The oncogenic RAS2(val19) mutation locks respiration, independently of PKA, in a mode prone to generate ROS
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
12839995
PubMed Central
PMC165639
DOI
10.1093/emboj/cdg314
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Cyclic AMP metabolism MeSH
- Phosphorylation MeSH
- Mutation * MeSH
- Oncogene Protein p21(ras) genetics physiology MeSH
- Oxidative Stress MeSH
- Cyclic AMP-Dependent Protein Kinases metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Saccharomyces cerevisiae growth & development metabolism MeSH
- Valine genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cyclic AMP MeSH
- Oncogene Protein p21(ras) MeSH
- Cyclic AMP-Dependent Protein Kinases MeSH
- Reactive Oxygen Species MeSH
- Valine MeSH
The RAS2(val19) allele, which renders the cAMP-PKA pathway constitutively active and decreases the replicative life-span of yeast cells, is demonstrated to increase production of reactive oxygen species (ROS) and to elevate oxidative protein damage. Mitochondrial respiration in the mutant is locked in a non-phosphorylating mode prone to generate ROS but this phenotype is not linked to a constitutively active PKA pathway. In contrast, providing RAS2(val19) cells with the mammalian uncoupling protein UCP1 restores phosphorylating respiration and reduces ROS levels, but does not correct for PKA-dependent defects. Thus, the RAS2(val19) allele acts like a double-edged sword with respect to oxidation management: (i). it diminishes expression of STRE element genes required for oxidative stress defenses in a PKA-dependent fashion, and (ii). it affects endogenous ROS production and the respiratory state in a PKA-independent way. The effect of the oncogenic RAS allele on the replicative life-span is primarily asserted via the PKA-dependent pathway since Pde2p, but not UCP1, overproduction suppressed premature aging of the RAS2(val19) mutant.
EMBO J. 2003 Sep 1;22(17):4577 PubMed
See more in PubMed
Aguilaniu H., Gustafsson,L., Rigoulet,M. and Nystrom,T. (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science, 299, 1751–1753. PubMed
Aguilaniu H., Gustafsson,L., Rigoulet,M. and Nystrom,T. (2001) Protein oxidation in G0 cells of Saccharomyces cerevisiae depends on the state rather than rate of respiration and is enhanced in pos9 but not yap1 mutants. J. Biol. Chem., 28, 28. PubMed
Ballesteros M., Fredriksson,A., Henriksson,J. and Nystrom,T. (2001) Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J., 20, 5280–5289. PubMed PMC
Bergmeyer H. (1974) Methods in Enzymatic Analysis. Academic Press, New York, NY.
Bindokas V.P., Jordan,J., Lee,C.C. and Miller,R.J. (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J. Neurosci., 16, 1324–1336. PubMed PMC
Boveris A. and Chance,B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J., 134, 707–716. PubMed PMC
Broek D., Samiy,N., Fasano,O., Fujiyama,A., Tamanoi,F., Northup,J. and Wigler,M. (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell, 41, 763–769. PubMed
Cain K. and Griffiths,D.E. (1977) Studies of energy-linked reactions. Localization of the site of action of trialkyltin in yeast mitochondria. Biochem. J., 162, 575–580. PubMed PMC
Camonis J.H. and Jacquet,M. (1988) A new RAS mutation that suppresses the CDC25 gene requirement for growth of Saccharomyces cerevisiae. Mol. Cell. Biol., 8, 2980–2983. PubMed PMC
Cannon J.F. and Tatchell,K. (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol., 7, 2653–2663. PubMed PMC
Cannon J.F., Gibbs,J.B. and Tatchell,K. (1986) Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics, 113, 247–264. PubMed PMC
Chen J.B., Sun,J. and Jazwinski,S.M. (1990) Prolongation of the yeast life span by the v-Ha-RAS oncogene. Mol. Microbiol., 4, 2081–2086. PubMed
Chester V.E. (1968) Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. J. Gen. Microbiol., 51, 49–56. PubMed
Dejean L., Beauvoit,B., Bunoust,O., Guerin,B. and Rigoulet,M. (2002) Activation of Ras cascade increases the mitochondrial enzyme content of respiratory competent yeast. Biochem. Biophys. Res. Commun., 293, 1383–1388. PubMed
Denis G.V., Yu,Q., Ma,P., Deeds,L., Faller,D.V. and Chen,C.Y. (2003) Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J. Biol. Chem., 278, 5775–5785. PubMed PMC
Dukan S. and Nystrom,T. (1998) Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev., 12, 3431–3441. PubMed PMC
Dukan S. and Nystrom,T. (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J. Biol. Chem., 274, 26027–26032. PubMed
Dukan S., Farewell,A., Ballesteros,M., Taddei,F., Radman,M. and Nystrom,T. (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad. Sci. USA, 97, 5746–5749. PubMed PMC
Echtay K.S., et al. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature, 415, 96–99. PubMed
Egilmez N.K. and Jazwinski,S.M. (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J. Bacteriol., 171, 37–42. PubMed PMC
Egilmez N.K., Chen,J.B. and Jazwinski,S.M. (1990) Preparation and partial characterization of old yeast cells. J. Gerontol., 45, B9–B17. PubMed
Enerbäck S., Jacobsson,A., Simpson,E.M., Guerra,C., Yamashita,H., Harper,M.E. and Kozak,L.P. (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature, 387, 90–94. PubMed
Ferbeyre G., de Stanchina,E., Lin,A.W., Querido,E., McCurrach,M.E., Hannon,G.J. and Lowe,S.W. (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol., 22, 3497–3508. PubMed PMC
Fitton V., Rigoulet,M., Ouhabi,R. and Guerin,B. (1994) Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation. Biochemistry, 33, 9692–9698. PubMed
Garlid K.D., Jaburek,M. and Jezek,P. (1998) The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett., 438, 10–14. PubMed
Gustafsson L. (1979) The ATP pool in relation to the production of glycerol and heat during growth of the halotolerant yeast Debaryomyces hansenii. Arch. Microbiol., 120, 15–23.
Hall A. and Self,A.J. (1986) The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras. J. Biol. Chem., 261, 10963–10965. PubMed
Hasan R., Leroy,C., Isnard,A.D., Labarre,J., Boy-Marcotte,E. and Toledano,M.B. (2002) The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol. Microbiol., 45, 233–241. PubMed
Jakubowski W., Bilinski,T. and Bartosz,G. (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic. Biol. Med., 28, 659–664. PubMed
Jazwinski S.M. (1999a) Molecular mechanisms of yeast longevity. Trends Microbiol., 7, 247–252. PubMed
Jazwinski S.M. (1999b) The RAS genes: a homeostatic device in Saccharomyces cerevisiae longevity. Neurobiol. Aging, 20, 471–478. PubMed
Kataoka T., Powers,S., McGill,C., Fasano,O., Strathern,J., Broach,J. and Wigler,M. (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell, 37, 437–445. PubMed
Kataoka T., Powers,S., Cameron,S., Fasano,O., Goldfarb,M., Broach,J. and Wigler,M. (1985) Functional homology of mammalian and yeast RAS genes. Cell, 40, 19–26. PubMed
Kirchman P.A., Kim,S., Lai,C.Y. and Jazwinski,S.M. (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics, 152, 179–190. PubMed PMC
Klingenberg M. and Huang,S.G. (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta, 1415, 271–296. PubMed
Korshunov S.S., Skulachev,V.P. and Starkov,A.A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett., 416, 15–18. PubMed
Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. PubMed
Lee A.C., et al. (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem., 274, 7936–7940. PubMed
Lin S.J., Defossez,P.A. and Guarente,L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289, 2126–2128. PubMed
Longo V.D. (1999) Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies and mammalian neuronal cells. Neurobiol. Aging, 20, 479–486. PubMed
Luo J., Nikolaev,A.Y., Imai,S., Chen,D., Su,F., Shiloh,A., Guarente,L. and Gu,W. (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 107, 137–148. PubMed
Marchler G., Schuller,C., Adam,G. and Ruis,H. (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J., 12, 1997–2003. PubMed PMC
Martinez-Pastor M.T., Marchler,G., Schuller,C., Marchler-Bauer,A., Ruis,H. and Estruch,F. (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J., 15, 2227–2235. PubMed PMC
Mortimer R.K. and Johnston,J.R. (1959) Life span of individual yeast cells. Nature, 183, 1751–1752. PubMed
Nicholls D.G. and Ferguson,S.J. (1992) Bioenergetics 2. Academic Press, London, UK.
Ogur M., St John,M. and Nagai,S. (1957) Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science, 125, 982–992. PubMed
Park P.U., McVey,M. and Guarente,L. (2002) Separation of mother and daughter cells. Methods Enzymol., 351, 468–477. PubMed
Parrini M.C., Bernardi,A. and Parmeggiani,A. (1996) Determinants of Ras proteins specifying the sensitivity to yeast Ira2p and human p120-GAP. EMBO J., 15, 1107–1111. PubMed PMC
Pichova A., Vondrakova,D. and Breitenbach,M. (1997) Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton and regulation of mitosis. Can. J. Microbiol., 43, 774–781. PubMed
Serrano M., Lin,A.W., McCurrach,M.E., Beach,D. and Lowe,S.W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602. PubMed
Sinclair D.A. and Guarente,L. (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell, 91, 1033–1042. PubMed
Skulachev V.P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys., 29, 169–202. PubMed
Skulachev V.P. (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim. Biophys. Acta, 1363, 100–124. PubMed
Smeal T., Claus,J., Kennedy,B., Cole,F. and Guarente,L. (1996) Loss of transcriptional silencing causes sterility in old mother cells of S.cerevisiae. Cell, 84, 633–642. PubMed
Stuart J.A., Harper,J.A., Brindle,K.M., Jekabsons,M.B. and Brand,M.D. (2001) A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem. J., 356, 779–789. PubMed PMC
Sun J., Kale,S.P., Childress,A.M., Pinswasdi,C. and Jazwinski,S.M. (1994) Divergent roles of RAS1 and RAS2 in yeast longevity. J. Biol. Chem., 269, 18638–18645. PubMed
Thevelein J.M. (1994) Signal transduction in yeast. Yeast, 10, 1753–1790. PubMed
Toda T., et al. (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell, 40, 27–36. PubMed
Tyner S.D., et al. (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature, 415, 45–53. PubMed
Vaziri H., Dessain,S.K., Ng Eaton,E., Imai,S.I., Frye,R.A., Pandita,T.K., Guarente,L. and Weinberg,R.A. (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107, 149–159. PubMed
General and molecular microbiology and microbial genetics in the IM CAS
Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae