

Durr, C. , & Boiffin, J. (1995). Sugarbeet seedling growth from germination to first leaf stage. The Journal of Agricultural Science, 124, 427–435. 10.1017/S002185960007338X DOI

Egli, B. , Kolling, K. , Kohler, C. , Zeeman, S. C. , & Streb, S. (2010). Loss of cytosolic phosphoglucomutase compromises gametophyte development in Arabidopsis. Plant Physiology, 154, 1659–1671. 10.1104/pp.110.165027 PubMed DOI PMC

Ehneß, R. , Ecker, M. , Godt, D. , & Roitsch, T. (1997). Glucose and stress independently regulate source/sink relations and defense mechanisms via signal transduction pathways involving protein phosphorylation. The Plant Cell, 9, 1825–1841. 10.1105/tpc.9.10.1825 PubMed DOI PMC

Elliott, M. C. , Hosford, D. J. , Smith, J. I. , & Lawrence, D. K. (1986). Opportunities for regulation of sugar beet storage root growth. Biologia Plantarum, 28, 1–8. 10.1007/BF02885310 DOI

Elliott, M. , & Weston, G. (1993). Biology and physiology of the sugar‐beet plant In Cooke D. A. (Ed.), The sugar beet crop. Science into practice (pp. 37–66). London, UK: Chapman & Hall.

Elo, A. , Immanen, J. , Nieminen, K. , & Helariutta, Y. (2009). Stem cell function during plant vascular development. Seminars in Cell & Developmental Biology, 20, 1097–1106. 10.1016/j.semcdb.2009.09.009 PubMed DOI

Etzold, H. (2002). Simultanfärbung von Pflanzenschnitten mit Fuchsin, Chrysoidin und Astrablau. Mikrokosmos, 91, 316–318.

Fasahat, P. , Aghaeezadeh, M. , Jabbari, L. , Sadeghzadeh Hemayati, S. , & Townson, P. (2018). Sucrose accumulation in sugar beet: From fodder beet selection to genomic selection. Sugar Tech, 20, 635–644. 10.1007/s12355-018-0617-z DOI

Fernandez, O. , Urrutia, M. , Berton, T. , Bernillon, S. , Deborde, C. , Jacob, D. , … Moing, A. (2019). Metabolomic characterization of sunflower leaf allows discriminating genotype groups or stress levels with a minimal set of metabolic markers. Metabolomics, 15, 56 10.1007/s11306-019-1515-4 PubMed DOI PMC

Fernie, A. R. , Tauberger, E. , Roessner, U. , Willmitzer, L. , Trethewey, R. , & Lytovchenko, A. (2002). Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism. Planta, 214, 510–520. 10.1007/s004250100644 PubMed DOI

Fieuw, S. , & Willenbrink, J. (1987). Sucrose synthase and sucrose phosphate synthase in sugar beet plants (Beta vulgaris L. ssp. altissima). Journal of Plant Physiology, 131, 153–162. 10.1016/S0176-1617(87)80276-6 DOI

Fieuw, S. , & Willenbrink, J. (1990). Sugar transport and sugar‐metabolizing enzymes in sugar beet storage roots (Beta vulgaris ssp. altissima). Journal of Plant Physiology, 137, 216–223. 10.1016/S0176-1617(11)80084-2 DOI

Fimognari, L. , Dölker, R. , Kaselyte, G. , Jensen, C. N. G. , Akhtar, S. S. , Großkinsky, D. K. , & Roitsch, T. (2020). Simple semi‐high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods, 16, 42 10.1186/s13007-020-00583-8 PubMed DOI PMC

Fischer, U. , Kucukoglu, M. , Helariutta, Y. , & Bhalerao, R. P. (2019). The dynamics of cambial stem cell activity. Annual Review of Plant Biology, 70, 293–319. 10.1146/annurev-arplant-050718-100402 PubMed DOI

Freckleton, R. P. , Watkinson, A. R. , J. Webb, D. , & Thomas, T. H. (1999). Yield of sugar beet in relation to weather and nutrients. Agricultural and Forest Meteorology, 93, 39–51. 10.1016/S0168-1923(98)00106-3 DOI

Fujita, Y. , Fujita, M. , Shinozaki, K. , & Yamaguchi‐Shinozaki, K. (2011). ABA‐mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124, 509–525. 10.1007/s10265-011-0412-3 PubMed DOI

Fukaki, H. , & Tasaka, M. (2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69, 437–449. 10.1007/s11103-008-9417-2 PubMed DOI

Furbank, R. T. , & Tester, M. (2011). Phenomics—technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635–644. 10.1016/j.tplants.2011.09.005 PubMed DOI

Gao, Z. , Petreikov, M. , Zamski, E. , & Schaffer, A. A. (1999). Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiologia Plantarum, 106, 1–8. 10.1034/j.1399-3054.1999.106101.x DOI

Gasperl, A. , Morvan‐Bertrand, A. , Prud'homme, M. , van der Graaff, E. , & Roitsch, T. (2016). Exogenous classic phytohormones have limited regulatory effects on fructan and primary carbohydrate metabolism in perennial ryegrass (Lolium perenne L.). Frontiers in Plant Science, 6, 1251 10.3389/fpls.2015.01251 PubMed DOI PMC

Getz, H. (2000). Sucrose accumulation and synthesis in sugar beets. Developments in Crop Science, 26, 55–77. 10.1016/S0378-519X(00)80004-5 DOI

Ghaffari, M. R. , Shahinnia, F. , Usadel, B. , Junker, B. , Schreiber, F. , Sreenivasulu, N. , & Hajirezaei, M. R. (2016). The metabolic signature of biomass formation in barley. Plant and Cell Physiology, 57, 1943–1960. 10.1093/pcp/pcw117 PubMed DOI

Giaquinta, R. (1979). Sucrose translocation and storage in the sugar beet. Plant Physiology, 63, 828–832. 10.1104/pp.63.5.828 PubMed DOI PMC

Gibon, Y. , Blaesing, O. E. , Hannemann, J. , Carillo, P. , Höhne, M. , Hendriks, J. H. M. , … Stitt, M. (2004). A robot‐based platform to measure multiple enzyme activities in arabidopsis using a set of cycling assays: Comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. The Plant Cell, 16, 3304–3325. 10.1105/tpc.104.025973 PubMed DOI PMC

Gibon, Y. , Vigeolas, H. , Tiessen, A. , Geigenberger, P. , & Stitt, M. (2002). Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. The Plant Journal, 30, 221–235. 10.1046/j.1365-313X.2001.01278.x PubMed DOI

Godt, D. , & Roitsch, T. (2006). The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots. Plant Physiology and Biochemistry, 44, 656–665. 10.1016/j.plaphy.2006.09.019 PubMed DOI

Goetz, M. , Godt, D. , Guivarc'h, A. , Kahmann, U. , Chriqui, D. , & Roitsch, T. (2001). Induction of male sterility in plants by metabolic engineering. Proceedings of the National Academy of Sciences USA, 98, 6522–6527. 10.1073/pnas.091097998 PubMed DOI PMC

Granot, D. , David‐Schwartz, R. , & Kelly, G. (2013). Hexose kinases and their role in sugar‐sensing and plant development. Frontiers in Plant Science, 4, 44 10.3389/fpls.2013.00044 PubMed DOI PMC

Granot, D. , Kelly, G. , Stein, O. , & David‐Schwartz, R. (2014). Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. Journal of Experimental Botany, 65, 809–819. 10.1093/jxb/ert400 PubMed DOI

Großkinsky, D. K. , Albacete, A. A. , Jammer, A. , Krbez, P. , van der Graaff, E. , Pfeifhofer, H. , & Roitsch, T. (2014). A rapid phytohormone and phytoalexin screening method for physiological phenotyping. Molecular Plant, 7, 1053–1056. 10.1093/mp/ssu015 PubMed DOI

Großkinsky, D. K. , Svensgaard, J. , Christensen, S. , & Roitsch, T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype‐to‐phenotype knowledge gap. Journal of Experimental Botany, 66, 5429–5440. 10.1093/jxb/erv345 PubMed DOI

Großkinsky, D. K. , Syaifullah, S. J. , & Roitsch, T. (2018). Integration of multi‐omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. Journal of Experimental Botany, 69, 825–844. 10.1093/jxb/erx333 PubMed DOI

Haake, V. , Zrenner, R. , Sonnewald, U. , & Stitt, M. (1998). A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. The Plant Journal, 14, 147–157. 10.1046/j.1365-313X.1998.00089.x PubMed DOI

Hacke, U. G. , Spicer, R. , Schreiber, S. G. , & Plavcová, L. (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831–845. 10.1111/pce.12777 PubMed DOI

Halford, N. G. , Curtis, T. Y. , Muttucumaru, N. , Postles, J. , & Mottram, D. S. (2011). Sugars in crop plants. Annals of Applied Biology, 158, 1–25. 10.1111/j.1744-7348.2010.00443.x DOI

Hawker, J. S. (1969). Changes in the activities of enzymes concerned with sugar metabolism during the development of grape berries. Phytochemistry, 8, 9–17. 10.1016/S0031-9422(00)85788-X DOI

Herwig, R. , Schulz, B. , Weisshaar, B. , Hennig, S. , Steinfath, M. , Drungowski, M. , … Radelof, U. (2002). Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes. The Plant Journal, 32, 845–857. 10.1046/j.1365-313X.2002.01457.x PubMed DOI

Hoffmann, C. M. , Kenter, C. , & Bloch, D. (2005). Marc concentration of sugar beet (Beta vulgaris L) in relation to sucrose storage. Journal of the Science of Food and Agriculture, 85, 459–465. 10.1002/jsfa.2002 DOI

Hoffmann, C. M. , & Kluge‐Severin, S. (2011). Growth analysis of autumn and spring sown sugar beet. European Journal of Agronomy, 34, 1–9. 10.1016/j.eja.2010.09.001 DOI

Hosford, D. J. , Lenton, J. R. , Milford, G. F. J. , Pocock, T. O. , & Elliott, M. C. (1984). Phytohormone changes during storage root growth in Beta species. Plant Growth Regulation, 2, 371–380. 10.1007/BF00027296 DOI

Houshmandfar, A. , Asli, D. E. , & Eghdami, A. (2011). Sucrose synthase, ADP‐glucose pyrophosphorylase and aldolase levels in relation to grain development of wheat. Advances in Environmental Biology, 5, 1736–1741.

Immanen, J. , Nieminen, K. , Smolander, O. , Kojima, M. , Alonso Serra, J. , Koskinen, P. , … Helariutta, Y. (2016). Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology, 26, 1990–1997. 10.1016/j.cub.2016.05.053 PubMed DOI

Jaggard, K. W. , & Qi, A. (2006). Agronomy In Draycott A. P. (Ed.), Sugar beet (pp. 134–168). Oxford, UK: Blackwell.

Jammer, A. , Gasperl, A. , Luschin‐Ebengreuth, N. , Heyneke, E. , Chu, H. , Cantero‐Navarro, E. , … Roitsch, T. (2015). Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. Journal of Experimental Botany, 66, 5531–5542. 10.1093/jxb/erv228 PubMed DOI

Jang, G. , Lee, J. , Rastogi, K. , Park, S. , Oh, S. , & Lee, J. (2015). Cytokinin‐dependent secondary growth determines root biomass in radish (Raphanus sativus L.). Journal of Experimental Botany, 66, 4607–4619. 10.1093/jxb/erv220 PubMed DOI PMC

Jelitto, T. , Sonnewald, U. , Willmitzer, L. , Hajirezeai, M. , & Stitt, M. (1992). Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta, 188, 238–244. 10.1007/BF00216819 PubMed DOI

Johnson, D. , Eckart, P. , Alsamadisi, N. , Noble, H. , Martin, C. , & Spicer, R. (2018). Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus. American Journal of Botany, 105, 186–196. 10.1002/ajb2.1035 PubMed DOI

Katz, E. , Boo, K. H. , Kim, H. Y. , Eigenheer, R. A. , Phinney, B. S. , Shulaev, V. , … Blumwald, E. (2011). Label‐free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 62, 5367–5384. 10.1093/jxb/err197 PubMed DOI PMC

Kenter, C. , Hoffmann, C. M. , & Märländer, B. (2006). Effects of weather variables on sugar beet yield development (Beta vulgaris L.). European Journal of Agronomy, 24, 62–69. 10.1016/j.eja.2005.05.001 DOI

Kleczkowski, L. A. , Decker, D. , & Wilczynska, M. (2011). UDP‐sugar pyrophosphorylase: A new old mechanism for sugar activation. Plant Physiology, 156, 3–10. 10.1104/pp.111.174706 PubMed DOI PMC

Klotz, K. L. , & Campbell, L. G. (2004). Sucrose catabolism in developing roots of three beta vulgaris genotypes with different yield and sucrose accumulation capacities. Journal of Sugar Beet Research, 41, 73–88. 10.5274/jsbr.41.3.73 DOI

Klotz, K. L. , & Finger, F. L. (2001). Sucrose catabolism during sugarbeet root development: Changes in isoenzyme activities and carbohydrate accumulation during growth. Proceedings from the 31st Biennial Meeting of the American Society of Sugar Beet, Technologists: 189–193.

Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7, 235–246. 10.1016/j.pbi.2004.03.014 PubMed DOI

Kong, W. , Chen, J. , Hou, Z. , Wen, P. , Zhan, J. , Pan, Q. , & Huang, W. (2007). Activity and subcellular localization of glucose‐6‐phosphate dehydrogenase in peach fruits. Journal of Plant Physiology, 164, 934–944. 10.1016/j.jplph.2006.06.001 PubMed DOI

Kortstee, A. J. , Appeldoorn, N. J. G. , Oortwijn, M. E. P. , & Visser, R. G. F. (2007). Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta, 226, 929–939. 10.1007/s00425-007-0539-6 PubMed DOI

Kruger, N. J. , & von Schaewen, A. (2003). The oxidative pentose phosphate pathway: Structure and organisation. Current Opinion in Plant Biology, 6, 236–246. 10.1016/S1369-5266(03)00039-6 PubMed DOI

Krumbiegel, A. (1998). Morphology and anatomy in annual taxa of Beta vulgaris s.l. (Chenopodiaceae). Nordic Journal of Botany, 18, 159–167. 10.1111/j.1756-1051.1998.tb01863.x DOI

Kushwah, S. , & Laxmi, A. (2017). The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development. Plant Signaling & Behavior, 12, e1312241 10.1080/15592324.2017.1312241 PubMed DOI PMC

Kuska, M. K. , Behmann, J. , Grosskinsky, D. K. , Roitsch, T. , & Mahlein, A. K. (2018). Screening of barley resistance against powdery mildew by simultaneous high‐throughput enzyme activity signature profiling and multispectral imaging. Frontiers in Plant Science, 9, 1074 10.3389/fpls.2018.01074 PubMed DOI PMC

Lamari, N. , Zhendre, V. , Urrutia, M. , Bernillon, S. , Maucourt, M. , Deborde, C. , … Moing, A. (2018). Metabotyping of 30 maize hybrids under early‐sowing conditions reveals potential marker‐metabolites for breeding. Metabolomics, 14, 132 10.1007/s11306-018-1427-8 PubMed DOI PMC

Lao, X. , Azuma, J. , & Sakamoto, M. (2013). Two cytosolic aldolases show different expression patterns during shoot elongation in Moso bamboo, Phyllostachys pubescens Mazel. Physiologia Plantarum, 149, 422–431. 10.1111/ppl.12052 PubMed DOI

Leigh, R. A. , Ap Rees, T. , Fuller, W. A. , & Banfield, J. (1979). The location of acid invertase activity and sucrose in the vacuoles of storage roots of beetroot (Beta vulgaris). Biochemical Journal, 178, 539–547. 10.1042/bj1780539 PubMed DOI PMC

Li, J. , Wu, L. , Foster, R. , & Ruan, Y.‐L. (2017). Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. Journal of Integrative Plant Biology, 59, 322–335. 10.1111/jipb.12539 PubMed DOI

Li, L. , Song, J. , Kalt, W. , Forney, C. , Tsao, R. , Pinto, D. , … Li, X. (2013). Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages. Journal of Proteomics, 94, 219–239. 10.1016/j.jprot.2013.09.004 PubMed DOI

Lucas, W. J. , Groover, A. , Lichtenberger, R. , Furuta, K. , Yadav, S. , Helariutta, Y. , … Kachroo, P. (2013). The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology, 55, 294–388. 10.1111/jipb.12041 PubMed DOI

Luisi, A. , Giovannelli, A. , Traversi, M. L. , Anichini, M. , & Sorce, C. (2014). Hormonal responses to water deficit in cambial tissues of Populus alba L. Journal of Plant Growth Regulation, 33, 489–498. 10.1007/s00344-013-9401-1 DOI

Mähönen, A. P. , Higuchi, M. , Törmäkangas, K. , Miyawaki, K. , Pischke, M. S. , Sussman, M. R. , … Kakimoto, T. (2006). Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Current Biology, 16, 1116–1122. 10.1016/j.cub.2006.04.030 PubMed DOI

Malinova, I. , Kunz, H. , Alseekh, S. , Herbst, K. , Fernie, A. R. , Gierth, M. , … Kusano, M. (2014). Reduction of the cytosolic phosphoglucomutase in arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PLoS ONE, 9, e112468 10.1371/journal.pone.0112468 PubMed DOI PMC

Martínez‐Esteso, M. J. , Sellés‐Marchart, S. , Lijavetzky, D. , Pedreño, M. A. , & Bru‐Martínez, R. (2011). A DIGE‐based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany, 62, 2521–2569. 10.1093/jxb/erq434 PubMed DOI

Matsumoto‐Kitano, M. , Kusumoto, T. , Tarkowski, P. , Kinoshita‐Tsujimura, K. , Vaclavikova, K. , Miyawaki, K. , & Kakimoto, T. (2008). Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences USA, 105, 20027–20031. 10.1073/pnas.0805619105 PubMed DOI PMC

McKee, J. M. T. , Thomas, T. H. , & Hole, C. C. (1984). Growth regulator effects on storage root development in carrot. Plant Growth Regulation, 2, 359–369. 10.1007/BF00027295 DOI

McLaughlin, J. E. , & Boyer, J. S. (2004a). Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems. Annals of Botany, 94, 75–86. 10.1093/aob/mch123 PubMed DOI PMC

McLaughlin, J. E. , & Boyer, J. S. (2004b). Sugar‐responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Annals of Botany, 94, 675–689. 10.1093/aob/mch193 PubMed DOI PMC

Miao, Y. , Zhu, Z. , Guo, Q. , Yang, X. , Liu, L. , Sun, Y. , & Wang, C. (2016). Dynamic changes in carbohydrate metabolism and endogenous hormones during Tulipa edulis stolon development into a new bulb. Journal of Plant Biology, 59, 121–132. 10.1007/s12374-016-0456-y DOI

Milford, G. F. J. (2006). Plant structure and crop physiology In Draycott A. P. (Ed.), Sugar beet (pp. 30–49). Oxford, UK: Blackwell.

Miller, M. E. , & Chourey, P. S. (1992). The maize invertase‐deficient miniature‐1 seed mutation is associated with aberrant pedicel and endosperm development. The Plant Cell, 4, 297–305. 10.2307/3869541 PubMed DOI PMC

Minhas, J. S. , Rai, V. K. , & Saini, H. S. (2004). Carbohydrate metabolism during tuber initiation in potato: A transient surge in invertase activity marks the stolon to tuber transition. Potato Research, 47, 113–126. 10.1007/BF02735978 DOI

Mitsui, Y. , Shimomura, M. , Komatsu, K. , Namiki, N. , Shibata‐Hatta, M. , Imai, M. , … Sasaki, T. (2015). The radish genome and comprehensive gene expression profile of tuberous root formation and development. Scientific Reports, 5, 10835 10.1038/srep10835 PubMed DOI PMC

Miyashima, S. , Sebastian, J. , Lee, J. , & Helariutta, Y. (2012). Stem cell function during plant vascular development. The EMBO Journal, 32, 178–193. 10.1038/emboj.2012.301 PubMed DOI PMC

Nakashima, K. , & Yamaguchi‐Shinozaki, K. (2013). ABA signaling in stress‐response and seed development. Plant Cell Reports, 32, 959–970. 10.1007/s00299-013-1418-1 PubMed DOI

Neubohn, B. , Gubatz, S. , Wobus, U. , & Weber, H. (2000). Sugar levels altered by ectopic expression of a yeast‐derived invertase affect cellular differentiation of developing cotyledons of Vicia narbonensis L. Planta, 211, 325–334. 10.1007/s004250000305 PubMed DOI

Nieminen, K. , Immanen, J. , Laxell, M. , Kauppinen, L. , Tarkowski, P. , Dolezal, K. , … Helariutta, Y. (2008). Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences USA, 105, 20032–20037. 10.1073/pnas.0805617106 PubMed DOI PMC

Oikawa, A. , Otsuka, T. , Nakabayashi, R. , Jikumaru, Y. , Isuzugawa, K. , Murayama, H. , … Osorio‐Algar, S. (2015). Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites including plant hormones. PLoS ONE, 10, e0131408 10.1371/journal.pone.0131408 PubMed DOI PMC

Oldemeyer, R. K. (1975). Introgressive hybridization as a breeding method in beta vulgaris. Journal of Sugarbeet Research, 18, 269–273. 10.5274/jsbr.18.3.269 DOI

Ozolina, N. V. , Pradedova, E. V. , & Salyaev, R. K. (2005). The dynamics of hormonal status of developing red beet root (Beta vulgaris L.) in correlation with the dynamics of sugar accumulation. Biology Bulletin, 32, 22–26. 10.1007/s10525-005-0005-6 PubMed DOI

Pack, D. A. (1927). Ring density of sugar beets as a character for selection. American Journal of Botany, 14, 238–245. 10.1002/j.1537-2197.1927.tb04839.x DOI

Park, J. , Ishimizu, T. , Suwabe, K. , Sudo, K. , Masuko, H. , Hakozaki, H. , … Watanabe, M. (2010). UDP‐glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant and Cell Physiology, 51, 981–996. 10.1093/pcp/pcq057 PubMed DOI

Payyavula, R. S. , Tschaplinski, T. J. , Jawdy, S. S. , Sykes, R. W. , Tuskan, G. A. , & Kalluri, U. C. (2014). Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus. BMC Plant Biology, 14, 265 10.1186/s12870-014-0265-8 PubMed DOI PMC

Polit, J. T. , & Ciereszko, I. (2012). Sucrose synthase activity and carbohydrates content in relation to phosphorylation status of Vicia faba root meristems during reactivation from sugar depletion. Journal of Plant Physiology, 169, 1597–1606. 10.1016/j.jplph.2012.04.017 PubMed DOI

Powers, L. (1956). Identification of genetically‐superior individuals and the prediction of genetic gains in sugar beet breeding programs. Journal of the American Society of Sugar Beet Technologists, 9, 408–432. 10.5274/jsbr.9.5.408 DOI

Prezelj, N. , Covington, E. , Roitsch, T. , Gruden, K. , Fragner, L. , Weckwerth, W. , … Dermastia, M. (2016). Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. ‘Modra frankinja’ with Flavescence dorée phytoplasma. Frontiers in Plant Science, 7, 711 10.3389/fpls.2016.00711 PubMed DOI PMC

Privat, I. , Foucrier, S. , Prins, A. , Epalle, T. , Eychenne, M. , Kandalaft, L. , … Mccarthy, J. (2008). Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis. New Phytologist, 178, 781–797. 10.1111/j.1469-8137.2008.02425.x PubMed DOI

Qin, G. , Zhu, Z. , Wang, W. , Cai, J. , Chen, Y. , Li, L. , & Tian, S. (2016). A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiology, 172, 1596–1611. 10.1104/pp.16.01269 PubMed DOI PMC

Qu, A. , Ding, Y. , Jiang, Q. , & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432, 203–207. 10.1016/j.bbrc.2013.01.104 PubMed DOI

Quick, W. P. , & Schaffer, A. A. (1996). Sucrose metabolism in sources and sinks In Schaffer A. A., & Zamski E. (Eds.), Photoassimilate distribution in plants and crops. Source‐sink relationships (pp. 115–156). New York, NY: Marcel Dekker.

Ragni, L. , & Greb, T. (2018). Secondary growth as a determinant of plant shape and form. Seminars in Cell & Developmental Biology, 79, 58–67. 10.1016/j.semcdb.2017.08.050 PubMed DOI

Randall, R. S. , Miyashima, S. , Blomster, T. , Zhang, J. , Elo, A. , Karlberg, A. , … Murray, J. A. H. (2015). AINTEGUMENTA and the D‐type cyclin CYCD3; 1 regulate root secondary growth and respond to cytokinins. Biology Open, 4, 1229–1236. 10.1242/bio.013128 PubMed DOI PMC

Rausch, T. , & Greiner, S. (2004). Plant protein inhibitors of invertases. Biochimica et Biophysica Acta ‐ Proteins and Proteomics, 1696, 253–261. 10.1016/j.bbapap.2003.09.017 PubMed DOI

Ravi, V. , Chakrabarti, S. K. , Makeshkumar, T. , & Saravanan, R. (2014). Molecular regulation of storage root formation and development in sweet potato In Janick J. (Ed.), Horticultural reviews, Vol. 42 (pp. 157–207). Hoboken, NJ: Wiley‐Blackwell.

Ricardo, C. P. P. , & Sovia, D. (1974). Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition. Planta, 118, 43–55. 10.1007/BF00390502 PubMed DOI

Rohwer, J. M. , & Botha, F. C. (2001). Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochemical Journal, 358, 437–445. 10.1042/bj3580437 PubMed DOI PMC

Roitsch, T. , & Gonzalez, M. (2004). Function and regulation of invertases in higher plants: Sweet sensations. Trends in Plant Science, 9, 606–613. 10.1016/j.tplants.2004.10.009 PubMed DOI

Ross, H. A. , Davies, H. V. , Burch, L. R. , Viola, R. , & McRae, D. (1994). Developmental changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum tuberosum). Physiologia Plantarum, 90, 748–756. 10.1111/j.1399-3054.1994.tb02533.x DOI

Ruan, Y.‐L. (2014). Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 65, 33–67. 10.1146/annurev-arplant-050213-040251 PubMed DOI

Ruan, Y.‐L. , Llewellyn, D. J. , & Furbank, R. T. (2003). Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell, 15, 952–964. 10.1105/tpc.010108 PubMed DOI PMC

Saftner, R. A. , & Wyse, R. E. (1984). Effect of plant hormones on sucrose uptake by sugar beet root tissue discs. Plant Physiology, 74, 951–955. 10.1104/pp.74.4.951 PubMed DOI PMC

Sah, S. K. , Reddy, K. R. , & Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571 10.3389/fpls.2016.00571 PubMed DOI PMC

Schaffer, A. A. , & Petreikov, M. (1997). Sucrose‐to‐starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiology, 113, 739–746. 10.1104/pp.113.3.739 PubMed DOI PMC

Schwab, W. , Aharoni, A. , Raab, T. , Pérez, A. G. , & Sanz, C. (2001). Cytosolic aldolase is a ripening related enzyme in strawberry fruits (Fragaria × ananassa). Phytochemistry, 56, 407–415. 10.1016/S0031-9422(00)00405-2 PubMed DOI

Sergeeva, L. I. , Keurentjes, J. J. B. , Bentsink, L. , Vonk, J. , van der Plas, L. H. W. , Koornneef, M. , & Vreugdenhil, D. (2006). Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proceedings of the National Academy of Sciences USA, 103, 2994–2999. 10.1073/pnas.0511015103 PubMed DOI PMC

Sergeeva, L. I. , & Vreugdenhil, D. (2002). In situ staining of activities of enzymes involved in carbohydrate metabolism in plant tissues. Journal of Experimental Botany, 53, 361–370. 10.1093/jexbot/53.367.361 PubMed DOI

Sheen, J. (2014). Master regulators in plant glucose signaling networks. Journal of Plant Biology, 57, 67–79. 10.1007/s12374-014-0902-7 PubMed DOI PMC

Shuai, L. , Li, J. , Niu, J. J. , Qian, P. H. , Liu, W. H. , Xue, X. Q. , … Wu, Z. X. (2016). Sucrose‐metabolizing enzymes and their genes in the arils of two Dimocarpus longan cultivars. Biologia Plantarum, 60, 741–748. 10.1007/s10535-016-0602-x DOI

Slewinski, T. L. , & Braun, D. M. (2010). Current perspectives on the regulation of whole‐plant carbohydrate partitioning. Plant Science, 178, 341–349. 10.1016/j.plantsci.2010.01.010 DOI

Sorce, C. , Giovannelli, A. , Sebastiani, L. , & Anfodillo, T. (2013). Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 32, 885–898. 10.1007/s00299-013-1431-4 PubMed DOI

Stein, O. , Avin‐Wittenberg, T. , Krahnert, I. , Zemach, H. , Bogol, V. , Daron, O. , … Granot, D. (2017). Arabidopsis fructokinases are important for seed oil accumulation and vascular development. Frontiers in Plant Science, 7, 2047 10.3389/fpls.2016.02047 PubMed DOI PMC

Stein, O. , Damari‐Weissler, H. , Secchi, F. , Rachamilevitch, S. , German, M. A. , Yeselson, Y. , … Granot, D. (2016). The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. New Phytologist, 209, 1484–1495. 10.1111/nph.13705 PubMed DOI

Stein, O. , & Granot, D. (2018). Plant fructokinases: Evolutionary, developmental, and metabolic aspects in sink tissues. Frontiers in Plant Science, 9, 339 10.3389/fpls.2018.00339 PubMed DOI PMC

Stein, O. , & Granot, D. (2019). An overview of sucrose synthases in plants. Frontiers in Plant Science, 10, 95 10.3389/fpls.2019.00095 PubMed DOI PMC

Stich, B. , Piepho, H. , Schulz, B. , & Melchinger, A. E. (2008). Multi‐trait association mapping in sugar beet (Beta vulgaris L.). Theoretical and Applied Genetics, 117, 947–954. 10.1007/s00122-008-0834-z PubMed DOI

Sturm, A. (1996). Molecular characterization and functional analysis of sucrose‐cleaving enzymes in carrot (Daucus carota L.). Journal of Experimental Botany, 47, 1187–1192. 10.1093/jxb/47.Special_Issue.1187 PubMed DOI

Sturm, A. , Šebková, V. , Lorenz, K. , Hardegger, M. , Lienhard, S. , & Unger, C. (1995). Development‐ and organ‐specific expression of the genes for sucrose synthase and three isoenzymes of acid β‐fructofuranosidase in carrot. Planta, 195, 601–610. 10.1007/BF00195721 DOI

Sturm, A. , & Tang, G. (1999). The sucrose‐cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends in Plant Science, 4, 401–407. 10.1016/S1360-1385(99)01470-3 PubMed DOI

Sung, S. S. , Xu, D. , & Black, C. C. (1989). Identification of actively filling sucrose sinks. Plant Physiology, 89, 1117–1121. 10.1104/pp.89.4.1117 PubMed DOI PMC

Tang, G. , Lüscher, M. , & Sturm, A. (1999). Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. The Plant Cell, 11, 177–190. 10.1105/tpc.11.2.177 PubMed DOI PMC

Tang, G. , & Sturm, A. (1999). Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Molecular Biology, 41, 465–479. 10.1023/a:1006327606696 PubMed DOI

Tang, X. , Su, T. , Han, M. , Wei, L. , Wang, W. , Yu, Z. , … Liu, L. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). Journal of Experimental Botany, 68, 469–482. 10.1093/jxb/erw425 PubMed DOI PMC

Tardieu, F. , Cabrera‐Bosquet, L. , Pridmore, T. , & Bennett, M. (2017). Plant phenomics, from sensors to knowledge. Current Biology, 27, R770–R783. 10.1016/j.cub.2017.05.055 PubMed DOI

Thomas, S. , Mooney, P. J. F. , Burrell, M. M. , & Fell, D. A. (1997). Finite change analysis of glycolytic intermediates in tuber tissue of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase. Biochemical Journal, 322, 111–117. 10.1042/bj3220111 PubMed DOI PMC

Trebbi, D. , & McGrath, J. M. (2009). Functional differentiation of the sugar beet root system as indicator of developmental phase change. Physiologia Plantarum, 135, 84–97. 10.1111/j.1399-3054.2008.01169.x PubMed DOI

Tuominen, H. , Puech, L. , Fink, S. , & Sundberg, B. (1997). A radial concentration gradient of indole‐3‐acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology, 115, 577–585. 10.1104/pp.115.2.577 PubMed DOI PMC

Turesson, H. , Andersson, M. , Marttila, S. , Thulin, I. , & Hofvander, P. (2014). Starch biosynthetic genes and enzymes are expressed and active in the absence of starch accumulation in sugar beet tap‐root. BMC Plant Biology, 14, 104 10.1186/1471-2229-14-104 PubMed DOI PMC

Uematsu, K. , Suzuki, N. , Iwamae, T. , Inui, M. , & Yukawa, H. (2012). Increased fructose 1,6‐bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. Journal of Experimental Botany, 63, 3001–3009. 10.1093/jxb/ers004 PubMed DOI

Uggla, C. , Magel, E. , Moritz, T. , & Sundberg, B. (2001). Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine. Plant Physiology, 125, 2029–2039. 10.1104/pp.125.4.2029 PubMed DOI PMC

Uggla, C. , Mellerowicz, E. J. , & Sundberg, B. (1998). Indole‐3‐acetic acid controls cambial growth in scots pine by positional signaling. Plant Physiology, 117, 113–121. 10.1104/pp.117.1.113 PubMed DOI PMC

Uggla, C. , Moritz, T. , Sandberg, G. , & Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proceedings of the National Academy of Sciences USA, 93, 9282–9286. 10.1073/pnas.93.17.9282 PubMed DOI PMC

Ursache, R. , Nieminen, K. , & Helariutta, Y. (2013). Genetic and hormonal regulation of cambial development. Physiologia Plantarum, 147, 36–45. 10.1111/j.1399-3054.2012.01627.x PubMed DOI

Usuda, H. , Demura, T. , Shimogawara, K. , & Fukuda, H. (1999). Development of sink capacity of the "Storage Root" in a radish cultivar with a high ratio of "Storage Root" to shoot. Plant and Cell Physiology, 40, 369–377. 10.1093/oxfordjournals.pcp.a029552 DOI

Usuda, H. , Rouhier, H. , Demura, T. , & Fukuda, H. (1999). Development of sink capacity of the “storage root” in a radish variety with a low ratio of “storage root” to shoot. Plant & Cell Physiology, 40, 1210–1218. 10.1093/oxfordjournals.pcp.a029509 DOI

Uys, L. , Botha, F. C. , Hofmeyr, J. S. , & Rohwer, J. M. (2007). Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry, 68, 2375–2392. 10.1016/j.phytochem.2007.04.023 PubMed DOI

Verbančič, J. , Lunn, J. E. , Stitt, M. , & Persson, S. (2018). Carbon supply and the regulation of cell wall synthesis. Molecular Plant, 11, 75–94. 10.1016/j.molp.2017.10.004 PubMed DOI

Vishwakarma, K. , Upadhyay, N. , Kumar, N. , Yadav, G. , Singh, J. , Mishra, R. K. , … Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Frontiers in Plant Science, 8, 161 10.3389/fpls.2017.00161 PubMed DOI PMC

Wai, C. M. , Zhang, J. , Jones, T. C. , Nagai, C. , & Ming, R. (2017). Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genomics, 18, 773 10.1186/s12864-017-4158-8 PubMed DOI PMC

Wan, H. , Wu, L. , Yang, Y. , Zhou, G. , & Ruan, Y.‐L. (2018). Evolution of sucrose metabolism: The dichotomy of invertases and beyond. Trends in Plant Science, 23, 163–177. 10.1016/j.tplants.2017.11.001 PubMed DOI

Wang, L. , Li, X. , Lian, H. , Ni, D. , He, Y. , Chen, X. , & Ruan, Y. (2010). Evidence that high activity of vacuolar invertase is required for cotton fiber and arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiology, 154, 744–756. 10.1104/pp.110.162487 PubMed DOI PMC

Wang, L. , & Ruan, Y.‐L. (2013). Regulation of cell division and expansion by sugar and auxin signaling. Frontiers in Plant Science, 4, 163 10.3389/fpls.2013.00163 PubMed DOI PMC

Wang, L. , & Ruan, Y.‐L. (2016). Shoot‐root carbon allocation, sugar signaling and their coupling with nitrogen uptake and assimilation). Functional Plant Biology, 43, 105–113. 10.1071/FP15249 PubMed DOI

Wang, Q. , Zhang, X. , Li, F. , Hou, Y. , Liu, X. , & Zhang, X. (2011). Identification of a UDP‐glucose pyrophosphorylase from cotton (Gossypium hirsutum L.) involved in cellulose biosynthesis in Arabidopsis thaliana. Plant Cell Reports, 30, 1303–1312. 10.1007/s00299-011-1042-x PubMed DOI

Wang, X. Q. , Li, L. M. , Yang, P. P. , & Gong, C. L. (2014). The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes. Plant Cell Reports, 33, 337–347. 10.1007/s00299-013-1533-z PubMed DOI

Weber, H. , Borisjuk, L. , Heim, U. , Buchner, P. , & Wobus, U. (1995). Seed coat‐associated invertases of fava bean control both unloading and storage functions: Cloning of cDNAs and cell type‐specific expression. The Plant Cell, 7, 1835–1846. 10.1105/tpc.7.11.1835 PubMed DOI PMC

Weber, H. , Borisjuk, L. , & Wobus, U. (1996). Controlling seed development and seed size in Vicia faba: A role for seed coat‐associated invertases and carbohydrate state. The Plant Journal, 10, 823–834. 10.1046/j.1365-313X.1996.10050823.x DOI

Weber, H. , Borisjuk, L. , & Wobus, U. (1997). Sugar import and metabolism during seed development. Trends in Plant Science, 2, 169–174. 10.1016/S1360-1385(97)85222-3 DOI

Weber, H. , Borisjuk, L. , & Wobus, U. (2005). Molecular physiology of legume seed development. Annual Review of Plant Biology, 56, 253–279. 10.1146/annurev.arplant.56.032604.144201 PubMed DOI

Weber, H. , Buchner, P. , Borisjuk, L. , & Wobus, U. (1996). Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose‐phosphate synthase and sucrose synthase: Expression patterns, metabolic regulation and implications for seed development. The Plant Journal, 9, 841–850. 10.1046/j.1365-313X.1996.9060841.x PubMed DOI

Weber, H. , Heim, U. , Golombek, S. , Borisjuk, L. , Manteuffel, R. , & Wobus, U. (1998). Expression of a yeast‐derived invertase in developing cotyledons of Vicia narbonensis alters the carbohydrate state and affects storage functions. The Plant Journal, 16, 163–172. 10.1046/j.1365-313x.1998.00282.x PubMed DOI

Weschke, W. , Panitz, R. , Gubatz, S. , Wang, Q. , Radchuk, R. , Weber, H. , & Wobus, U. (2003). The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. The Plant Journal, 33, 395–411. 10.1046/j.1365-313X.2003.01633.x PubMed DOI

Wobus, U. , Bäumlein, H. , Conrad, U. , Müntz, K. , & Weber, H. (2000). Seeds of change. Trends in Plant Science, 5, 512–513. 10.1016/S1360-1385(00)01786-6 PubMed DOI

Wobus, U. , & Weber, H. (1999). Seed maturation: Genetic programmes and control signals. Current Opinion in Plant Biology, 2, 33–38. 10.1016/S1369-5266(99)80007-7 PubMed DOI

Wyse, R. E. (1979). Parameters controlling sucrose content and yield of sugarbeet roots. Journal of the American Society of Sugar Beet Technologists, 20, 368–385. 10.5274/jsbr.20.4.368 DOI

Xu, S. , Brill, E. , Llewellyn, D. J. , Furbank, R. T. , & Ruan, Y. (2012). Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Molecular Plant, 5, 430–441. 10.1093/mp/ssr090 PubMed DOI

York, L. M. (2019). Functional phenomics: An emerging field integrating high‐throughput phenotyping, physiology, and bioinformatics. Journal of Experimental Botany, 70, 379–386. 10.1093/jxb/ery379 PubMed DOI

Yu, R. , Xu, L. , Zhang, W. , Wang, Y. , Luo, X. , Wang, R. , … Liu, L. (2016). De novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.). Frontiers in Plant Science, 7, 585 10.3389/fpls.2016.00585 PubMed DOI PMC

Yu, S. , Lo, S. , & Ho, T. D. (2015). Source‐sink communication: regulated by hormone, nutrient, and stress cross‐signaling. Trends in Plant Science, 20, 844–857. 10.1016/j.tplants.2015.10.009 PubMed DOI

Zamski, E. (1996). Anatomical and physiological characteristics of sink cells In Schaffer A. A., & Zamski E. (Eds.), Photoassimilate distribution in plants and crops. Source‐sink relationships (pp. 283–310). New York, NY: Marcel Dekker.

Zamski, E. , & Azenkot, A. (1981). Sugarbeet vasculature. II. Translocation of assimilates in the supernumerary phloem. Botanical Gazette, 142, 344–346. 10.1086/337233 DOI

Zhang, H. , Han, W. , de Smet, I. , Talboys, P. , Loya, R. , Hassan, A. , … Wang, M. (2010). ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. The Plant Journal, 64, 764–774. 10.1111/j.1365-313X.2010.04367.x PubMed DOI

Zhang, J. , Elo, A. , & Helariutta, Y. (2011). Arabidopsis as a model for wood formation. Current Opinion in Biotechnology, 22, 293–299. 10.1016/j.copbio.2010.11.008 PubMed DOI

Zhang, X. , Wang, W. , Du, L. , Xie, J. , Yao, Y. , & Sun, G. (2012). Expression patterns, activities and carbohydrate‐metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening. International Journal of Molecular Sciences, 13, 9460–9477. 10.3390/ijms13089460 PubMed DOI PMC

Zhang, Y. , Li, G. , Wang, X. , Sun, Y. , & Zhang, S. (2017). Transcriptomic profiling of taproot growth and sucrose accumulation in sugar beet (Beta vulgaris L.) at different developmental stages. PLoS ONE, 12, e0175454 10.1371/journal.pone.0175454 PubMed DOI PMC

Zhang, Y. , Zhen, L. , Tan, X. , Li, L. , & Wang, X. (2014). The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Molecular Biology Reports, 41, 7899–7910. 10.1007/s11033-014-3683-7 PubMed DOI

Zhu, X. , Wang, M. , Li, X. , Jiu, S. , Wang, C. , & Fang, J. (2017). Genome‐wide analysis of the sucrose synthase gene family in grape (Vitis vinifera): Structure, evolution, and expression profiles. Genes, 8, 111 10.3390/genes8040111 PubMed DOI PMC

Ziliotto, F. , Begheldo, M. , Rasori, A. , Bonghi, C. , & Tonutti, P. (2008). Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1‐MCP. Journal of Experimental Botany, 59, 2781–2791. 10.1093/jxb/ern136 PubMed DOI PMC

Zrenner, R. , Salanoubat, M. , Willmitzer, L. , & Sonnewald, U. (1995). Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). The Plant Journal, 7, 97–107. 10.1046/j.1365-313X.1995.07010097.x PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cell wall regulation by carbon allocation and sugar signaling

. 2023 Dec ; 9 () : 100096. [epub] 20230113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...