A primer to traction force microscopy

. 2022 May ; 298 (5) : 101867. [epub] 20220326

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35351517
Odkazy

PubMed 35351517
PubMed Central PMC9092999
DOI 10.1016/j.jbc.2022.101867
PII: S0021-9258(22)00307-6
Knihovny.cz E-zdroje

Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.

Zobrazit více v PubMed

Iskratsch T., Wolfenson H., Sheetz M.P. Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 2014;15:825–833. PubMed PMC

Wehrle-Haller B. Structure and function of focal adhesions. Curr. Opin. Cell Biol. 2012;24:116–124. PubMed

Schiller H.B., Fässler R. Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Rep. 2013;14:509–519. PubMed PMC

Hytönen V.P., Wehrle-Haller B. Mechanosensing in cell–matrix adhesions – converting tension into chemical signals. Exp. Cell Res. 2016;343:35–41. PubMed

del Rio A., Perez-Jimenez R., Liu R., Roca-Cusachs P., Fernandez J.M., Sheetz M.P. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323:638–641. PubMed PMC

Hirata H., Tatsumi H., Lim C.T., Sokabe M. Force-dependent vinculin binding to talin in live cells: A crucial step in anchoring the actin cytoskeleton to focal adhesions. Am. J. Physiol. Cell Physiol. 2014;306:C607–C620. PubMed

Rahikainen R., von Essen M., Schaefer M., Qi L., Azizi L., Kelly C., Ihalainen T.O., Wehrle-Haller B., Bastmeyer M., Huang C., Hytönen V.P. Mechanical stability of talin rod controls cell migration and substrate sensing. Sci. Rep. 2017;7:3571. PubMed PMC

Maki K., Nakao N., Adachi T. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem. Biophys. Res. Commun. 2017;484:372–377. PubMed

Humphries J.D., Wang P., Streuli C., Geiger B., Humphries M.J., Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 2007;179:1043–1057. PubMed PMC

Spill F., Bakal C., Mak M. Mechanical and systems biology of cancer. Comput. Struct. Biotechnol. J. 2018;16:237–245. PubMed PMC

Martino F., Perestrelo A.R., Vinarský V., Pagliari S., Forte G. Cellular mechanotransduction: From tension to function. Front. Physiol. 2018;9:824. PubMed PMC

Pagliari S., Vinarsky V., Martino F., Perestrelo A.R., Oliver De La Cruz J., Caluori G., Vrbsky J., Mozetic P., Pompeiano A., Zancla A., Ranjani S.G., Skladal P., Kytyr D., Zdráhal Z., Grassi G., et al. YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death Differ. 2021;28:1193–1207. PubMed PMC

Verbruggen S.W., editor. Mechanobiology in Health and Disease. Academic Press; London: 2018.

Campàs O., Mammoto T., Hasso S., Sperling R.A., O’Connell D., Bischof A.G., Maas R., Weitz D.A., Mahadevan L., Ingber D.E. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods. 2014;11:183–189. PubMed PMC

Farooque T.M., Camp C.H., Tison C.K., Kumar G., Parekh S.H., Simon C.G. Measuring stem cell dimensionality in tissue scaffolds. Biomaterials. 2014;35:2558–2567. PubMed

Ergir E., Bachmann B., Redl H., Forte G., Ertl P. Small force, big impact: Next generation organ-on-a-chip systems incorporating biomechanical cues. Front. Physiol. 2018;9:1417. PubMed PMC

Butler D.L., Goldstein S.A., Guilak F. Functional tissue engineering: The role of biomechanics. J. Biomech. Eng. 2000;122:570–575. PubMed

Yan L., Cai Q., Xu Y. Hypoxic conditions differentially regulate TAZ and YAP in cancer cells. Arch. Biochem. Biophys. 2014;562:31–36. PubMed PMC

Elosegui-Artola A., Oria R., Chen Y., Kosmalska A., Pérez-González C., Castro N., Zhu C., Trepat X., Roca-Cusachs P. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 2016;18:540–548. PubMed

Elosegui-Artola A., Andreu I., Beedle A.E.M., Lezamiz A., Uroz M., Kosmalska A.J., Oria R., Kechagia J.Z., Rico-Lastres P., Le Roux A.-L., Shanahan C.M., Trepat X., Navajas D., Garcia-Manyes S., Roca-Cusachs P. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171:1397–1410. PubMed

Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., Pešl M., Caluori G., Pagliari S., Martino F., Maceckova Z., Hajduch M., Sanz-Garcia A., Pugno N.M., Stokin G.B., et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017;8:15321. PubMed PMC

Rape A.D., Guo W., Wang Y. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials. 2011;32:2043–2051. PubMed PMC

Reinhart-King C.A., Dembo M., Hammer D.A. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 2005;89:676–689. PubMed PMC

Fang Y., Lai K.W.C. Modeling the mechanics of cells in the cell-spreading process driven by traction forces. Phys. Rev. E. 2016;93:42404. PubMed

Harris A.K., Wild P., Stopak D. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science. 1980;208:177–179. PubMed

Basoli F., Giannitelli S.M., Gori M., Mozetic P., Bonfanti A., Trombetta M., Rainer A. Biomechanical characterization at the cell scale: Present and prospects. Front. Physiol. 2018;9:1449. PubMed PMC

Yang M.T., Sniadecki N.J., Chen C.S. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 2007;19:3119–3123.

Kaylan K.B., Kourouklis A.P., Underhill G.H. A high-throughput cell microarray platform for correlative analysis of cell differentiation and traction forces. J. Vis. Exp. 2017;121 PubMed PMC

Ghassemi S., Meacci G., Liu S., Gondarenko A.A., Mathur A., Roca-Cusachs P., Sheetz M.P., Hone J. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl. Acad. Sci. U. S. A. 2012;109:5328–5333. PubMed PMC

Razafiarison T., Holenstein C.N., Stauber T., Jovic M., Vertudes E., Loparic M., Kawecki M., Bernard L., Silvan U., Snedeker J.G. Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc. Natl. Acad. Sci. U. S. A. 2018;115:4631–4636. PubMed PMC

Saez A., Anon E., Ghibaudo M., du Roure O., Di Meglio J.-M., Hersen P., Silberzan P., Buguin A., Ladoux B. Traction forces exerted by epithelial cell sheets. J. Phys. Condens. Matter. 2010;22:194119. PubMed

Polacheck W.J., Chen C.S. Measuring cell-generated forces: A guide to the available tools. Nat. Methods. 2016;13:415–423. PubMed PMC

Gupta M., Kocgozlu L., Sarangi B.R., Margadant F., Ashraf M., Ladoux B. Micropillar substrates: A tool for studying cell mechanobiology. Biophys. Methods Cell Biol. 2015;125:289–308. PubMed

Xiao F., Wen X., Tan X.H.M., Chiou P.-Y. Plasmonic micropillars for precision cell force measurement across a large field-of-view. Appl. Phys. Lett. 2018;112 PubMed PMC

Holenstein C.N., Silvan U., Snedeker J.G. High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking. Sci. Rep. 2017;7:41633. PubMed PMC

Style R.W., Boltyanskiy R., German G.K., Hyland C., MacMinn C.W., Mertz A.F., Wilen L.A., Xu Y., Dufresne E.R. Traction force microscopy in physics and biology. Soft Matter. 2014;10:4047–4055. PubMed

Rocha M.S. Extracting physical chemistry from mechanics: A new approach to investigate DNA interactions with drugs and proteins in single molecule experiments. Integr. Biol. 2015;7:967–986. PubMed

Yoshie H., Koushki N., Kaviani R., Tabatabaei M., Rajendran K., Dang Q., Husain A., Yao S., Li C., Sullivan J.K., Saint-Geniez M., Krishnan R., Ehrlicher A.J. Traction force screening enabled by compliant PDMS elastomers. Biophys. J. 2018;114:2194–2199. PubMed PMC

Roca-Cusachs P., Conte V., Trepat X. Quantifying forces in cell biology. Nat. Cell Biol. 2017;19:742–751. PubMed

Pasqualini F.S., Agarwal A., O’Connor B.B., Liu Q., Sheehy S.P., Parker K.K. Traction force microscopy of engineered cardiac tissues. PLoS One. 2018;13 PubMed PMC

Balaban N.Q., Schwarz U.S., Riveline D., Goichberg P., Tzur G., Sabanay I., Mahalu D., Safran S., Bershadsky A., Addadi L., Geiger B. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 2001;3:466–472. PubMed

Thery M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 2010;123:4201–4213. PubMed

Legant W.R., Choi C.K., Miller J.S., Shao L., Gao L., Betzig E., Chen C.S. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. U. S. A. 2013;110:881–886. PubMed PMC

Hall M.S., Long R., Feng X., Huang Y., Hui C.-Y., Wu M. Towards single cell traction microscopy within 3D collagen matrices. Exp. Cell Res. 2013;319:2396–2408. PubMed PMC

Franck C., Hong S., Maskarinec S.A., Tirrell D.A., Ravichandran G. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 2007;47:427–438.

Franck C., Maskarinec S.A., Tirrell D.A., Ravichandran G. Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions. PLoS One. 2011;6 PubMed PMC

Koch T.M., Münster S., Bonakdar N., Butler J.P., Fabry B. 3D traction forces in cancer cell invasion. PLoS One. 2012;7 PubMed PMC

Munoz J.J. Non-regularised inverse finite element analysis for 3D traction force microscopy. Int. J. Numer. Anal. Mod. 2016;13:763–781.

Toyjanova J., Bar-Kochba E., Hoffman-Kim D., Franck C. High resolution, large deformation 3D traction force microscopy. PLoS One. 2014;9 PubMed PMC

Jorge-Peñas A., Izquierdo-Alvarez A., Aguilar-Cuenca R., Vicente-Manzanares M., Garcia-Aznar J.M., Van Oosterwyck H., de-Juan- Pardo E.M., Ortiz-de-Solorzano C., Muñoz-Barrutia A. Free form deformation–based image registration improves accuracy of Traction Force Microscopy. PLoS One. 2015;10 PubMed PMC

Gjorevski N., Nelson C.M. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr. Biol. 2010;2:424–434. PubMed PMC

Kronenberg N.M., Liehm P., Steude A., Knipper J.A., Borger J.G., Scarcelli G., Franze K., Powis S.J., Gather M.C. Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nat. Cell Biol. 2017;19:864–872. PubMed

Liehm P., Kronenberg N.M., Gather M.C. Analysis of the precision, robustness, and speed of elastic resonator interference stress microscopy. Biophys. J. 2018;114:2180–2193. PubMed PMC

Bergert M., Lendenmann T., Zündel M., Ehret A.E., Panozzo D., Richner P., Kim D.K., Kress S.J.P., Norris D.J., Sorkine-Hornung O., Mazza E., Poulikakos D., Ferrari A. Confocal reference free traction force microscopy. Nat. Commun. 2016;7:12814. PubMed PMC

Colin-York H., Shrestha D., Felce J.H., Waithe D., Moeendarbary E., Davis S.J., Eggeling C., Fritzsche M. Super-resolved traction force microscopy (STFM) Nano Lett. 2016;16:2633–2638. PubMed PMC

Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. PubMed

Heintzmann R., Huser T. Super-resolution structured illumination microscopy. Chem. Rev. 2017;117:13890–13908. PubMed

Colin-York H., Javanmardi Y., Barbieri L., Li D., Korobchevskaya K., Guo Y., Hall C., Taylor A., Khuon S., Sheridan G.K., Chew T.-L., Li D., Moeendarbary E., Fritzsche M. Spatiotemporally super-resolved volumetric traction force microscopy. Nano Lett. 2019;19:4427–4434. PubMed PMC

Barbieri L., Colin-York H., Korobchevskaya K., Li D., Wolfson D.L., Karedla N., Schneider F., Ahluwalia B.S., Seternes T., Dalmo R.A., Dustin M.L., Li D., Fritzsche M. Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM) Nat. Commun. 2021;12:2169. PubMed PMC

Spinale F.G. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol. Rev. 2007;87:1285–1342. PubMed

Kis K., Liu X., Hagood J.S. Myofibroblast differentiation and survival in fibrotic disease. Exp. Rev. Mol. Med. 2017;13:e27. PubMed PMC

Zhang H.-Y., Phan S.H. Inhibition of myofibroblast apoptosis by transforming growth factor β1. Am. J. Respir. Cell Mol. Biol. 1999;21:658–665. PubMed

Lagares D., Santos A., Grasberger P.E., Liu F., Probst C.K., Rahimi R.A., Sakai N., Kuehl T., Ryan J., Bhola P., Montero J., Kapoor M., Baron M., Varelas X., Tschumperlin D.J., et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 2017;9 PubMed PMC

Kong P., Christia P., Frangogiannis N.G. The pathogenesis of cardiac fibrosis. Cell Mol. Life Sci. 2014;71:549–574. PubMed PMC

Perestrelo A.R., Silva A.C., Oliver-De La Cruz J., Martino F., Horvath V., Caluori G., Polanský O., Vinarsky V., Azzato G., de Marco G., Zampachova V., Skladal P., Pagliari S., Rainer A., Pinto-do-Ó P., et al. Multiscale analysis of extracellular matrix remodeling in the failing heart. Circ. Res. 2021;128:24–38. PubMed

Gershlak J.R., Resnikoff J.I.N., Sullivan K.E., Williams C., Wang M. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun. 2013;439:161–166. PubMed PMC

Li B., Moshfegh C., Lin Z., Albuschies J., Vogel V. Mesenchymal stem cells exploit extracellular matrix as mechanotransducer. Sci. Rep. 2013;3:2425. PubMed PMC

Schultz K.M., Kyburz K.A., Anseth K.S. Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E3757–E3764. PubMed PMC

Jacot J.G., Kita-Matsuo H., Wei K.A., Vincent Chen H.S., Omens J.H., Mercola M., McCulloch A.D. Cardiac myocyte force development during differentiation and maturation: Myocyte force development and differentiation. Ann. N. Y. Acad. Sci. 2010;1188:121–127. PubMed PMC

Engler A.J., Carag-Krieger C., Johnson C.P., Raab M., Tang H.-Y., Speicher D.W., Sanger J.W., Sanger J.M., Discher D.E. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. J. Cell Sci. 2008;121:3794–3802. PubMed PMC

Hersch N., Wolters B., Dreissen G., Springer R., Kirchgessner N., Merkel R., Hoffmann B. The constant beat: Cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol. Open. 2013;2:351–361. PubMed PMC

Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V., Janmey P.A. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 2005;60:24–34. PubMed

Prager-Khoutorsky M., Lichtenstein A., Krishnan R., Rajendran K., Mayo A., Kam Z., Geiger B., Bershadsky A.D. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 2011;13:1457–1465. PubMed

Cirka H., Monterosso M., Diamantides N., Favreau J., Wen Q., Billiar K. Active traction force response to long-term cyclic stretch is dependent on cell pre-stress. Biophys. J. 2016;110:1845–1857. PubMed PMC

Kurosaka S., Kashina A. Cell biology of embryonic migration. Birth Defects Res. C Embryo Today. 2008;84:102–122. PubMed PMC

Kassis J., Lauffenburger D.A., Turner T., Wells A. Tumor invasion as dysregulated cell motility. Semin. Cancer Biol. 2001;11:105–117. PubMed

Dembo M., Wang Y.-L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 2008;76:2307–2316. PubMed PMC

Munevar S., Wang Y., Dembo M. Traction Force Microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 2001;80:1744–1757. PubMed PMC

Shiu J.Y., Aires L., Lin Z., Vogel V. Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 2018;20:262–271. PubMed

Beningo K.A., Dembo M., Kaverina I., Small J.V., Wang Y. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 2001;153:881–888. PubMed PMC

Lemmon C.A., Chen C.S., Romer L.H. Cell traction forces direct fibronectin matrix assembly. Biophys. J. 2009;96:729–738. PubMed PMC

Delanoë-Ayari H., Rieu J.P., Sano M. 4D Traction Force Microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys. Rev. Lett. 2010;105:248103. PubMed

Del Alamo J.C., Meili R., Alonso-Latorre B., Rodríguez-Rodríguez J., Aliseda A., Firtel R.A., Lasheras J.C. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl. Acad. Sci. U. S. A. 2007;104:13343–13348. PubMed PMC

Broders-Bondon F., Nguyen Ho-Bouldoires T.H., Fernandez-Sanchez M.-E., Farge E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol. 2018;217:1571–1587. PubMed PMC

Calvo F., Ege N., Grande-Garcia A., Hooper S., Jenkins R.P., Chaudhry S.I., Harrington K., Williamson P., Moeendarbary E., Charras G., Sahai E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 2013;15:637–646. PubMed PMC

Yamada K.M., Sixt M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 2019;20:738–752. PubMed

Tavares S., Vieira A.F., Taubenberger A.V., Araújo M., Martins N.P., Brás-Pereira C., Polónia A., Herbig M., Barreto C., Otto O., Cardoso J., Pereira-Leal J.B., Guck J., Paredes J., Janody F. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 2017;8:15237. PubMed PMC

Roy Choudhury A., Gupta S., Chaturvedi P.K., Kumar N., Pandey D. Mechanobiology of cancer stem cells and their niche. Cancer Microenviron. 2019;12:17–27. PubMed PMC

Carey S.P., D’Alfonso T.M., Shin S.J., Reinhart-King C.A. Mechanobiology of tumor invasion: Engineering meets oncology. Crit. Rev. Oncol. Hematol. 2012;83:170–183. PubMed PMC

Li Z., Persson H., Adolfsson K., Abariute L., Borgström M.T., Hessman D., Åström K., Oredsson S., Prinz C.N. Cellular traction forces: A useful parameter in cancer research. Nanoscale. 2017;9:19039–19044. PubMed

Kraning-Rush C.M., Califano J.P., Reinhart-King C.A. Cellular traction stresses increase with increasing metastatic potential. PLoS One. 2012;7 PubMed PMC

Mekhdjian A.H., Kai F., Rubashkin M.G., Prahl L.S., Przybyla L.M., McGregor A.L., Bell E.S., Barnes J.M., DuFort C.C., Ou G., Chang A.C., Cassereau L., Tan S.J., Pickup M.W., Lakins J.N., et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol. Biol. Cell. 2017;28:1467–1488. PubMed PMC

Ambrosi D., Duperray A., Peschetola V., Verdier C. Traction patterns of tumor cells. J. Math. Biol. 2009;58:163. PubMed

Peschetola V., Laurent V.M., Duperray A., Michel R., Ambrosi D., Preziosi L., Verdier C. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton. 2013;70:201–214. PubMed

Steinwachs J., Metzner C., Skodzek K., Lang N., Thievessen I., Mark C., Münster S., Aifantis K.E., Fabry B. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods. 2016;13:171–176. PubMed

Landau L.D., Lifshitz E.M. 3rd Ed. Butterworth-Heinemann; Oxford: 1986. Theory of Elasticity.

Takigawa T., Morino Y., Urayama K., Masuda T. Poisson’s ratio of polyacrylamide (PAAm) gels. Polym. Gels Networks. 1996;4:1–5.

Liangguo W., Xiao L. On the general expression of Fredholm integral equations method in elasticity. Acta Mech. Sin. 1988;4:138–145.

Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G. Springer; Dordrecht: 1995. Numerical Methods for the Solution of Ill-Posed Problems. DOI

Plotnikov S.V., Sabass B., Schwarz U.S., Waterman C.M. High-resolution traction force microscopy. Methods Cell Biol. 2014;123:367–394. Elsevier. PubMed PMC

Wang J.H.-C., Lin J.-S. Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 2007;6:361–371. PubMed

Schwarz U.S., Soiné J.R.D. Traction force microscopy on soft elastic substrates: A guide to recent computational advances. Biochim. Biophys. Acta. 2015;1853:3095–3104. PubMed

Butler J.P., Toli-Nørrelykke I.M., Fabry B., Fredberg J.J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 2002;282:C595–C605. PubMed

Gelman A., Carlin J.B., Stern H.S., Rubin D.B. Second Edition. Chapman & Hall - CRC; Boca Raton, FL: 2004. Bayesian Data Analysis.

Hansen P.C. Computational Inverse Problems in Electrocardiology. WIT Press; Southampton: 2000. The L-curve and its use in the numerical treatment of inverse problems; pp. 119–142.

Huang Y., Schell C., Huber T.B., Şimşek A.N., Hersch N., Merkel R., Gompper G., Sabass B. Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells. Sci. Rep. 2019;9:539. PubMed PMC

Telles J.C.F., Brebbia C.A. Boundary element solution for half-plane problems. Int. J. Sol. Struct. 1981;17:1149–1158.

Dembo M., Oliver T., Ishihara A., Jacobson K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 1996;70:2008. PubMed PMC

Sabass B., Gardel M.L., Waterman C.M., Schwarz U.S. High resolution Traction Force Microscopy based on experimental and computational advances. Biophys. J. 2008;94:207–220. PubMed PMC

Boccaccio A., Ballini A., Pappalettere C., Tullo D., Cantore S., Desiate A. Finite Element Method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 2011;7:112–132. PubMed PMC

Mulligan J.A., Feng X., Adie S.G. Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy. Sci. Rep. 2019;9:4086. PubMed PMC

Feng X., Hui C.-Y. Force sensing using 3D displacement measurements in linear elastic bodies. Comput. Mech. 2016;58:91–105.

Kulkarni A., Ghosh P., Seetharaman A., Kondaiah P., Gundiah N. Traction cytometry: Regularization in the fourier approach and comparisons with finite element method. Soft Matter. 2018;14:4687–4695. PubMed

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Tseng Q., Duchemin-Pelletier E., Deshiere A., Balland M., Guillou H., Filhol O., Thery M. Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc. Natl. Acad. Sci. U. S. A. 2012;109:1506–1511. PubMed PMC

Schwarz U.S., Balaban N.Q., Riveline D., Bershadsky A., Geiger B., Safran S.A. Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophys. J. 2002;83:1380–1394. PubMed PMC

Westerweel J. Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 1997;8:1379–1392.

Suñé-Auñón A., Jorge-Peñas A., Aguilar-Cuenca R., Vicente-Manzanares M., Van Oosterwyck H., Muñoz-Barrutia A. Full L1-regularized traction force microscopy over whole cells. BMC Bioinformatics. 2017;18:365. PubMed PMC

Martiel J.-L., Leal A., Kurzawa L., Balland M., Wang I., Vignaud T., Tseng Q., Théry M. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 2015;125:269–287. Elsevier. PubMed

Han S.J., Oak Y., Groisman A., Danuser G. Traction microscopy to identify force modulation in subresolution adhesions. Nat. Methods. 2015;12:653–656. PubMed PMC

Hansen P.C. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms. 1994;6:1–35.

Barrasa-Fano J., Shapeti A., Jorge-Peñas Á., Barzegari M., Sanz-Herrera J.A., Van Oosterwyck H. Tfmlab: A MATLAB toolbox for 4D traction force microscopy. SoftwareX. 2021;15:100723.

Toepfer C.N., Sharma A., Cicconet M., Garfinkel A.C., Mücke M., Neyazi M., Willcox J.A.L., Agarwal R., Schmid M., Rao J., Ewoldt J.K., Pourquié O., Chopra A., Chen C., Seidman J.G., et al. SarcTrack: An adaptable software tool for efficient large-scale analysis of sarcomere function in hiPSC-cardiomyocytes. Circ. Res. 2019;124:1172–1183. PubMed PMC

Rodriguez M.L., Graham B.T., Pabon L.M., Han S.J., Murry C.E., Sniadecki N.J. Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J. Biomech. Eng. 2014;136:51005. PubMed PMC

Du L., Yamamoto S., Burnette B.L., Huang D., Gao K., Jamshidi N., Kuo M.D. Transcriptome profiling reveals novel gene expression signatures and regulating transcription factors of TGFβ-induced epithelial-to-mesenchymal transition. Cancer Med. 2016;5:1962–1972. PubMed PMC

du Roure O., Saez A., Buguin A., Austin R.H., Chavrier P., Silberzan P., Ladoux B., Ladoux B. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U. S. A. 2005;102:2390–2395. PubMed PMC

Stehbens S.J., Wittmann T. Analysis of focal adhesion turnover. Methods Cell Biol. 2014;123:335–346. Elsevier. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...