The oncogenic RAS2(val19) mutation locks respiration, independently of PKA, in a mode prone to generate ROS

. 2003 Jul 01 ; 22 (13) : 3337-45.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid12839995

The RAS2(val19) allele, which renders the cAMP-PKA pathway constitutively active and decreases the replicative life-span of yeast cells, is demonstrated to increase production of reactive oxygen species (ROS) and to elevate oxidative protein damage. Mitochondrial respiration in the mutant is locked in a non-phosphorylating mode prone to generate ROS but this phenotype is not linked to a constitutively active PKA pathway. In contrast, providing RAS2(val19) cells with the mammalian uncoupling protein UCP1 restores phosphorylating respiration and reduces ROS levels, but does not correct for PKA-dependent defects. Thus, the RAS2(val19) allele acts like a double-edged sword with respect to oxidation management: (i). it diminishes expression of STRE element genes required for oxidative stress defenses in a PKA-dependent fashion, and (ii). it affects endogenous ROS production and the respiratory state in a PKA-independent way. The effect of the oncogenic RAS allele on the replicative life-span is primarily asserted via the PKA-dependent pathway since Pde2p, but not UCP1, overproduction suppressed premature aging of the RAS2(val19) mutant.

Erratum v

EMBO J. 2003 Sep 1;22(17):4577 PubMed

Zobrazit více v PubMed

Aguilaniu H., Gustafsson,L., Rigoulet,M. and Nystrom,T. (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science, 299, 1751–1753. PubMed

Aguilaniu H., Gustafsson,L., Rigoulet,M. and Nystrom,T. (2001) Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than rate of respiration and is enhanced in pos9 but not yap1 mutants. J. Biol. Chem., 28, 28. PubMed

Ballesteros M., Fredriksson,A., Henriksson,J. and Nystrom,T. (2001) Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J., 20, 5280–5289. PubMed PMC

Bergmeyer H. (1974) Methods in Enzymatic Analysis. Academic Press, New York, NY.

Bindokas V.P., Jordan,J., Lee,C.C. and Miller,R.J. (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci., 16, 1324–1336. PubMed PMC

Boveris A. and Chance,B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J., 134, 707–716. PubMed PMC

Broek D., Samiy,N., Fasano,O., Fujiyama,A., Tamanoi,F., Northup,J. and Wigler,M. (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell, 41, 763–769. PubMed

Cain K. and Griffiths,D.E. (1977) Studies of energy-linked reactions. Localization of the site of action of trialkyltin in yeast mitochondria. Biochem. J., 162, 575–580. PubMed PMC

Camonis J.H. and Jacquet,M. (1988) A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae. Mol. Cell. Biol., 8, 2980–2983. PubMed PMC

Cannon J.F. and Tatchell,K. (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol., 7, 2653–2663. PubMed PMC

Cannon J.F., Gibbs,J.B. and Tatchell,K. (1986) Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics, 113, 247–264. PubMed PMC

Chen J.B., Sun,J. and Jazwinski,S.M. (1990) Prolongation of the yeast life span by the v-Ha-RAS oncogene. Mol. Microbiol., 4, 2081–2086. PubMed

Chester V.E. (1968) Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. J. Gen. Microbiol., 51, 49–56. PubMed

Dejean L., Beauvoit,B., Bunoust,O., Guerin,B. and Rigoulet,M. (2002) Activation of Ras cascade increases the mitochondrial enzyme content of respiratory competent yeast. Biochem. Biophys. Res. Commun., 293, 1383–1388. PubMed

Denis G.V., Yu,Q., Ma,P., Deeds,L., Faller,D.V. and Chen,C.Y. (2003) Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J. Biol. Chem., 278, 5775–5785. PubMed PMC

Dukan S. and Nystrom,T. (1998) Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev., 12, 3431–3441. PubMed PMC

Dukan S. and Nystrom,T. (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem., 274, 26027–26032. PubMed

Dukan S., Farewell,A., Ballesteros,M., Taddei,F., Radman,M. and Nystrom,T. (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad. Sci. USA, 97, 5746–5749. PubMed PMC

Echtay K.S., et al. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature, 415, 96–99. PubMed

Egilmez N.K. and Jazwinski,S.M. (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J. Bacteriol., 171, 37–42. PubMed PMC

Egilmez N.K., Chen,J.B. and Jazwinski,S.M. (1990) Preparation and partial characterization of old yeast cells. J. Gerontol., 45, B9–B17. PubMed

Enerbäck S., Jacobsson,A., Simpson,E.M., Guerra,C., Yamashita,H., Harper,M.E. and Kozak,L.P. (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 387, 90–94. PubMed

Ferbeyre G., de Stanchina,E., Lin,A.W., Querido,E., McCurrach,M.E., Hannon,G.J. and Lowe,S.W. (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol., 22, 3497–3508. PubMed PMC

Fitton V., Rigoulet,M., Ouhabi,R. and Guerin,B. (1994) Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation. Biochemistry, 33, 9692–9698. PubMed

Garlid K.D., Jaburek,M. and Jezek,P. (1998) The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett., 438, 10–14. PubMed

Gustafsson L. (1979) The ATP pool in relation to the production of glycerol and heat during growth of the halotolerant yeast Debaryomyces hansenii. Arch. Microbiol., 120, 15–23.

Hall A. and Self,A.J. (1986) The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras. J. Biol. Chem., 261, 10963–10965. PubMed

Hasan R., Leroy,C., Isnard,A.D., Labarre,J., Boy-Marcotte,E. and Toledano,M.B. (2002) The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol. Microbiol., 45, 233–241. PubMed

Jakubowski W., Bilinski,T. and Bartosz,G. (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic. Biol. Med., 28, 659–664. PubMed

Jazwinski S.M. (1999a) Molecular mechanisms of yeast longevity. Trends Microbiol., 7, 247–252. PubMed

Jazwinski S.M. (1999b) The RAS genes: a homeostatic device in Saccharomyces cerevisiae longevity. Neurobiol. Aging, 20, 471–478. PubMed

Kataoka T., Powers,S., McGill,C., Fasano,O., Strathern,J., Broach,J. and Wigler,M. (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell, 37, 437–445. PubMed

Kataoka T., Powers,S., Cameron,S., Fasano,O., Goldfarb,M., Broach,J. and Wigler,M. (1985) Functional homology of mammalian and yeast RAS genes. Cell, 40, 19–26. PubMed

Kirchman P.A., Kim,S., Lai,C.Y. and Jazwinski,S.M. (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics, 152, 179–190. PubMed PMC

Klingenberg M. and Huang,S.G. (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta, 1415, 271–296. PubMed

Korshunov S.S., Skulachev,V.P. and Starkov,A.A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett., 416, 15–18. PubMed

Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. PubMed

Lee A.C., et al. (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem., 274, 7936–7940. PubMed

Lin S.J., Defossez,P.A. and Guarente,L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289, 2126–2128. PubMed

Longo V.D. (1999) Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies and mammalian neuronal cells. Neurobiol. Aging, 20, 479–486. PubMed

Luo J., Nikolaev,A.Y., Imai,S., Chen,D., Su,F., Shiloh,A., Guarente,L. and Gu,W. (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 107, 137–148. PubMed

Marchler G., Schuller,C., Adam,G. and Ruis,H. (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J., 12, 1997–2003. PubMed PMC

Martinez-Pastor M.T., Marchler,G., Schuller,C., Marchler-Bauer,A., Ruis,H. and Estruch,F. (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J., 15, 2227–2235. PubMed PMC

Mortimer R.K. and Johnston,J.R. (1959) Life span of individual yeast cells. Nature, 183, 1751–1752. PubMed

Nicholls D.G. and Ferguson,S.J. (1992) Bioenergetics 2. Academic Press, London, UK.

Ogur M., St John,M. and Nagai,S. (1957) Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science, 125, 982–992. PubMed

Park P.U., McVey,M. and Guarente,L. (2002) Separation of mother and daughter cells. Methods Enzymol., 351, 468–477. PubMed

Parrini M.C., Bernardi,A. and Parmeggiani,A. (1996) Determinants of Ras proteins specifying the sensitivity to yeast Ira2p and human p120-GAP. EMBO J., 15, 1107–1111. PubMed PMC

Pichova A., Vondrakova,D. and Breitenbach,M. (1997) Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton and regulation of mitosis. Can. J. Microbiol., 43, 774–781. PubMed

Serrano M., Lin,A.W., McCurrach,M.E., Beach,D. and Lowe,S.W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602. PubMed

Sinclair D.A. and Guarente,L. (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell, 91, 1033–1042. PubMed

Skulachev V.P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys., 29, 169–202. PubMed

Skulachev V.P. (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta, 1363, 100–124. PubMed

Smeal T., Claus,J., Kennedy,B., Cole,F. and Guarente,L. (1996) Loss of transcriptional silencing causes sterility in old mother cells of S.cerevisiae. Cell, 84, 633–642. PubMed

Stuart J.A., Harper,J.A., Brindle,K.M., Jekabsons,M.B. and Brand,M.D. (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem. J., 356, 779–789. PubMed PMC

Sun J., Kale,S.P., Childress,A.M., Pinswasdi,C. and Jazwinski,S.M. (1994) Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem., 269, 18638–18645. PubMed

Thevelein J.M. (1994) Signal transduction in yeast. Yeast, 10, 1753–1790. PubMed

Toda T., et al. (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell, 40, 27–36. PubMed

Tyner S.D., et al. (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature, 415, 45–53. PubMed

Vaziri H., Dessain,S.K., Ng Eaton,E., Imai,S.I., Frye,R.A., Pandita,T.K., Guarente,L. and Weinberg,R.A. (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107, 149–159. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...