Cell wall regulation by carbon allocation and sugar signaling
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37396713
PubMed Central
PMC10311191
DOI
10.1016/j.tcsw.2023.100096
PII: S2468-2330(23)00003-8
Knihovny.cz E-zdroje
- Klíčová slova
- Carbon allocation, Cell wall, Plants, Sugar signalling, TOR kinase,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Zobrazit více v PubMed
Amor Y., Haigler C.H., Johnson S., Wainscott M., Delmer D.P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. U.S.A. 1995;92(20):9353–9357. PubMed PMC
Apelt F., Breuer D., Olas J.J., Annunziata M.G., Flis A., Nikoloski Z., Kragler F., Stitt M. Circadian, carbon, and light control of expansion growth and leaf movement. Plant Physiol. 2017;174(3):1949–1968. doi: 10.1104/pp.17.00503. PubMed DOI PMC
Barnes W.J., Anderson C.T. Cytosolic invertases contribute to cellulose biosynthesis and influence carbon partitioning in seedlings of Arabidopsis Thaliana. Plant J. 2018;94(6):956–974. doi: 10.1111/tpj.13909. PubMed DOI
Barnes W.J., Anderson C.T. Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Mol. Plant. 2018;11(1):31–46. doi: 10.1016/j.molp.2017.08.011. PubMed DOI
Choi I., Ahn C.S., Lee D.-H., Baek S.-A., Jung J.W., Kim J.K., Lee H.-S., Pai H.-S. Silencing of the target of rapamycin complex genes stimulates tomato fruit ripening. Mol., Cells. 2022;45(9):660–672. doi: 10.14348/molcells.2022.2025. PubMed DOI PMC
Choudhary A., Kumar A., Kaur N., Kaur H. Molecular cues of sugar signaling in plants. Physiol. Plantarum. 2022;174(1):e13630. PubMed
da Silva V.C.H., Martins M.C.M., Calderan-Rodrigues M.J., Artins A., Monte Bello C.C., Gupta S., Sobreira T.J.P., Riaño-Pachón D.M., Mafra V., Caldana C. Shedding light on the dynamic role of the ‘target of rapamycin’ kinase in the fast-growing C4 species Setaria viridis, a suitable model for biomass crops. Front. Plant Sci. 2021;12 doi: 10.3389/fpls.2021.637508. PubMed DOI PMC
Dominguez P.G., Donev E., Derba-Maceluch M., Bünder A., Hedenström M., Tomášková I., Mellerowicz E.J., Niittylä T. Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen. New Phytol. 2021;229(1):186–198. doi: 10.1111/nph.16721. PubMed DOI
dos Anjos L., Pandey P.K., Moraes T.A., Feil R., Lunn J.E., Stitt M. Feedback regulation by trehalose 6-phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. Plant Direct. 2018;2(8):e00078. PubMed PMC
Fernandez O., Ishihara H., George G.M., Mengin V., Flis A., Sumner D., Arrivault S., Feil R., Lunn J.E., Zeeman S.C., Smith A.M., Stitt M. Leaf starch turnover occurs in long days and in falling light at the end of the day. Plant Physiol. 2017;174(4):2199–2212. PubMed PMC
Fichtner F., Lunn J.E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Ann. Rev. Plant Biol. 2021;72(1):737–760. doi: 10.1146/annurev-arplant-050718-095929. PubMed DOI
Fu L., Liu Y., Qin G., Wu P., Zi H., Xu Z., Zhao X., Wang Y., Li Y., Yang S., Peng C., Wong C.C.L., Yoo S.-D., Zuo Z., Liu R., Cho Y.-H., Xiong Y. The TOR–EIN2 axis mediates nuclear signalling to modulate plant growth. Nature. 2021;591(7849):288–292. PubMed
Ishihara H., Alseekh S., Feil R., Perera P., George G.M., Niedźwiecki P., Arrivault S., Zeeman S.C., Fernie A.R., Lunn J.E., Smith A.M., Stitt M. Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. Plant Physiol. 2022;189(4):1976–2000. PubMed PMC
Jammer A., Albacete A., Schulz B., Koch W., Weltmeier F., van der Graaff E., Pfeifhofer H.W., Roitsch T.G. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. Plant Direct. 2020;4(7):e00221. PubMed PMC
Li M., Wang S., Liu Y., Zhang Y., Ren M., Liu L., Tingting L., Wei H., Wei Z. Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. Plant Mol. Biol. 2019;100(3):215–230. doi: 10.1007/s11103-019-00850-w. PubMed DOI
MacNeill G.J., Mehrpouyan S., Minow M.A.A., Patterson J.A., Tetlow I.J., Emes M.J., Raines C. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J. Exp. Botany. 2017;68(16):4433–4453. PubMed
Müller L.M., von Korff M., Davis S.J. Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J. Exp. Botany. 2014;65(11):2915–2923. doi: 10.1093/jxb/eru117. PubMed DOI
Roach M., Gerber L., Sandquist D., Gorzsás A., Hedenström M., Kumar M., Steinhauser M.C., Feil R., Daniel G., Stitt M., Sundberg B., Niittylä T. Fructokinase is required for carbon partitioning to cellulose in aspen wood. Plant J. 2012;70(6):967–977. PubMed
Stein O., Granot D. Plant fructokinases: evolutionary, developmental, and metabolic aspects in sink tissues. Front. Plant Sci. 2018;9(March):339. doi: 10.3389/fpls.2018.00339. PubMed DOI PMC
Stein O., Granot D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019;10(February):95. doi: 10.3389/fpls.2019.00095. PubMed DOI PMC
Su J., Zhang C., Zhu L., Yang N., Yang J., Ma B., Ma F., Li M. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar. Biotechnol. Biofuels. 2021;14(June):137. doi: 10.1186/s13068-021-01989-9. PubMed DOI PMC
Taiz L. sixth ed. Sinauer Associates Inc, Publishers; Sunderland, Massachusetts: 2015. Plant Physiology and Development / Lincoln Taiz.
Verbančič J., Lunn J.E., Stitt M., Persson S. Carbon supply and the regulation of cell wall synthesis. Mol. Plant. 2018;11(1):75–94. doi: 10.1016/j.molp.2017.10.004. PubMed DOI
Wang W., Viljamaa S., Hodek O., Moritz T., Niittylä T. Sucrose synthase activity is not required for cellulose biosynthesis in Arabidopsis. Plant J. 2022;110(5):1493–2147. doi: 10.1111/tpj.15752. PubMed DOI PMC
Weber H., Borisjuk L., Wobus U. Molecular physiology of legume seed development. Ann. Rev. Plant Biol. 2005;56:253–279. doi: 10.1146/annurev.arplant.56.032604.144201. PubMed DOI
Yeats T.H., Sorek H., Wemmer D.E., Somerville C.R. Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol. 2016;171(1):110–124. doi: 10.1104/pp.16.00302. PubMed DOI PMC
Yu S.-M. Cellular and genetic responses of plants to sugar starvation1. Plant Physiol. 1999;121(3):687–693. doi: 10.1104/pp.121.3.687. PubMed DOI PMC
Yu W., Peng F., Xiao Y., Wang G., Luo J. Overexpression of PpSnRK1α in tomato promotes fruit ripening by enhancing RIPENING INHIBITOR regulation pathway. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01856. PubMed DOI PMC
Zhang Z., Zhu J.-Y., Roh J., Marchive C., Kim S.-K., Meyer C., Sun Y.u., Wang W., Wang Z.-Y. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis. Current Biology: CB. 2016;26(14):1854–1860. PubMed PMC