Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
15058183
DOI
10.1007/bf02931505
Knihovny.cz E-resources
- MeSH
- Mitochondria metabolism MeSH
- ras Proteins metabolism MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Signal Transduction physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- ras Proteins MeSH
The evolutionarily conserved Ras proteins function as a point of convergence for different signaling pathways in eukaryotes and have been implicated in both aging and cancer development. In Saccharomyces cerevisiae the plasma membrane proteins Ras1 and Ras2 are sensing the nutritional status of the environments, e.g., the abundance and quality of available carbon sources. The cAMP-protein kinase A pathway is the most explored signaling pathway controlled by Ras proteins; it affects a large number of genes, some of which are important to defend the cell against oxidative stress. In addition, recent analysis has shown that the Ras system of yeast is involved in the development of mitochondria and in regulating their activity. As a sensor of environmental status and an effector of mitochondrial activity, Ras serves as a Rosetta stone of cellular energy transduction. This review summarizes the physical and functional involvement of Ras proteins and Ras-dependent signaling pathways in mitochondrial function in S. cerevisiae. Since mitochondria produce harmful reactive oxygen species as an inevitable byproduct and are partly under control of Ras, illuminating these regulatory interactions may improve our understanding of both cancer and aging.
See more in PubMed
Mol Cell Biol. 1984 Aug;4(8):1577-82 PubMed
Mol Cell Biol. 2004 Jan;24(1):338-51 PubMed
Nat Rev Cancer. 2003 Jun;3(6):459-65 PubMed
Oncogene. 1993 Dec;8(12):3441-5 PubMed
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5984-8 PubMed
Proc Natl Acad Sci U S A. 1979 Nov;76(11):5714-8 PubMed
Biochem Biophys Res Commun. 2002 May 24;293(5):1383-8 PubMed
Biochim Biophys Acta. 2001 Dec 30;1522(3):175-86 PubMed
Mol Cell Biol. 1985 Oct;5(10):2746-52 PubMed
Biochem Mol Biol Int. 1994 Oct;34(4):745-53 PubMed
J Biol Chem. 1999 Mar 19;274(12):7936-40 PubMed
J Biol Chem. 2003 Jun 6;278(23):20673-80 PubMed
Nature. 1985 Feb 21-27;313(6004):700-3 PubMed
Q Rev Biophys. 1996 May;29(2):169-202 PubMed
Biochim Biophys Acta. 2005 Jan 7;1706(1-2):117-25 PubMed
EMBO J. 1998 Apr 1;17(7):1996-2007 PubMed
Mol Cell Biol. 1992 Feb;12(2):631-7 PubMed
Proc Natl Acad Sci U S A. 1996 May 28;93(11):5352-6 PubMed
Mol Biol Cell. 2002 Mar;13(3):795-804 PubMed
J Biol Chem. 2003 Jun 27;278(26):23460-71 PubMed
Z Naturforsch C J Biosci. 1987 Nov-Dec;42(11-12):1291-302 PubMed
Mol Microbiol. 1999 Sep;33(5):904-18 PubMed
Mol Gen Genet. 1993 Apr;238(1-2):6-16 PubMed
EMBO J. 2003 Jul 1;22(13):3337-45 PubMed
FEMS Yeast Res. 2002 May;2(2):183-201 PubMed
Genetics. 1999 May;152(1):179-90 PubMed