A primer to traction force microscopy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35351517
PubMed Central
PMC9092999
DOI
10.1016/j.jbc.2022.101867
PII: S0021-9258(22)00307-6
Knihovny.cz E-zdroje
- Klíčová slova
- biophysics, cell adhesion, cytoskeleton, focal adhesion, mechanosignaling, mechanotransduction, traction force microscopy,
- MeSH
- biofyzika MeSH
- buněčná adheze MeSH
- mikroskopie atomárních sil metody MeSH
- trakce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.
Center for Translational Medicine St Anne's University Hospital Brno Czechia
Department of Engineering Università degli Studi Roma Tre Rome Italy
Zobrazit více v PubMed
Iskratsch T., Wolfenson H., Sheetz M.P. Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 2014;15:825–833. PubMed PMC
Wehrle-Haller B. Structure and function of focal adhesions. Curr. Opin. Cell Biol. 2012;24:116–124. PubMed
Schiller H.B., Fässler R. Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Rep. 2013;14:509–519. PubMed PMC
Hytönen V.P., Wehrle-Haller B. Mechanosensing in cell–matrix adhesions – converting tension into chemical signals. Exp. Cell Res. 2016;343:35–41. PubMed
del Rio A., Perez-Jimenez R., Liu R., Roca-Cusachs P., Fernandez J.M., Sheetz M.P. Stretching single talin rod molecules activates vinculin binding. Science. 2009;323:638–641. PubMed PMC
Hirata H., Tatsumi H., Lim C.T., Sokabe M. Force-dependent vinculin binding to talin in live cells: A crucial step in anchoring the actin cytoskeleton to focal adhesions. Am. J. Physiol. Cell Physiol. 2014;306:C607–C620. PubMed
Rahikainen R., von Essen M., Schaefer M., Qi L., Azizi L., Kelly C., Ihalainen T.O., Wehrle-Haller B., Bastmeyer M., Huang C., Hytönen V.P. Mechanical stability of talin rod controls cell migration and substrate sensing. Sci. Rep. 2017;7:3571. PubMed PMC
Maki K., Nakao N., Adachi T. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem. Biophys. Res. Commun. 2017;484:372–377. PubMed
Humphries J.D., Wang P., Streuli C., Geiger B., Humphries M.J., Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 2007;179:1043–1057. PubMed PMC
Spill F., Bakal C., Mak M. Mechanical and systems biology of cancer. Comput. Struct. Biotechnol. J. 2018;16:237–245. PubMed PMC
Martino F., Perestrelo A.R., Vinarský V., Pagliari S., Forte G. Cellular mechanotransduction: From tension to function. Front. Physiol. 2018;9:824. PubMed PMC
Pagliari S., Vinarsky V., Martino F., Perestrelo A.R., Oliver De La Cruz J., Caluori G., Vrbsky J., Mozetic P., Pompeiano A., Zancla A., Ranjani S.G., Skladal P., Kytyr D., Zdráhal Z., Grassi G., et al. YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death Differ. 2021;28:1193–1207. PubMed PMC
Verbruggen S.W., editor. Mechanobiology in Health and Disease. Academic Press; London: 2018.
Campàs O., Mammoto T., Hasso S., Sperling R.A., O’Connell D., Bischof A.G., Maas R., Weitz D.A., Mahadevan L., Ingber D.E. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods. 2014;11:183–189. PubMed PMC
Farooque T.M., Camp C.H., Tison C.K., Kumar G., Parekh S.H., Simon C.G. Measuring stem cell dimensionality in tissue scaffolds. Biomaterials. 2014;35:2558–2567. PubMed
Ergir E., Bachmann B., Redl H., Forte G., Ertl P. Small force, big impact: Next generation organ-on-a-chip systems incorporating biomechanical cues. Front. Physiol. 2018;9:1417. PubMed PMC
Butler D.L., Goldstein S.A., Guilak F. Functional tissue engineering: The role of biomechanics. J. Biomech. Eng. 2000;122:570–575. PubMed
Yan L., Cai Q., Xu Y. Hypoxic conditions differentially regulate TAZ and YAP in cancer cells. Arch. Biochem. Biophys. 2014;562:31–36. PubMed PMC
Elosegui-Artola A., Oria R., Chen Y., Kosmalska A., Pérez-González C., Castro N., Zhu C., Trepat X., Roca-Cusachs P. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 2016;18:540–548. PubMed
Elosegui-Artola A., Andreu I., Beedle A.E.M., Lezamiz A., Uroz M., Kosmalska A.J., Oria R., Kechagia J.Z., Rico-Lastres P., Le Roux A.-L., Shanahan C.M., Trepat X., Navajas D., Garcia-Manyes S., Roca-Cusachs P. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171:1397–1410. PubMed
Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., Pešl M., Caluori G., Pagliari S., Martino F., Maceckova Z., Hajduch M., Sanz-Garcia A., Pugno N.M., Stokin G.B., et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017;8:15321. PubMed PMC
Rape A.D., Guo W., Wang Y. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials. 2011;32:2043–2051. PubMed PMC
Reinhart-King C.A., Dembo M., Hammer D.A. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 2005;89:676–689. PubMed PMC
Fang Y., Lai K.W.C. Modeling the mechanics of cells in the cell-spreading process driven by traction forces. Phys. Rev. E. 2016;93:42404. PubMed
Harris A.K., Wild P., Stopak D. Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science. 1980;208:177–179. PubMed
Basoli F., Giannitelli S.M., Gori M., Mozetic P., Bonfanti A., Trombetta M., Rainer A. Biomechanical characterization at the cell scale: Present and prospects. Front. Physiol. 2018;9:1449. PubMed PMC
Yang M.T., Sniadecki N.J., Chen C.S. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 2007;19:3119–3123.
Kaylan K.B., Kourouklis A.P., Underhill G.H. A high-throughput cell microarray platform for correlative analysis of cell differentiation and traction forces. J. Vis. Exp. 2017;121 PubMed PMC
Ghassemi S., Meacci G., Liu S., Gondarenko A.A., Mathur A., Roca-Cusachs P., Sheetz M.P., Hone J. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl. Acad. Sci. U. S. A. 2012;109:5328–5333. PubMed PMC
Razafiarison T., Holenstein C.N., Stauber T., Jovic M., Vertudes E., Loparic M., Kawecki M., Bernard L., Silvan U., Snedeker J.G. Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc. Natl. Acad. Sci. U. S. A. 2018;115:4631–4636. PubMed PMC
Saez A., Anon E., Ghibaudo M., du Roure O., Di Meglio J.-M., Hersen P., Silberzan P., Buguin A., Ladoux B. Traction forces exerted by epithelial cell sheets. J. Phys. Condens. Matter. 2010;22:194119. PubMed
Polacheck W.J., Chen C.S. Measuring cell-generated forces: A guide to the available tools. Nat. Methods. 2016;13:415–423. PubMed PMC
Gupta M., Kocgozlu L., Sarangi B.R., Margadant F., Ashraf M., Ladoux B. Micropillar substrates: A tool for studying cell mechanobiology. Biophys. Methods Cell Biol. 2015;125:289–308. PubMed
Xiao F., Wen X., Tan X.H.M., Chiou P.-Y. Plasmonic micropillars for precision cell force measurement across a large field-of-view. Appl. Phys. Lett. 2018;112 PubMed PMC
Holenstein C.N., Silvan U., Snedeker J.G. High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking. Sci. Rep. 2017;7:41633. PubMed PMC
Style R.W., Boltyanskiy R., German G.K., Hyland C., MacMinn C.W., Mertz A.F., Wilen L.A., Xu Y., Dufresne E.R. Traction force microscopy in physics and biology. Soft Matter. 2014;10:4047–4055. PubMed
Rocha M.S. Extracting physical chemistry from mechanics: A new approach to investigate DNA interactions with drugs and proteins in single molecule experiments. Integr. Biol. 2015;7:967–986. PubMed
Yoshie H., Koushki N., Kaviani R., Tabatabaei M., Rajendran K., Dang Q., Husain A., Yao S., Li C., Sullivan J.K., Saint-Geniez M., Krishnan R., Ehrlicher A.J. Traction force screening enabled by compliant PDMS elastomers. Biophys. J. 2018;114:2194–2199. PubMed PMC
Roca-Cusachs P., Conte V., Trepat X. Quantifying forces in cell biology. Nat. Cell Biol. 2017;19:742–751. PubMed
Pasqualini F.S., Agarwal A., O’Connor B.B., Liu Q., Sheehy S.P., Parker K.K. Traction force microscopy of engineered cardiac tissues. PLoS One. 2018;13 PubMed PMC
Balaban N.Q., Schwarz U.S., Riveline D., Goichberg P., Tzur G., Sabanay I., Mahalu D., Safran S., Bershadsky A., Addadi L., Geiger B. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 2001;3:466–472. PubMed
Thery M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 2010;123:4201–4213. PubMed
Legant W.R., Choi C.K., Miller J.S., Shao L., Gao L., Betzig E., Chen C.S. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. U. S. A. 2013;110:881–886. PubMed PMC
Hall M.S., Long R., Feng X., Huang Y., Hui C.-Y., Wu M. Towards single cell traction microscopy within 3D collagen matrices. Exp. Cell Res. 2013;319:2396–2408. PubMed PMC
Franck C., Hong S., Maskarinec S.A., Tirrell D.A., Ravichandran G. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 2007;47:427–438.
Franck C., Maskarinec S.A., Tirrell D.A., Ravichandran G. Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions. PLoS One. 2011;6 PubMed PMC
Koch T.M., Münster S., Bonakdar N., Butler J.P., Fabry B. 3D traction forces in cancer cell invasion. PLoS One. 2012;7 PubMed PMC
Munoz J.J. Non-regularised inverse finite element analysis for 3D traction force microscopy. Int. J. Numer. Anal. Mod. 2016;13:763–781.
Toyjanova J., Bar-Kochba E., Hoffman-Kim D., Franck C. High resolution, large deformation 3D traction force microscopy. PLoS One. 2014;9 PubMed PMC
Jorge-Peñas A., Izquierdo-Alvarez A., Aguilar-Cuenca R., Vicente-Manzanares M., Garcia-Aznar J.M., Van Oosterwyck H., de-Juan- Pardo E.M., Ortiz-de-Solorzano C., Muñoz-Barrutia A. Free form deformation–based image registration improves accuracy of Traction Force Microscopy. PLoS One. 2015;10 PubMed PMC
Gjorevski N., Nelson C.M. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr. Biol. 2010;2:424–434. PubMed PMC
Kronenberg N.M., Liehm P., Steude A., Knipper J.A., Borger J.G., Scarcelli G., Franze K., Powis S.J., Gather M.C. Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nat. Cell Biol. 2017;19:864–872. PubMed
Liehm P., Kronenberg N.M., Gather M.C. Analysis of the precision, robustness, and speed of elastic resonator interference stress microscopy. Biophys. J. 2018;114:2180–2193. PubMed PMC
Bergert M., Lendenmann T., Zündel M., Ehret A.E., Panozzo D., Richner P., Kim D.K., Kress S.J.P., Norris D.J., Sorkine-Hornung O., Mazza E., Poulikakos D., Ferrari A. Confocal reference free traction force microscopy. Nat. Commun. 2016;7:12814. PubMed PMC
Colin-York H., Shrestha D., Felce J.H., Waithe D., Moeendarbary E., Davis S.J., Eggeling C., Fritzsche M. Super-resolved traction force microscopy (STFM) Nano Lett. 2016;16:2633–2638. PubMed PMC
Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780–782. PubMed
Heintzmann R., Huser T. Super-resolution structured illumination microscopy. Chem. Rev. 2017;117:13890–13908. PubMed
Colin-York H., Javanmardi Y., Barbieri L., Li D., Korobchevskaya K., Guo Y., Hall C., Taylor A., Khuon S., Sheridan G.K., Chew T.-L., Li D., Moeendarbary E., Fritzsche M. Spatiotemporally super-resolved volumetric traction force microscopy. Nano Lett. 2019;19:4427–4434. PubMed PMC
Barbieri L., Colin-York H., Korobchevskaya K., Li D., Wolfson D.L., Karedla N., Schneider F., Ahluwalia B.S., Seternes T., Dalmo R.A., Dustin M.L., Li D., Fritzsche M. Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM) Nat. Commun. 2021;12:2169. PubMed PMC
Spinale F.G. Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol. Rev. 2007;87:1285–1342. PubMed
Kis K., Liu X., Hagood J.S. Myofibroblast differentiation and survival in fibrotic disease. Exp. Rev. Mol. Med. 2017;13:e27. PubMed PMC
Zhang H.-Y., Phan S.H. Inhibition of myofibroblast apoptosis by transforming growth factor β1. Am. J. Respir. Cell Mol. Biol. 1999;21:658–665. PubMed
Lagares D., Santos A., Grasberger P.E., Liu F., Probst C.K., Rahimi R.A., Sakai N., Kuehl T., Ryan J., Bhola P., Montero J., Kapoor M., Baron M., Varelas X., Tschumperlin D.J., et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 2017;9 PubMed PMC
Kong P., Christia P., Frangogiannis N.G. The pathogenesis of cardiac fibrosis. Cell Mol. Life Sci. 2014;71:549–574. PubMed PMC
Perestrelo A.R., Silva A.C., Oliver-De La Cruz J., Martino F., Horvath V., Caluori G., Polanský O., Vinarsky V., Azzato G., de Marco G., Zampachova V., Skladal P., Pagliari S., Rainer A., Pinto-do-Ó P., et al. Multiscale analysis of extracellular matrix remodeling in the failing heart. Circ. Res. 2021;128:24–38. PubMed
Gershlak J.R., Resnikoff J.I.N., Sullivan K.E., Williams C., Wang M. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun. 2013;439:161–166. PubMed PMC
Li B., Moshfegh C., Lin Z., Albuschies J., Vogel V. Mesenchymal stem cells exploit extracellular matrix as mechanotransducer. Sci. Rep. 2013;3:2425. PubMed PMC
Schultz K.M., Kyburz K.A., Anseth K.S. Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E3757–E3764. PubMed PMC
Jacot J.G., Kita-Matsuo H., Wei K.A., Vincent Chen H.S., Omens J.H., Mercola M., McCulloch A.D. Cardiac myocyte force development during differentiation and maturation: Myocyte force development and differentiation. Ann. N. Y. Acad. Sci. 2010;1188:121–127. PubMed PMC
Engler A.J., Carag-Krieger C., Johnson C.P., Raab M., Tang H.-Y., Speicher D.W., Sanger J.W., Sanger J.M., Discher D.E. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. J. Cell Sci. 2008;121:3794–3802. PubMed PMC
Hersch N., Wolters B., Dreissen G., Springer R., Kirchgessner N., Merkel R., Hoffmann B. The constant beat: Cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biol. Open. 2013;2:351–361. PubMed PMC
Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V., Janmey P.A. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton. 2005;60:24–34. PubMed
Prager-Khoutorsky M., Lichtenstein A., Krishnan R., Rajendran K., Mayo A., Kam Z., Geiger B., Bershadsky A.D. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 2011;13:1457–1465. PubMed
Cirka H., Monterosso M., Diamantides N., Favreau J., Wen Q., Billiar K. Active traction force response to long-term cyclic stretch is dependent on cell pre-stress. Biophys. J. 2016;110:1845–1857. PubMed PMC
Kurosaka S., Kashina A. Cell biology of embryonic migration. Birth Defects Res. C Embryo Today. 2008;84:102–122. PubMed PMC
Kassis J., Lauffenburger D.A., Turner T., Wells A. Tumor invasion as dysregulated cell motility. Semin. Cancer Biol. 2001;11:105–117. PubMed
Dembo M., Wang Y.-L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 2008;76:2307–2316. PubMed PMC
Munevar S., Wang Y., Dembo M. Traction Force Microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 2001;80:1744–1757. PubMed PMC
Shiu J.Y., Aires L., Lin Z., Vogel V. Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 2018;20:262–271. PubMed
Beningo K.A., Dembo M., Kaverina I., Small J.V., Wang Y. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 2001;153:881–888. PubMed PMC
Lemmon C.A., Chen C.S., Romer L.H. Cell traction forces direct fibronectin matrix assembly. Biophys. J. 2009;96:729–738. PubMed PMC
Delanoë-Ayari H., Rieu J.P., Sano M. 4D Traction Force Microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys. Rev. Lett. 2010;105:248103. PubMed
Del Alamo J.C., Meili R., Alonso-Latorre B., Rodríguez-Rodríguez J., Aliseda A., Firtel R.A., Lasheras J.C. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl. Acad. Sci. U. S. A. 2007;104:13343–13348. PubMed PMC
Broders-Bondon F., Nguyen Ho-Bouldoires T.H., Fernandez-Sanchez M.-E., Farge E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol. 2018;217:1571–1587. PubMed PMC
Calvo F., Ege N., Grande-Garcia A., Hooper S., Jenkins R.P., Chaudhry S.I., Harrington K., Williamson P., Moeendarbary E., Charras G., Sahai E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 2013;15:637–646. PubMed PMC
Yamada K.M., Sixt M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 2019;20:738–752. PubMed
Tavares S., Vieira A.F., Taubenberger A.V., Araújo M., Martins N.P., Brás-Pereira C., Polónia A., Herbig M., Barreto C., Otto O., Cardoso J., Pereira-Leal J.B., Guck J., Paredes J., Janody F. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 2017;8:15237. PubMed PMC
Roy Choudhury A., Gupta S., Chaturvedi P.K., Kumar N., Pandey D. Mechanobiology of cancer stem cells and their niche. Cancer Microenviron. 2019;12:17–27. PubMed PMC
Carey S.P., D’Alfonso T.M., Shin S.J., Reinhart-King C.A. Mechanobiology of tumor invasion: Engineering meets oncology. Crit. Rev. Oncol. Hematol. 2012;83:170–183. PubMed PMC
Li Z., Persson H., Adolfsson K., Abariute L., Borgström M.T., Hessman D., Åström K., Oredsson S., Prinz C.N. Cellular traction forces: A useful parameter in cancer research. Nanoscale. 2017;9:19039–19044. PubMed
Kraning-Rush C.M., Califano J.P., Reinhart-King C.A. Cellular traction stresses increase with increasing metastatic potential. PLoS One. 2012;7 PubMed PMC
Mekhdjian A.H., Kai F., Rubashkin M.G., Prahl L.S., Przybyla L.M., McGregor A.L., Bell E.S., Barnes J.M., DuFort C.C., Ou G., Chang A.C., Cassereau L., Tan S.J., Pickup M.W., Lakins J.N., et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol. Biol. Cell. 2017;28:1467–1488. PubMed PMC
Ambrosi D., Duperray A., Peschetola V., Verdier C. Traction patterns of tumor cells. J. Math. Biol. 2009;58:163. PubMed
Peschetola V., Laurent V.M., Duperray A., Michel R., Ambrosi D., Preziosi L., Verdier C. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton. 2013;70:201–214. PubMed
Steinwachs J., Metzner C., Skodzek K., Lang N., Thievessen I., Mark C., Münster S., Aifantis K.E., Fabry B. Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods. 2016;13:171–176. PubMed
Landau L.D., Lifshitz E.M. 3rd Ed. Butterworth-Heinemann; Oxford: 1986. Theory of Elasticity.
Takigawa T., Morino Y., Urayama K., Masuda T. Poisson’s ratio of polyacrylamide (PAAm) gels. Polym. Gels Networks. 1996;4:1–5.
Liangguo W., Xiao L. On the general expression of Fredholm integral equations method in elasticity. Acta Mech. Sin. 1988;4:138–145.
Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G. Springer; Dordrecht: 1995. Numerical Methods for the Solution of Ill-Posed Problems. DOI
Plotnikov S.V., Sabass B., Schwarz U.S., Waterman C.M. High-resolution traction force microscopy. Methods Cell Biol. 2014;123:367–394. Elsevier. PubMed PMC
Wang J.H.-C., Lin J.-S. Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 2007;6:361–371. PubMed
Schwarz U.S., Soiné J.R.D. Traction force microscopy on soft elastic substrates: A guide to recent computational advances. Biochim. Biophys. Acta. 2015;1853:3095–3104. PubMed
Butler J.P., Toli-Nørrelykke I.M., Fabry B., Fredberg J.J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 2002;282:C595–C605. PubMed
Gelman A., Carlin J.B., Stern H.S., Rubin D.B. Second Edition. Chapman & Hall - CRC; Boca Raton, FL: 2004. Bayesian Data Analysis.
Hansen P.C. Computational Inverse Problems in Electrocardiology. WIT Press; Southampton: 2000. The L-curve and its use in the numerical treatment of inverse problems; pp. 119–142.
Huang Y., Schell C., Huber T.B., Şimşek A.N., Hersch N., Merkel R., Gompper G., Sabass B. Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells. Sci. Rep. 2019;9:539. PubMed PMC
Telles J.C.F., Brebbia C.A. Boundary element solution for half-plane problems. Int. J. Sol. Struct. 1981;17:1149–1158.
Dembo M., Oliver T., Ishihara A., Jacobson K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 1996;70:2008. PubMed PMC
Sabass B., Gardel M.L., Waterman C.M., Schwarz U.S. High resolution Traction Force Microscopy based on experimental and computational advances. Biophys. J. 2008;94:207–220. PubMed PMC
Boccaccio A., Ballini A., Pappalettere C., Tullo D., Cantore S., Desiate A. Finite Element Method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int. J. Biol. Sci. 2011;7:112–132. PubMed PMC
Mulligan J.A., Feng X., Adie S.G. Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy. Sci. Rep. 2019;9:4086. PubMed PMC
Feng X., Hui C.-Y. Force sensing using 3D displacement measurements in linear elastic bodies. Comput. Mech. 2016;58:91–105.
Kulkarni A., Ghosh P., Seetharaman A., Kondaiah P., Gundiah N. Traction cytometry: Regularization in the fourier approach and comparisons with finite element method. Soft Matter. 2018;14:4687–4695. PubMed
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Tseng Q., Duchemin-Pelletier E., Deshiere A., Balland M., Guillou H., Filhol O., Thery M. Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc. Natl. Acad. Sci. U. S. A. 2012;109:1506–1511. PubMed PMC
Schwarz U.S., Balaban N.Q., Riveline D., Bershadsky A., Geiger B., Safran S.A. Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophys. J. 2002;83:1380–1394. PubMed PMC
Westerweel J. Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 1997;8:1379–1392.
Suñé-Auñón A., Jorge-Peñas A., Aguilar-Cuenca R., Vicente-Manzanares M., Van Oosterwyck H., Muñoz-Barrutia A. Full L1-regularized traction force microscopy over whole cells. BMC Bioinformatics. 2017;18:365. PubMed PMC
Martiel J.-L., Leal A., Kurzawa L., Balland M., Wang I., Vignaud T., Tseng Q., Théry M. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 2015;125:269–287. Elsevier. PubMed
Han S.J., Oak Y., Groisman A., Danuser G. Traction microscopy to identify force modulation in subresolution adhesions. Nat. Methods. 2015;12:653–656. PubMed PMC
Hansen P.C. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms. 1994;6:1–35.
Barrasa-Fano J., Shapeti A., Jorge-Peñas Á., Barzegari M., Sanz-Herrera J.A., Van Oosterwyck H. Tfmlab: A MATLAB toolbox for 4D traction force microscopy. SoftwareX. 2021;15:100723.
Toepfer C.N., Sharma A., Cicconet M., Garfinkel A.C., Mücke M., Neyazi M., Willcox J.A.L., Agarwal R., Schmid M., Rao J., Ewoldt J.K., Pourquié O., Chopra A., Chen C., Seidman J.G., et al. SarcTrack: An adaptable software tool for efficient large-scale analysis of sarcomere function in hiPSC-cardiomyocytes. Circ. Res. 2019;124:1172–1183. PubMed PMC
Rodriguez M.L., Graham B.T., Pabon L.M., Han S.J., Murry C.E., Sniadecki N.J. Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J. Biomech. Eng. 2014;136:51005. PubMed PMC
Du L., Yamamoto S., Burnette B.L., Huang D., Gao K., Jamshidi N., Kuo M.D. Transcriptome profiling reveals novel gene expression signatures and regulating transcription factors of TGFβ-induced epithelial-to-mesenchymal transition. Cancer Med. 2016;5:1962–1972. PubMed PMC
du Roure O., Saez A., Buguin A., Austin R.H., Chavrier P., Silberzan P., Ladoux B., Ladoux B. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U. S. A. 2005;102:2390–2395. PubMed PMC
Stehbens S.J., Wittmann T. Analysis of focal adhesion turnover. Methods Cell Biol. 2014;123:335–346. Elsevier. PubMed PMC