Cell wall regulation by carbon allocation and sugar signaling

. 2023 Dec ; 9 () : 100096. [epub] 20230113

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37396713
Odkazy

PubMed 37396713
PubMed Central PMC10311191
DOI 10.1016/j.tcsw.2023.100096
PII: S2468-2330(23)00003-8
Knihovny.cz E-zdroje

Zobrazit více v PubMed

Amor Y., Haigler C.H., Johnson S., Wainscott M., Delmer D.P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. U.S.A. 1995;92(20):9353–9357. PubMed PMC

Apelt F., Breuer D., Olas J.J., Annunziata M.G., Flis A., Nikoloski Z., Kragler F., Stitt M. Circadian, carbon, and light control of expansion growth and leaf movement. Plant Physiol. 2017;174(3):1949–1968. doi: 10.1104/pp.17.00503. PubMed DOI PMC

Barnes W.J., Anderson C.T. Cytosolic invertases contribute to cellulose biosynthesis and influence carbon partitioning in seedlings of Arabidopsis Thaliana. Plant J. 2018;94(6):956–974. doi: 10.1111/tpj.13909. PubMed DOI

Barnes W.J., Anderson C.T. Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Mol. Plant. 2018;11(1):31–46. doi: 10.1016/j.molp.2017.08.011. PubMed DOI

Choi I., Ahn C.S., Lee D.-H., Baek S.-A., Jung J.W., Kim J.K., Lee H.-S., Pai H.-S. Silencing of the target of rapamycin complex genes stimulates tomato fruit ripening. Mol., Cells. 2022;45(9):660–672. doi: 10.14348/molcells.2022.2025. PubMed DOI PMC

Choudhary A., Kumar A., Kaur N., Kaur H. Molecular cues of sugar signaling in plants. Physiol. Plantarum. 2022;174(1):e13630. PubMed

da Silva V.C.H., Martins M.C.M., Calderan-Rodrigues M.J., Artins A., Monte Bello C.C., Gupta S., Sobreira T.J.P., Riaño-Pachón D.M., Mafra V., Caldana C. Shedding light on the dynamic role of the ‘target of rapamycin’ kinase in the fast-growing C4 species Setaria viridis, a suitable model for biomass crops. Front. Plant Sci. 2021;12 doi: 10.3389/fpls.2021.637508. PubMed DOI PMC

Dominguez P.G., Donev E., Derba-Maceluch M., Bünder A., Hedenström M., Tomášková I., Mellerowicz E.J., Niittylä T. Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen. New Phytol. 2021;229(1):186–198. doi: 10.1111/nph.16721. PubMed DOI

dos Anjos L., Pandey P.K., Moraes T.A., Feil R., Lunn J.E., Stitt M. Feedback regulation by trehalose 6-phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. Plant Direct. 2018;2(8):e00078. PubMed PMC

Fernandez O., Ishihara H., George G.M., Mengin V., Flis A., Sumner D., Arrivault S., Feil R., Lunn J.E., Zeeman S.C., Smith A.M., Stitt M. Leaf starch turnover occurs in long days and in falling light at the end of the day. Plant Physiol. 2017;174(4):2199–2212. PubMed PMC

Fichtner F., Lunn J.E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Ann. Rev. Plant Biol. 2021;72(1):737–760. doi: 10.1146/annurev-arplant-050718-095929. PubMed DOI

Fu L., Liu Y., Qin G., Wu P., Zi H., Xu Z., Zhao X., Wang Y., Li Y., Yang S., Peng C., Wong C.C.L., Yoo S.-D., Zuo Z., Liu R., Cho Y.-H., Xiong Y. The TOR–EIN2 axis mediates nuclear signalling to modulate plant growth. Nature. 2021;591(7849):288–292. PubMed

Ishihara H., Alseekh S., Feil R., Perera P., George G.M., Niedźwiecki P., Arrivault S., Zeeman S.C., Fernie A.R., Lunn J.E., Smith A.M., Stitt M. Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. Plant Physiol. 2022;189(4):1976–2000. PubMed PMC

Jammer A., Albacete A., Schulz B., Koch W., Weltmeier F., van der Graaff E., Pfeifhofer H.W., Roitsch T.G. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. Plant Direct. 2020;4(7):e00221. PubMed PMC

Li M., Wang S., Liu Y., Zhang Y., Ren M., Liu L., Tingting L., Wei H., Wei Z. Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. Plant Mol. Biol. 2019;100(3):215–230. doi: 10.1007/s11103-019-00850-w. PubMed DOI

MacNeill G.J., Mehrpouyan S., Minow M.A.A., Patterson J.A., Tetlow I.J., Emes M.J., Raines C. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J. Exp. Botany. 2017;68(16):4433–4453. PubMed

Müller L.M., von Korff M., Davis S.J. Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J. Exp. Botany. 2014;65(11):2915–2923. doi: 10.1093/jxb/eru117. PubMed DOI

Roach M., Gerber L., Sandquist D., Gorzsás A., Hedenström M., Kumar M., Steinhauser M.C., Feil R., Daniel G., Stitt M., Sundberg B., Niittylä T. Fructokinase is required for carbon partitioning to cellulose in aspen wood. Plant J. 2012;70(6):967–977. PubMed

Stein O., Granot D. Plant fructokinases: evolutionary, developmental, and metabolic aspects in sink tissues. Front. Plant Sci. 2018;9(March):339. doi: 10.3389/fpls.2018.00339. PubMed DOI PMC

Stein O., Granot D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019;10(February):95. doi: 10.3389/fpls.2019.00095. PubMed DOI PMC

Su J., Zhang C., Zhu L., Yang N., Yang J., Ma B., Ma F., Li M. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar. Biotechnol. Biofuels. 2021;14(June):137. doi: 10.1186/s13068-021-01989-9. PubMed DOI PMC

Taiz L. sixth ed. Sinauer Associates Inc, Publishers; Sunderland, Massachusetts: 2015. Plant Physiology and Development / Lincoln Taiz.

Verbančič J., Lunn J.E., Stitt M., Persson S. Carbon supply and the regulation of cell wall synthesis. Mol. Plant. 2018;11(1):75–94. doi: 10.1016/j.molp.2017.10.004. PubMed DOI

Wang W., Viljamaa S., Hodek O., Moritz T., Niittylä T. Sucrose synthase activity is not required for cellulose biosynthesis in Arabidopsis. Plant J. 2022;110(5):1493–2147. doi: 10.1111/tpj.15752. PubMed DOI PMC

Weber H., Borisjuk L., Wobus U. Molecular physiology of legume seed development. Ann. Rev. Plant Biol. 2005;56:253–279. doi: 10.1146/annurev.arplant.56.032604.144201. PubMed DOI

Yeats T.H., Sorek H., Wemmer D.E., Somerville C.R. Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol. 2016;171(1):110–124. doi: 10.1104/pp.16.00302. PubMed DOI PMC

Yu S.-M. Cellular and genetic responses of plants to sugar starvation1. Plant Physiol. 1999;121(3):687–693. doi: 10.1104/pp.121.3.687. PubMed DOI PMC

Yu W., Peng F., Xiao Y., Wang G., Luo J. Overexpression of PpSnRK1α in tomato promotes fruit ripening by enhancing RIPENING INHIBITOR regulation pathway. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01856. PubMed DOI PMC

Zhang Z., Zhu J.-Y., Roh J., Marchive C., Kim S.-K., Meyer C., Sun Y.u., Wang W., Wang Z.-Y. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis. Current Biology: CB. 2016;26(14):1854–1860. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace