Biomechanical Characterization at the Cell Scale: Present and Prospects

. 2018 ; 9 () : 1449. [epub] 20181115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30498449

The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico-chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.

Zobrazit více v PubMed

Abidine Y., Laurent V. M., Michel R., Duperray A., Verdier C. (2015). Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential. Eur. Phys. J. Plus 130:202 10.1140/epjp/i2015-15202-6 DOI

Ahmed D., Ozcelik A., Bojanala N., Nama N., Upadhyay A., Chen Y., et al. (2016). Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7:11085. 10.1038/ncomms11085 PubMed DOI PMC

Alcaraz J., Otero J., Jorba I., Navajas D. (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin. Cell Dev. Biol. 73 71–81. 10.1016/j.semcdb.2017.07.020 PubMed DOI

Andersson M., Madgavkar A., Stjerndahl M., Wu Y., Tan W., Duran R., et al. (2007). Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: system design and force calibration. Rev. Sci. Instrum. 78:074302. 10.1063/1.2752606 PubMed DOI

Ando T. (2018). High-speed atomic force microscopy and its future prospects. Biophys. Rev. 10 285–292. 10.1007/s12551-017-0356-5 PubMed DOI PMC

Ansardamavandi A., Tafazzoli-Shadpour M., Omidvar R., Jahanzad I. (2016). Quantification of effects of cancer on elastic properties of breast tissue by atomic force microscopy. J. Mech. Behav. Biomed. Mater. 60 234–242. 10.1016/J.JMBBM.2015.12.028 PubMed DOI

Antoniolli F., Maggiolino S., Scuor N., Gallina P., Sbaizero O. (2014). A novel MEMS device for the multidirectional mechanical stimulation of single cells: preliminary results. Mech. Mach. Theory 78 131–140. 10.1016/j.mechmachtheory.2014.03.009 DOI

Ashkin A., Dziedzic J. M., Bjorkholm J. E., Chu S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11:288 10.1364/OL.11.000288 PubMed DOI

Ashkin A., Dziedzic J. M., Yamane T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature 330 769–771. 10.1038/330769a0 PubMed DOI

Balaban N. Q., Schwarz U. S., Riveline D., Goichberg P., Tzur G., Sabanay I., et al. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3 466–472. 10.1038/35074532 PubMed DOI

Bambardekar K., Clément R., Blanc O., Chardès C., Lenne P.-F. (2015). Direct laser manipulation reveals the mechanics of cell contacts in vivo. Proc. Natl. Acad. Sci. U.S.A. 112 1416–1421. 10.1073/pnas.1418732112 PubMed DOI PMC

Bastounis E., Meili R., Álvarez-González B., Francois J., del Álamo J. C., et al. (2014). Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. J. Cell Biol. 204 1045–1061. 10.1083/JCB.201307106 PubMed DOI PMC

Bausch A. R., Möller W., Sackmann E. (1999). Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76 573–579. 10.1016/S0006-3495(99)77225-5 PubMed DOI PMC

Berdyyeva T. K., Woodworth C. D., Sokolov I. (2005). Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys. Med. Biol. 50 81–92. 10.1088/0031-9155/50/1/007 PubMed DOI

Bergert M., Lendenmann T., Zündel M., Ehret A. E., Panozzo D., Richner P., et al. (2016). Confocal reference free traction force microscopy. Nat. Commun. 7:12814. 10.1038/ncomms12814 PubMed DOI PMC

Bidan C. M., Fratzl M., Coullomb A., Moreau P., Lombard A. H., Wang I., et al. (2018). Magneto-active substrates for local mechanical stimulation of living cells. Sci. Rep. 8:1464. 10.1038/s41598-018-19804-1 PubMed DOI PMC

Bloom R. J., George J. P., Celedon A., Sun S. X., Wirtz D. (2008). Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95 4077–4088. 10.1529/biophysj.108.132738 PubMed DOI PMC

Bonilla M. R., Stokes J. R., Gidley M. J., Yakubov G. E. (2015). Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis. Soft Matter 11 1281–1292. 10.1039/c4sm02440k PubMed DOI

Boudou T., Legant W. R., Mu A., Borochin M. A., Thavandiran N., Radisic M., et al. (2012). A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. Part A 18 910–919. 10.1089/ten.tea.2011.0341 PubMed DOI PMC

Bourquin Y., Syed A., Reboud J., Ranford-Cartwright L. C., Barrett M. P., Cooper J. M. (2014). Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics. Angew. Chemie Int. Ed. 53 5587–5590. 10.1002/anie.201310401 PubMed DOI PMC

Bronkhorst P. J., Streekstra G. J., Grimbergen J., Nijhof E. J., Sixma J. J., Brakenhoff G. J. (1995). A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys. J. 69 1666–1673. 10.1016/S0006-3495(95)80084-6 PubMed DOI PMC

Butcher D. T., Alliston T., Weaver V. M. (2009). A tense situation: forcing tumour progression. Nat. Rev. Cancer 9 108–122. 10.1038/nrc2544 PubMed DOI PMC

Butler J. P., Tolić-Nørrelykke I. M., Fabry B., Fredberg J. J. (2002). Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Physiol. 282 C595–C605. 10.1152/ajpcell.00270.2001 PubMed DOI

Capitanio M., Pavone F. S. (2013). Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys. J. 105 1293–1303. 10.1016/j.bpj.2013.08.007 PubMed DOI PMC

Charras G. T., Horton M. A. (2002). Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82 2970–2981. 10.1016/S0006-3495(02)75638-5 PubMed DOI PMC

Chen C. S., Tan J., Tien J. (2004). Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng. 6 275–302. 10.1146/annurev.bioeng.6.040803.140040 PubMed DOI

Chen D., Sun Y., Gudur M. S. R., Hsiao Y.-S., Wu Z., Fu J., et al. (2015). Two-bubble acoustic tweezing cytometry for biomechanical probing and stimulation of cells. Biophys. J. 108 32–42. 10.1016/j.bpj.2014.11.050 PubMed DOI PMC

Chen J., Li H., SundarRaj N., Wang J. H.-C. (2007). Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil. Cytoskeleton 64 248–257. 10.1002/cm.20178 PubMed DOI

Cho Y., Park E. Y., Ko E., Park J.-S., Shin J. H. (2016). Recent advances in biological uses of traction force microscopy. Int. J. Precis. Eng. Manuf. 17 1401–1412. 10.1007/s12541-016-0166-x DOI

Ciasca G., Sassun T. E., Minelli E., Antonelli M., Papi M., Santoro A., et al. (2016). Nano-mechanical signature of brain tumours. Nanoscale 8 19629–19643. 10.1039/c6nr06840e PubMed DOI

Coceano G., Yousafzai M. S., Ma W., Ndoye F., Venturelli L., Hussain I., et al. (2016). Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation. Nanotechnology 27:065102. 10.1088/0957-4484/27/6/065102 PubMed DOI

Colin-York H., Fritzsche M. (2018). The future of traction force microscopy. Curr. Opin. Biomed. Eng. 5 1–5. 10.1016/J.COBME.2017.10.002 DOI

Collinsworth A. M., Zhang S., Kraus W. E., Truskey G. A. (2002). Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am. J. Physiol. Physiol. 283 C1219–C1227. 10.1152/ajpcell.00502.2001 PubMed DOI

Costa K. D., Yin F. C. (1999). Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J. Biomech. Eng. 121 462–471. 10.1115/1.2835074 PubMed DOI

Curtis J. E., Spatz J. P. (2004). “Getting a grip: hyaluronan-mediated cellular adhesion,” in Proceedings of the International Society for Optics and Photonics, eds Dholakia K., Spalding G. C. (Washington, DC: SPIE; ), 455–466. 10.1117/12.560049 DOI

De Vlaminck I., Dekker C. (2012). Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41 453–472. 10.1146/annurev-biophys-122311-100544 PubMed DOI

Del Alamo J. C., Meili R., Alonso-Latorre B., Rodríguez-Rodríguez J., Aliseda A., Firtel R. A., et al. (2007). Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl. Acad. Sci. U.S.A. 104 13343–13348. 10.1073/pnas.0705815104 PubMed DOI PMC

Dholakia K., Reece P. (2006). Optical micromanipulation takes hold. Nano Today 1 18–27. 10.1016/S1748-0132(06)70019-6 PubMed DOI

Digiuni S., Berne-Dedieu A., Martinez-Torres C., Szecsi J., Bendahmane M., Arneodo A., et al. (2015). Single cell wall nonlinear mechanics revealed by a multiscale analysis of AFM force-indentation curves. Biophys. J. 1082235–2248. 10.1016/j.bpj.2015.02.024 PubMed DOI PMC

Ding X., Li P., Lin S.-C. S., Stratton Z. S., Nama N., Guo F., et al. (2013). Surface acoustic wave microfluidics. Lab Chip 13 3626–3649. 10.1039/c3lc50361e PubMed DOI PMC

Ding X., Peng Z., Lin S.-C. S., Geri M., Li S., Li P., et al. (2014). Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. U.S.A. 111 12992–12997. 10.1073/pnas.1413325111 PubMed DOI PMC

Dinu C. Z., Dong C., Hu X. (2016). Current status and perspectives in atomic force microscopy-based identification of cellular transformation. Int. J. Nanomedicine 11 2107–2018. 10.2147/IJN.S103501 PubMed DOI PMC

du Roure O., Saez A., Buguin A., Austin R. H., Chavrier P., Silberzan P., et al. (2005). Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U.S.A. 102 2390–2395. 10.1073/pnas.0408482102 PubMed DOI PMC

Dufrêne Y. F., Pelling A. E. (2013). Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 5:4094. 10.1039/c3nr00340j PubMed DOI

Dulińska I., Targosz M., Strojny W., Lekka M., Czuba P., Balwierz W., et al. (2006). Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J. Biochem. Biophys. Methods 66 1–11. 10.1016/j.jbbm.2005.11.003 PubMed DOI

Efremov Y. M., Dokrunova A. A., Efremenko A. V., Kirpichnikov M. P., Shaitan K. V., Sokolova O. S. (2015). Distinct impact of targeted actin cytoskeleton reorganization on mechanical properties of normal and malignant cells. Biochim. Biophys. Acta Mol. Cell Res. 1853 3117–3125. 10.1016/j.bbamcr.2015.05.008 PubMed DOI

El-Kirat-Chatel S., Dufrêne Y. F. (2012). Nanoscale imaging of the Candida –macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 6 10792–10799. 10.1021/nn304116f PubMed DOI

Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126 677–689. 10.1016/j.cell.2006.06.044 PubMed DOI

Fabry B., Maksym G. N., Butler J. P., Glogauer M., Navajas D., Fredberg J. J. (2001). Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102. 10.1103/PhysRevLett.87.148102 PubMed DOI

Fallqvist B., Fielden M. L., Pettersson T., Nordgren N., Kroon M., Gad A. K. B. (2016). Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts. J. Mech. Behav. Biomed. Mater. 59 168–184. 10.1016/j.jmbbm.2015.11.039 PubMed DOI

Fan Z., Sun Y., Di C., Tay D., Chen W., Deng C. X., et al. (2013). Acoustic tweezing cytometry for live-cell subcellular modulation of intracellular cytoskeleton contractility. Sci. Rep. 3:2176. 10.1038/srep02176 PubMed DOI PMC

Fazal F. M., Block S. M. (2011). Optical tweezers study life under tension. Nat. Photonics 5 318–321. 10.1038/nphoton.2011.100 PubMed DOI PMC

Finer J. T., Simmons R. M., Spudich J. A. (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368 113–119. 10.1038/368113a0 PubMed DOI

Fior R., Maggiolino S., Codan B., Lazzarino M., Sbaizero O. (2011). “A study on the cellular structure during stress solicitation induced by BioMEMS,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (Boston, MA: IEEE), 2455–2458. 10.1109/IEMBS.2011.6090682 PubMed DOI

Foo J.-J., Liu K.-K., Chan V. (2003). Thermal effect on a viscously deformed liposome in a laser trap. Ann. Biomed. Eng. 31 354–362. 10.1114/1.1555626 PubMed DOI

Foo J. J., Liu K. K., Chan V. (2004). Viscous drag of deformed vesicles in optical trap: Experiments and simulations. AIChE J. 50 249–254. 10.1002/aic.10023 DOI

Formosa-Dague C., Duval R. E., Dague E. (2018). Cell biology of microbes and pharmacology of antimicrobial drugs explored by atomic force microscopy. Semin. Cell Dev. Biol. 73 165–176. 10.1016/j.semcdb.2017.06.022 PubMed DOI

Franck C., Maskarinec S. A., Tirrell D. A., Ravichandran G. (2011). Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One 6:e17833. 10.1371/journal.pone.0017833 PubMed DOI PMC

Friend J., Yeo L. Y. (2011). Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83 647–704. 10.1103/RevModPhys.83.647 DOI

Fu J., Wang Y.-K., Yang M. T., Desai R. A., Yu X., Liu Z., et al. (2010). Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7 733–736. 10.1038/nmeth.1487 PubMed DOI PMC

Fuhrer R., Schumacher C. M., Zeltner M., Stark W. J. (2013). Soft iron/silicon composite tubes for magnetic peristaltic pumping: frequency-dependent pressure and volume flow. Adv. Funct. Mater. 23 3845–3849. 10.1002/adfm.201203572 DOI

Galbraith C. G., Sheetz M. P. (1998). Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10 566–571. 10.1016/S0955-0674(98)80030-6 PubMed DOI

Galbraith C. G., Yamada K. M., Sheetz M. P. (2002). The relationship between force and focal complex development. J. Cell Biol. 159 695–705. 10.1083/jcb.200204153 PubMed DOI PMC

Gautier H. O. B., Thompson A. J., Achouri S., Koser D. E., Holtzmann K., Moeendarbary E., et al. (2015). Atomic force microscopy-based force measurements on animal cells and tissues. Methods Cell Biol. 125 211–235. 10.1016/BS.MCB.2014.10.005 PubMed DOI

Gavara N., Roca-Cusachs P., Sunyer R., Farré R., Navajas D. (2008). Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys. J. 95 464–471. 10.1529/biophysj.107.124180 PubMed DOI PMC

Geiger B., Bershadsky A. (2001). Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13 584–592. 10.1016/S0955-0674(00)00255-6 PubMed DOI

Gesellchen F., Bernassau A. L., Déjardin T., Cumming D. R. S., Riehle M. O. (2014). Cell patterning with a heptagon acoustic tweezer – application in neurite guidance. Lab Chip 14 2266–2275. 10.1039/C4LC00436A PubMed DOI

Ghassemi S., Meacci G., Liu S., Gondarenko A. A., Mathur A., Roca-Cusachs P., et al. (2012). Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl. Acad. Sci. U.S.A. 109 5328–5333. 10.1073/pnas.1119886109 PubMed DOI PMC

Ghibaudo M., Saez A., Trichet L., Xayaphoummine A., Browaeys J., Silberzan P., et al. (2008). Traction forces and rigidity sensing regulate cell functions. Soft Matter 4 1836–1843. 10.1039/b804103b PubMed DOI

Glogauer M., Arora P., Yao G., Sokholov I., Ferrier J., McCulloch C. A. (1997). Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J. Cell Sci. 110(Pt 1), 11–21. PubMed

Glogauer M., Ferrier J., McCulloch C. A. (1995). Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2 + flux in fibroblasts. Am. J. Physiol. 269(5 Pt 1), C1093–C1104. 10.1152/ajpcell.1995.269.5.C1093 PubMed DOI

Gosse C., Croquette V. (2002). Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82 3314–3329. 10.1016/S0006-3495(02)75672-5 PubMed DOI PMC

Grady M. E., Composto R. J., Eckmann D. M. (2016). Cell elasticity with altered cytoskeletal architectures across multiple cell types. J. Mech. Behav. Biomed. Mater. 61 197–207. 10.1016/j.jmbbm.2016.01.022 PubMed DOI

Grier D. G. (2003). A revolution in optical manipulation. Nature 424 810–816. 10.1038/nature01935 PubMed DOI

Gu M., Kuriakose S., Gan X. (2007). A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes. Opt. Express 15:1369. 10.1364/OE.15.001369 PubMed DOI

Guck J., Ananthakrishnan R., Mahmood H., Moon T. J., Cunningham C. C., Käs J. (2001). The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81 767–784. 10.1016/S0006-3495(01)75740-2 PubMed DOI PMC

Guck J., Schinkinger S., Lincoln B., Wottawah F., Ebert S., Romeyke M., et al. (2005). Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88 3689–3698. 10.1529/biophysj.104.045476 PubMed DOI PMC

Guo F., Li P., French J. B., Mao Z., Zhao H., Li S., et al. (2015). Controlling cell-cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. U.S.A. 112 43–48. 10.1073/pnas.1422068112 PubMed DOI PMC

Guo F., Mao Z., Chen Y., Xie Z., Lata J. P., Li P., et al. (2016). Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. U.S.A. 113 1522–1527. 10.1073/pnas.1524813113 PubMed DOI PMC

Guolla L., Bertrand M., Haase K., Pelling A. E. (2012). Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. J. Cell Sci. 125 603–613. 10.1242/jcs.088302 PubMed DOI

Gupta M., Kocgozlu L., Sarangi B. R., Margadant F., Ashraf M., Ladoux B. (2015). Micropillar substrates: a tool for studying cell mechanobiology. Biophys. Methods Cell Biol. 125 289–308. 10.1016/bs.mcb.2014.10.009 PubMed DOI

Hall M., Long R., Feng X., Huang Y., Hui C. Y., Wu M. (2013). Toward single cell traction microscopy within 3D collagen matrices. Exp. Cell Res. 319 2396–2408. 10.1016/j.yexcr.2013.06.009 PubMed DOI PMC

Han Y., Wang J., Wang K., Dong S. (2016). Fabrication of atomic force microscope spherical tips and its application in determining the mechanical property of cancer cells. Micro Nano Lett. 11 881–884. 10.1049/mnl.2016.0319 DOI

Harlepp S., Thalmann F., Follain G., Goetz J. G. (2017). Hemodynamic forces can be accurately measured in vivo with optical tweezers. Mol. Biol. Cell 28 3252–3260. 10.1091/mbc.E17-06-0382 PubMed DOI PMC

Harris A. K., Wild P., Stopak D. (1980). Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208 177–179. 10.1126/science.6987736 PubMed DOI

Harris A. R., Charras G. T. (2011). Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22:345102. 10.1088/0957-4484/22/34/345102 PubMed DOI

Håti A. G., Aachmann F. L., Stokke B. T., Skjåk-Brk G., Sletmoen M. (2015). Energy landscape of alginate-epimerase interactions assessed by optical tweezers and atomic force microscopy. PLoS One 10:e0141237. 10.1371/journal.pone.0141237 PubMed DOI PMC

Haupt B. J., Pelling A. E., Horton M. A. (2006). Integrated confocal and scanning probe microscopy for biomedical research. ScientificWorldJournal 6 1609–1618. 10.1100/tsw.2006.269 PubMed DOI PMC

Hayashi K., Higaki M. (2017). Stiffness of intact endothelial cells from fresh aortic bifurcations of atherosclerotic rabbits-atomic force microscopic study. J. Cell. Physiol. 232 7–13. 10.1002/jcp.25379 PubMed DOI

Hendricks A. G., Holzbaur E. L. F., Goldman Y. E. (2012). Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl. Acad. Sci. U.S.A. 109 18447–18452. 10.1073/pnas.1215462109 PubMed DOI PMC

Hénon S., Lenormand G., Richert A., Gallet F. (1999). A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76 1145–1151. 10.1016/S0006-3495(99)77279-6 PubMed DOI PMC

Hertz H. (1896). Ueber die Berührung fester elastischer Körper. J. für die reine und Angew. Math. 92 156–171.

Heureaux J., Chen D., Murray V. L., Deng C. X., Liu A. P. (2014). Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress. Cell. Mol. Bioeng. 7 307–319. 10.1007/s12195-014-0337-8 PubMed DOI PMC

Hinson J. T., Chopra A., Nafissi N., Polacheck W. J., Benson C. C., Swist S., et al. (2015). HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349 982–986. 10.1126/science.aaa5458 PubMed DOI PMC

Hinterdorfer P., Dufrêne Y. F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3 347–355. 10.1038/nmeth871 PubMed DOI

Hoffman B. D., Grashoff C., Schwartz M. A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature 475 316–323. 10.1038/nature10316 PubMed DOI PMC

Hu S., Eberhard L., Chen J., Love J. C., Butler J. P., Fredberg J. J., et al. (2004). Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol. 287 C1184–C1191. 10.1152/ajpcell.00224.2004 PubMed DOI

Huang P.-H., Chan C. Y., Li P., Nama N., Xie Y., Wei C.-H., et al. (2015). A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures. Lab Chip 15 4166–4176. 10.1039/c5lc00868a PubMed DOI PMC

Huang S., Ingber D. E. (1999). The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1 E131–E138. 10.1038/13043 PubMed DOI

Huang W., Anvari B., Torres J. H., Lebaron R. G., Athanasiou K. A. (2003). Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J. Orthop. Res. 21 88–95. 10.1016/S0736-0266(02)00130-4 PubMed DOI

Hwang J. Y., Lim H. G., Yoon C. W., Lam K. H., Yoon S., Lee C., et al. (2014). Non-contact high-frequency ultrasound microbeam stimulation for studying mechanotransduction in human umbilical vein endothelial cells. Ultrasound Med. Biol. 40 2172–2182. 10.1016/j.ultrasmedbio.2014.03.018 PubMed DOI PMC

Ichikawa M., Yoshikawa K. (2001). Optical transport of a single cell-sized liposome. Appl. Phys. Lett. 79 4598–4600. 10.1063/1.1430026 DOI

Indra I., Undyala V., Kandow C., Thirumurthi U., Dembo M., Beningo K. A. (2011). An in vitro correlation of mechanical forces and metastatic capacity. Phys. Biol. 8:015015. 10.1088/1478-3975/8/1/015015 PubMed DOI PMC

Jannat R. A., Dembo M., Hammer D. A. (2011). Traction forces of neutrophils migrating on compliant substrates. Biophys. J. 101 575–584. 10.1016/j.bpj.2011.05.040 PubMed DOI PMC

Janssen X. J. A., Lipfert J., Jager T., Daudey R., Beekman J., Dekker N. H. (2012). Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. Nano Lett. 12 3634–3639. 10.1021/nl301330h PubMed DOI

Johansen P. L., Fenaroli F., Evensen L., Griffiths G., Koster G. (2016). Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat. Commun. 7:10974. 10.1038/ncomms10974 PubMed DOI PMC

Karácsony O., Akhremitchev B. B. (2011). On the detection of single bond ruptures in dynamic force spectroscopy by AFM. Langmuir 27 11287–11291. 10.1021/la202530j PubMed DOI

Kasas S., Gmur T., Dietler G. (2017). “Finite-element analysis of microbiological structures,” in The World of Nano-Biomechanics, ed. Ikai A. (Amsterdam: Elsevier; ), 199–218. 10.1016/B978-0-444-63686-7.00011-0 DOI

Kasas S., Stupar P., Dietler G. (2018). AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin. Cell Dev. Biol. 73 177–187. 10.1016/j.semcdb.2017.08.032 PubMed DOI

Khetan S., Guvendiren M., Legant W. R., Cohen D. M., Chen C. S., Burdick J. A. (2013). Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12 458–465. 10.1038/nmat3586 PubMed DOI PMC

Kilinc D., Blasiak A., O’Mahony J. J., Suter D. M., Lee G. U. (2012). Magnetic tweezers-based force clamp reveals mechanically distinct apCAM domain interactions. Biophys. J. 103 1120–1129. 10.1016/j.bpj.2012.08.025 PubMed DOI PMC

Kilinc D., Lee G. U. (2014). Advances in magnetic tweezers for single molecule and cell biophysics. Integr. Biol. 6 27–34. 10.1039/c3ib40185e PubMed DOI

Kim D.-H., Wong P. K., Park J., Levchenko A., Sun Y. (2009). Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11 203–233. 10.1146/annurev-bioeng-061008-124915 PubMed DOI

Kis A., Kasas S., Babić B., Kulik A. J., Benoît W., Briggs G. A. D., et al. (2002). Nanomechanics of microtubules. Phys. Rev. Lett. 89:248101. 10.1103/PhysRevLett.89.248101 PubMed DOI

Knöner G., Rolfe B. E., Campbell J. H., Parkin S. J., Heckenberg N. R., Rubinsztein-Dunlop H. (2006). Mechanics of cellular adhesion to artificial artery templates. Biophys. J. 91 3085–3096. 10.1529/biophysj.105.076125 PubMed DOI PMC

Koch T. M., Münster S., Bonakdar N., Butler J. P., Fabry B. (2012). 3D traction forces in cancer cell invasion. PLoS One 7:e33476. 10.1371/journal.pone.0033476 PubMed DOI PMC

Kodera N., Yamamoto D., Ishikawa R., Ando T. (2010). Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468 72–76. 10.1038/nature09450 PubMed DOI

Kuznetsova T. G., Starodubtseva M. N., Yegorenkov N. I., Chizhik S. A., Zhdanov R. I. (2007). Atomic force microscopy probing of cell elasticity. Micron 38 824–833. 10.1016/J.MICRON.2007.06.011 PubMed DOI

Lam K. H., Li Y., Li Y., Lim H. G., Zhou Q., Shung K. K. (2016). Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci. Rep. 6:37554. 10.1038/srep37554 PubMed DOI PMC

Lam R. H. W., Sun Y., Chen W., Fu J. (2012a). Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12 1865–1873. 10.1039/c2lc21146g PubMed DOI PMC

Lam R. H. W., Weng S., Lu W., Fu J. (2012b). Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Integr. Biol. 4 1289–1298. 10.1039/c2ib20134h PubMed DOI PMC

Lam W. A., Chaudhuri O., Crow A., Webster K. D., Li T.-D., Kita A., et al. (2011). Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat. Mater. 10 61–66. 10.1038/nmat2903 PubMed DOI PMC

Lee J., Leonard M., Oliver T., Ishihara A., Jacobson K. (1994). Traction forces generated by locomoting keratocytes. J. Cell Biol. 127 1957–1964. 10.1083/jcb.127.6.1957 PubMed DOI PMC

Legant W. R., Miller J. S., Blakely B. L., Cohen D. M., Genin G. M., Chen C. S. (2010). Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7 969–971. 10.1038/nmeth.1531 PubMed DOI PMC

Lehenkari P. P., Charras G. T., Nykänen A., Horton M. A. (2000). Adapting atomic force microscopy for cell biology. Ultramicroscopy 82 289–295. 10.1016/S0304-3991(99)00138-2 PubMed DOI

Lekka M. (2016). Discrimination between normal and cancerous cells using AFM. Bionanoscience 6 65–80. 10.1007/s12668-016-0191-3 PubMed DOI PMC

Li B., Li F., Puskar K. M., Wang J. H.-C. (2009). Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomech. 42 1622–1627. 10.1016/j.jbiomech.2009.04.033 PubMed DOI PMC

Li B., Lin M., Tang Y., Wang B., Wang J. H.-C. (2008). A novel functional assessment of the differentiation of micropatterned muscle cells. J. Biomech. 41 3349–3353. 10.1016/j.jbiomech.2008.09.025 PubMed DOI PMC

Li B., Wang J. H.-C. (2011). Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viability 20 108–120. 10.1016/j.jtv.2009.11.004 PubMed DOI PMC

Li B., Xie L., Starr Z. C., Yang Z., Lin J.-S., Wang J. H.-C. (2007). Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell Motil. Cytoskeleton 64 509–518. 10.1002/cm.20200 PubMed DOI

Li P., Mao Z., Peng Z., Zhou L., Chen Y., Huang P.-H., et al. (2015). Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U.S.A. 112 4970–4975. 10.1073/pnas.1504484112 PubMed DOI PMC

Lieber S. C., Aubry N., Pain J., Diaz G., Kim S. J., Vatner S. F. (2004). Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am. J. Physiol. Heart Circ. Phisiol. 287 H645–H651. 10.1152/ajpheart.00564.2003 PubMed DOI

Lim C. T., Dao M., Suresh S., Sow C. H., Chew K. T. (2004). Large deformation of living cells using laser traps. Acta Mater. 52 1837–1845. 10.1016/J.ACTAMAT.2003.12.028 DOI

Lin I.-K., Liao Y.-M., Liu Y., Ou K.-S., Chen K.-S., Zhang X. (2008). Viscoelastic mechanical behavior of soft microcantilever-based force sensors. Appl. Phys. Lett. 93 251907 10.1063/1.3056114 DOI

Lin Y.-C., Kramer C. M., Chen C. S., Reich D. H. (2012). Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays. Nanotechnology 23:075101. 10.1088/0957-4484/23/7/075101 PubMed DOI PMC

Lipfert J., Kerssemakers J. W. J., Jager T., Dekker N. H. (2010). Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods 7 977–980. 10.1038/nmeth.1520 PubMed DOI

Lipfert J., Wiggin M., Kerssemakers J. W. J., Pedaci F., Dekker N. H. (2011). Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat. Commun. 2:439. 10.1038/ncomms1450 PubMed DOI PMC

Lisica A., Grill S. W. (2017). Optical tweezers studies of transcription by eukaryotic RNA polymerases. Biomol. Concepts 8 1–11. 10.1515/bmc-2016-0028 PubMed DOI

Liu A. P. (2016). Biophysical tools for cellular and subcellular mechanical actuation of cell signaling. Biophys. J. 111 1112–1118. 10.1016/J.BPJ.2016.02.043 PubMed DOI PMC

Liu J., Sun N., Bruce M. A., Wu J. C., Butte M. J. (2012). Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes. PLoS One 7:e37559. 10.1371/journal.pone.0037559 PubMed DOI PMC

López-Quesada C., Fontaine A.-S., Farré A., Joseph M., Selva J., Egea G., et al. (2014). Artificially-induced organelles are optimal targets for optical trapping experiments in living cells. Biomed. Opt. Express 5:1993. 10.1364/BOE.5.001993 PubMed DOI PMC

Mahaffy R. E., Park S., Gerde E., Käs J., Shih C. K. (2004). Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86 1777–1793. 10.1016/S0006-3495(04)74245-9 PubMed DOI PMC

Malandrino A., Kamm R. D., Moeendarbary E. (2018). In vitro modeling of mechanics in cancer metastasis. ACS Biomater. Sci. Eng. 4 294–301. 10.1021/acsbiomaterials.7b00041 PubMed DOI PMC

Maloney J. M., Nikova D., Lautenschläger F., Clarke E., Langer R., Guck J., et al. (2010). Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99 2479–2487. 10.1016/j.bpj.2010.08.052 PubMed DOI PMC

Mammoto T., Ingber D. E. (2010). Mechanical control of tissue and organ development. Development 137 1407–1420. 10.1242/dev.024166 PubMed DOI PMC

Mann J. M., Lam R. H. W., Weng S., Sun Y., Fu J. (2012). A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12 731–740. 10.1039/C2LC20896B PubMed DOI PMC

Marjoram R. J., Guilluy C., Burridge K. (2016). Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods 94 19–26. 10.1016/j.ymeth.2015.09.025 PubMed DOI PMC

Martinez-Martin D., Carrasco C., Hernando-Perez M., de Pablo P. J., Gomez-Herrero J., Perez R., et al. (2012). Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS One 7:e30204. 10.1371/journal.pone.0030204 PubMed DOI PMC

Mathur A. B., Truskey G. A., Reichert W. M. (2000). Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78 1725–1735. 10.1016/S0006-3495(00)76724-5 PubMed DOI PMC

Matsudaira K., Nguyen T.-V., Shoji K. H., Tsukagoshi T., Takahata T., Shimoyama I. (2017). MEMS piezoresistive cantilever for the direct measurement of cardiomyocyte contractile force. J. Micromech. Microeng. 27:105005 10.1088/1361-6439/aa8350 DOI

Matthews B. D. (2006). Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119 508–518. 10.1242/jcs.02760 PubMed DOI

Maugeri-Saccà M., De Maria R. (2018). The Hippo pathway in normal development and cancer. Pharmacol. Ther. 10.1016/J.PHARMTHERA.2017.12.011 PubMed DOI

Mercadé-Prieto R., Thomas C. R., Zhang Z. (2013). Mechanical double layer model for Saccharomyces Cerevisiae cell wall. Eur. Biophys. J. 42 613–620. 10.1007/s00249-013-0909-x PubMed DOI

Miroshnikova Y. A., Le H. Q., Schneider D., Thalheim T., Rübsam M., Bremicker N., et al. (2018). Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20 69–80. 10.1038/s41556-017-0005-z PubMed DOI

Monachino E., Spenkelink L. M., van Oijen A. M. (2017). Watching cellular machinery in action, one molecule at a time. J. Cell Biol. 216 41–51. 10.1083/jcb.201610025 PubMed DOI PMC

Morton K. C., Baker L. A. (2014). Atomic force microscopy-based bioanalysis for the study of disease. Anal. Methods 6 4932–4955. 10.1039/C4AY00485J DOI

Mosconi F., Allemand J. F., Croquette V. (2011). Soft magnetic tweezers: a proof of principle. Rev. Sci. Instrum. 82:034302. 10.1063/1.3531959 PubMed DOI

Moulding D. A., Moeendarbary E., Valon L., Record J., Charras G. T., Thrasher A. J. (2012). Excess F-actin mechanically impedes mitosis leading to cytokinesis failure in X-linked neutropenia by exceeding Aurora B kinase error correction capacity. Blood 120 3803–3811. 10.1182/blood-2012-03-419663 PubMed DOI PMC

Mukherjee R., Saha M., Routray A., Chakraborty C. (2015). Nanoscale surface characterization of human erythrocytes by atomic force microscopy: a critical review. IEEE Trans. Nanobioscience 14 625–633. 10.1109/TNB.2015.2424674 PubMed DOI

Munoz J. J. (2016). Non-regularised inverse finite element analysis for 3D traction force microscopy. Int. J. Numer. Anal. Model. 13 763–781.

Na S., Wang N. (2008). Application of fluorescence resonance energy transfer and magnetic twisting cytometry to quantify mechanochemical signaling activities in a living cell. Sci. Signal. 1:pl1. 10.1126/scisignal.134pl1 PubMed DOI PMC

Nan X., Sims P. A., Xie X. S. (2008). Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. ChemPhysChem 9 707–712. 10.1002/cphc.200700839 PubMed DOI

Nardone G., Oliver-De, La Cruz J., Vrbsky J., Martini C., Pribyl J., et al. (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321. 10.1038/ncomms15321 PubMed DOI PMC

Nelson C. M., Jean R. P., Tan J. L., Liu W. F., Sniadecki N. J., Spector A. A., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. U.S.A. 102 11594–11599. 10.1073/pnas.0502575102 PubMed DOI PMC

Neuman K. C., Chadd E. H., Liou G. F., Bergman K., Block S. M. (1999). Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77 2856–2863. 10.1016/S0006-3495(99)77117-1 PubMed DOI PMC

Nguyen V., Kaulen C., Simon U., Schnakenberg U. (2017). Single interdigital transducer approach for gravimetrical SAW sensor applications in liquid environments. Sensors 17:2931. 10.3390/s17122931 PubMed DOI PMC

Norman J. J., Mukundan V., Bernstein D., Pruitt B. L. (2008). Microsystems for biomechanical measurements. Pediatr. Res. 63 576–583. 10.1203/PDR.0b013e31816b2ec4 PubMed DOI

Oberstrass F. C., Fernandes L. E., Bryant Z. (2012). Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc. Natl. Acad. Sci. U.S.A. 109 6106–6111. 10.1073/pnas.1113532109 PubMed DOI PMC

Oddershede L. B. (2012). Force probing of individual molecules inside the living cell is now a reality. Nat. Chem. Biol. 8 879–886. 10.1038/nchembio.1082 PubMed DOI

O’Mahony J. J., Platt M., Kilinc D., Lee G. (2013). Synthesis of superparamagnetic particles with tunable morphologies: the role of nanoparticle–nanoparticle interactions. Langmuir 29 2546–2553. 10.1021/la3047565 PubMed DOI

Pal S. (ed.). (2014). “Mechanical properties of biological materials,” in Design of Artificial Human Joints & Organs (Boston, MA: Springer; ), 23–40. 10.1007/978-1-4614-6255-2_2 DOI

Palacio J., Jorge-Peñas A., Muñoz-Barrutia A., Ortiz-de-Solorzano C., de Juan-Pardo E., García-Aznar J. M. (2013). Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials. J. Biomech. 46 50–55. 10.1016/j.jbiomech.2012.10.009 PubMed DOI

Park J., Ryu J., Choi S. K., Seo E., Cha J. M., Ryu S., et al. (2005). Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers. Anal. Chem. 77 6571–6580. 10.1021/ac0507800 PubMed DOI

Park S., Jang W.-J., Jeong C.-H. (2016). Nano-biomechanical validation of epithelial–mesenchymal transition in oral squamous cell carcinomas. Biol. Pharm. Bull. 39 1488–1495. 10.1248/bpb.b16-00266 PubMed DOI

Park Y., Best C. A., Badizadegan K., Dasari R. R., Feld M. S., Kuriabova T., et al. (2010). Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. U.S.A. 107 6731–6736. 10.1073/pnas.0909533107 PubMed DOI PMC

Pesen D., Hoh J. H. (2005). Micromechanical architecture of the endothelial cell cortex. Biophys. J. 88 670–679. 10.1529/BIOPHYSJ.104.049965 PubMed DOI PMC

Plodinec M., Loparic M., Monnier C. A., Obermann E. C., Zanetti-Dallenbach R., Oertle P., et al. (2012). The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7 757–765. 10.1038/nnano.2012.167 PubMed DOI

Poh Y.-C., Na S., Chowdhury F., Ouyang M., Wang Y., Wang N. (2009). Rapid activation of Rac GTPase in living cells by force is independent of Src. PLoS One 4:e7886. 10.1371/journal.pone.0007886 PubMed DOI PMC

Polacheck W. J., Chen C. S. (2016). Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13 415–423. 10.1038/nmeth.3834 PubMed DOI PMC

Polacheck W. J., Li R., Uzel S. G. M., Kamm R. D. (2013). Microfluidic platforms for mechanobiology. Lab Chip 13 2252–2267. 10.1039/c3lc41393d PubMed DOI PMC

Puchner E. M., Gaub H. E. (2009). Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19 605–614. 10.1016/J.SBI.2009.09.005 PubMed DOI

Puig-de-Morales M., Millet E., Fabry B., Navajas D., Wang N., Butler J. P., et al. (2004). Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am. J. Physiol. Physiol. 287 C643–C654. 10.1152/ajpcell.00070.2004 PubMed DOI

Rajagopalan J., Saif M. T. A. (2011). MEMS sensors and microsystems for cell mechanobiology. J. Micromech. Microeng. 21:054002. 10.1088/0960-1317/21/5/054002 PubMed DOI PMC

Rianna C., Radmacher M. (2016). “Cell mechanics as a marker for diseases: Biomedical applications of AFM,” in Proceedings of the AIP Conference Proceedings (Melville, NY: AIP Publishing LLC; ), 020057 10.1063/1.4960276. DOI

Ricart B. G., Yang M. T., Hunter C. A., Chen C. S., Hammer D. A. (2011). Measuring traction forces of motile dendritic cells on micropost arrays. Biophys. J. 101 2620–2628. 10.1016/j.bpj.2011.09.022 PubMed DOI PMC

Roca-Cusachs P., Conte V., Trepat X. (2017). Quantifying forces in cell biology. Nat. Cell Biol. 19 742–751. 10.1038/ncb3564 PubMed DOI

Rocha M. S. (2015). Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments. Integr. Biol. 7 967–986. 10.1039/C5IB00127G PubMed DOI

Rosenbluth M. J., Lam W. A., Fletcher D. A. (2006). Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90 2994–3003. 10.1529/biophysj.105.067496 PubMed DOI PMC

Roth K. B., Eggleton C. D., Neeves K. B., Marr D. W. M. (2013). Measuring cell mechanics by optical alignment compression cytometry. Lab Chip 13 1571–1577. 10.1039/c3lc41253a PubMed DOI PMC

Saphirstein R. J., Gao Y. Z., Jensen M. H., Gallant C. M., Vetterkind S., Moore J. R., et al. (2013). The focal adhesion: a regulated component of aortic stiffness. PLoS One 8:e62461. 10.1371/journal.pone.0062461 PubMed DOI PMC

Sato H., Kataoka N., Kajiya F., Katano M., Takigawa T., Masuda T. (2004). Kinetic study on the elastic change of vascular endothelial cells on collagen matrices by atomic force microscopy. Colloids Surf. B Biointerfaces 34 141–146. 10.1016/j.colsurfb.2003.12.013 PubMed DOI

Scuor N., Gallina P., Panchawagh H. V., Mahajan R. L., Sbaizero O., Sergo V. (2006). Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed. Microdevices 8 239–246. 10.1007/s10544-006-8268-3 PubMed DOI

Serrao G. W., Turnbull I. C., Ancukiewicz D., Kim D. E., Kao E., Cashman T. J., et al. (2012). Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Eng. Part A 18 1322–1333. 10.1089/ten.TEA.2011.0278 PubMed DOI PMC

Shang H., Lee G. U. (2007). Magnetic tweezers measurement of the bond lifetime-force behavior of the IgG-protein a specific molecular interaction. J. Am. Chem. Soc. 129 6640–6646. 10.1021/JA071215C PubMed DOI

Shao Y., Fu J. (2014). Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv. Mater. 26 1494–1533. 10.1002/adma.201304431 PubMed DOI PMC

Shiu J. Y., Aires L., Lin Z., Vogel V. (2018). Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 20 262–271. 10.1038/s41556-017-0030-y PubMed DOI

Shiu Y.-T., Li S., Marganski W. A., Usami S., Schwartz M. A., Wang Y.-L., et al. (2004). Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys. J. 86 2558–2565. 10.1016/S0006-3495(04)74311-8 PubMed DOI PMC

Shroff S. G., Saner D. R., Lal R. (1995). Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am. J. Physiol. Physiol. 269 C286–C292. 10.1152/ajpcell.1995.269.1.C286 PubMed DOI

Silberberg Y. R., Pelling A. E., Yakubov G. E., Crum W. R., Hawkes D. J., Horton M. A. (2008). Mitochondrial displacements in response to nanomechanical forces. J. Mol. Recognit. 21 30–36. 10.1002/jmr.868 PubMed DOI

Sims P. A., Xie X. S. (2009). Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem 10 1511–1516. 10.1002/cphc.200900113 PubMed DOI PMC

Sneddon I. N. (1965). The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3 47–57. 10.1016/0020-7225(65)90019-4 PubMed DOI

Sniadecki N. J., Anguelouch A., Yang M. T., Lamb C. M., Liu Z., Kirschner S. B., et al. (2007). Magnetic microposts as an approach to apply forces to living cells. Proc. Natl. Acad. Sci. U.S.A. 104 14553–14558. 10.1073/pnas.0611613104 PubMed DOI PMC

Sparkes I., White R. R., Coles B., Botchway S. W., Ward A. (2018). “Using optical tweezers combined with total internal reflection microscopy to study interactions between the ER and Golgi in plant cells,” in The Plant Endoplasmic Reticulum : Methods and Protocols, eds Hawes C., Kriechbaumer V. (New York, NY: Springer; ), 167–178. 10.1007/978-1-4939-7389-7_13 PubMed DOI

Staunton J. R., Blehm B., Devine A., Tanner K. (2017). In situ calibration of position detection in an optical trap for active microrheology in viscous materials. Opt. Express 25 1746–1761. 10.1364/OE.25.001746 PubMed DOI PMC

Steinwachs J., Metzner C., Skodzek K., Lang N., Thievessen I., Mark C., et al. (2016). Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13 171–176. 10.1038/nmeth.3685 PubMed DOI

Sun N., Yazawa M., Liu J., Han L., Sanchez-Freire V., Abilez O. J., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci. Transl. Med 4:130ra47. 10.1126/scitranslmed.3003552 PubMed DOI PMC

Sun Y., Nelson B. J. (2007). MEMS capacitive force sensors for cellular and flight biomechanics. Biomed. Mater. 2 S16–S22. 10.1088/1748-6041/2/1/S03 PubMed DOI

Sun Y., Villa-Diaz L. G., Lam R. H. W., Chen W., Krebsbach P. H., Fu J. (2012). Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 7:e37178. 10.1371/journal.pone.0037178 PubMed DOI PMC

Sunyer R., Conte V., Escribano J., Elosegui-Artola A., Labernadie A., Valon L., et al. (2016). Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353 1157–1161. 10.1126/science.aaf7119 PubMed DOI

Suresh S., Spatz J., Mills J. P., Micoulet A., Dao M., Lim C. T., et al. (2005). Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1 15–30. 10.1016/j.actbio.2004.09.001 PubMed DOI

Szymonski M., Targosz-Korecka M., Malek-Zietek K. E. (2015). Nano-mechanical model of endothelial dysfunction for AFM-based diagnostics at the cellular level. Pharmacol. Rep. 67 728–735. 10.1016/J.PHAREP.2015.05.003 PubMed DOI

Tabdili H., Langer M., Shi Q., Poh Y.-C., Wang N., Leckband D. (2012). Cadherin-dependent mechanotransduction depends on ligand identity but not affinity. J. Cell Sci. 125 4362–4371. 10.1242/jcs.105775 PubMed DOI PMC

Takahashi H., Jung U. G., Kan T., Tsukagoshi T., Matsumoto K., Shimoyama I. (2016). Rigid two-axis MEMS force plate for measuring cellular traction force. J. Micromech. Microeng. 26:105006 10.1088/0960-1317/26/10/105006 DOI

Tan J. L., Tien J., Pirone D. M., Gray D. S., Bhadriraju K., Chen C. S. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. U.S.A. 100 1484–1489. 10.1073/pnas.0235407100 PubMed DOI PMC

Tanase M., Biais N., Sheetz M. (2007). Magnetic tweezers in cell biology. Methods Cell Biol. 83 473–493. 10.1016/S0091-679X(07)83020-2 PubMed DOI

Tatara Y. (1989). Extensive theory of force-approach relations of elastic spheres in compression and in impact. J. Eng. Mater. Technol. 111:163 10.1115/1.3226449 DOI

Tavacoli J. W., Bauër P., Fermigier M., Bartolo D., Heuvingh J., du Roure O. (2013). The fabrication and directed self-assembly of micron-sized superparamagnetic non-spherical particles. Soft Matter 9:9103 10.1039/c3sm51589c DOI

Thoumine O., Kocian P., Kottelat A., Meister J. J. (2000). Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29 398–408. 10.1007/s002490000087 PubMed DOI

Titushkin I., Cho M. (2006). Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys. J. 90 2582–2591. 10.1529/biophysj.105.073775 PubMed DOI PMC

Topal T., Hong X., Xue X., Fan Z., Kanetkar N., Nguyen J. T., et al. (2018). Acoustic tweezing cytometry induces rapid initiation of human embryonic stem cell differentiation. Sci. Rep. 8:12977. 10.1038/s41598-018-30939-z PubMed DOI PMC

Trepat X., Deng L., An S. S., Navajas D., Tschumperlin D. J., Gerthoffer W. T., et al. (2007). Universal physical responses to stretch in the living cell. Nature 447 592–595. 10.1038/nature05824 PubMed DOI PMC

Trepat X., Wasserman M. R., Angelini T. E., Millet E., Weitz D. A., Butler J. P., et al. (2009). Physical forces during collective cell migration. Nat. Phys. 5 426–430. 10.1038/nphys1269 DOI

Usukura E., Narita A., Yagi A., Ito S., Usukura J. (2016). An unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy. Sci. Rep. 6:27472. 10.1038/srep27472 PubMed DOI PMC

Usukura J., Yoshimura A., Minakata S., Youn D., Ahn J., Cho S.-J. (2012). Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions. J. Electron Microsc. 61 321–326. 10.1093/jmicro/dfs055 PubMed DOI

Veraitch F., Hernandez D., Mason C., Pelling A. E., Veraitch F. S. (2011). Precisely delivered nanomechanical forces induce blebbing in undifferentiated mouse embryonic stem cells. Cell Health Cytoskelet. 3 23–34. 10.2147/CHC.S13863 DOI

Voiculescu I., Nordin A. N. (2012). Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 33 1–9. 10.1016/J.BIOS.2011.12.041 PubMed DOI

Wang J. H.-C., Li B. (2010). “The principles and biological applications of cell traction force microscopy,” in Microscopy : Science, Technology, Applications and Education, eds Méndez-Vilas A., Díaz J. (Badajoz: Formatex Research Center; ), 449–458.

Wang N., Butler J. P., Ingber D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260 1124–1127. 10.1126/science.7684161 PubMed DOI

Wang X., Yang Y., Hu X., Kawazoe N., Yang Y., Chen G. (2016). Morphological and mechanical properties of osteosarcoma microenvironment cells explored by atomic force microscopy. Anal. Sci. 32 1177–1182. 10.2116/analsci.32.1177 PubMed DOI

Wang Y., Botvinick E. L., Zhao Y., Berns M. W., Usami S., Tsien R. Y., et al. (2005). Visualizing the mechanical activation of Src. Nature 434 1040–1045. 10.1038/nature03469 PubMed DOI

Wei M.-T., Zaorski A., Yalcin H. C., Wang J., Hallow M., Ghadiali S. N., et al. (2008). A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt. Express 16 8594–8603. 10.1364/OE.16.008594 PubMed DOI

Wu J., Du G. (1990). Acoustic radiation force on a small compressible sphere in a focused beam. J. Acoust. Soc. Am. 87 997–1003. 10.1121/1.399435 DOI

Wu J. R. (1991). Acoustical tweezers. J. Acoust. Soc. Am. 89 2140–2143. 10.1121/1.400907 PubMed DOI

Xiang Y., LaVan D. A. (2007). Analysis of soft cantilevers as force transducers. Appl. Phys. Lett. 90:133901. 10.1063/1.2716376 PubMed DOI

Xin Q., Li P., He Y., Shi C., Qiao Y., Bian X., et al. (2017). Magnetic tweezers for the mechanical research of DNA at the single molecule level. Anal. Methods 9 5720–5730. 10.1039/C7AY01495C DOI

Xue X., Hong X., Li Z., Deng C. X., Fu J. (2017). Acoustic tweezing cytometry enhances osteogenesis of human mesenchymal stem cells through cytoskeletal contractility and YAP activation. Biomaterials 134 22–30. 10.1016/j.biomaterials.2017.04.039 PubMed DOI PMC

Yalcin H. C., Hallow K. M., Wang J., Wei M. T., Ou-Yang H. D., Ghadiali S. N. (2009). Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening. Am. J. Physiol. Lung Cell. Mol. Physiol. 297 L881–L891. 10.1152/ajplung.90562.2008 PubMed DOI

Yan B., Ren J., Liu Y., Huang H., Zheng X., Zou Q. (2017). Study of cholesterol repletion effect on nanomechanical properties of human umbilical vein endothelial cell via rapid broadband atomic force microscopy. J. Biomech. Eng. 139:034501. 10.1115/1.4035260 PubMed DOI

Yang M. T., Fu J., Wang Y.-K., Desai R. A., Chen C. S. (2011). Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat. Protoc. 6 187–213. 10.1038/nprot.2010.189 PubMed DOI PMC

Yang S., Saif T. (2005). Micromachined force sensors for the study of cell mechanics. Rev. Sci. Instrum. 76:044301 10.1063/1.1863792 DOI

Yang M. T., Sniadecki N. J., Chen C. S. (2007). Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 19 3119–3123. 10.1002/adma.200701956 DOI

Yang Z., Lin J.-S., Chen J., Wang J. H.-C. (2006). Determining substrate displacement and cell traction fields—a new approach. J. Theor. Biol. 242 607–616. 10.1016/J.JTBI.2006.05.005 PubMed DOI

Zemła J., Danilkiewicz J., Orzechowska B., Pabijan J., Seweryn S., Lekka M. (2018). Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin. Cell Dev. Biol. 73 115–124. 10.1016/j.semcdb.2017.06.029 PubMed DOI

Zhang H., Liu K.-K. (2008). Optical tweezers for single cells. J. R. Soc. Interface 5 671–690. 10.1098/rsif.2008.0052 PubMed DOI PMC

Zhang J. S., Kraus W. E., Truskey G. A. (2004). Stretch-induced nitric oxide modulates mechanical properties of skeletal muscle cells. Am. J. Physiol. Physiol. 287 C292–C299. 10.1152/ajpcell.00018.2004 PubMed DOI

Zhang L., Dong J. (2012). Design, fabrication, and testing of a SOI-MEMS-based active microprobe for potential cellular force sensing applications. Adv. Mech. Eng. 4: 785798 10.1155/2012/785798 DOI

Zhang Y., DaSilva M., Ashall B., Doyle G., Zerulla D., Sands T. D., et al. (2011). Magnetic manipulation and optical imaging of an active plasmonic single-particle Fe–Au nanorod. Langmuir 27 15292–15298. 10.1021/la203863p PubMed DOI

Zhang Y., Wang Q. (2012). Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Adv. Mater. 24 2485–2490. 10.1002/adma.201103991 PubMed DOI

Zhao X., Zhong Y., Ye T., Wang D., Mao B. (2015). Discrimination between cervical cancer cells and normal cervical cells based on longitudinal elasticity using atomic force microscopy. Nanoscale Res. Lett. 10:482. 10.1186/s11671-015-1174-y PubMed DOI PMC

Zhao X.-H., Laschinger C., Arora P., Szaszi K., Kapus A., McCulloch C. A. (2007). Force activates smooth muscle actin promoter activity through the Rho signaling pathway. J. Cell Sci. 120 1801–1809. 10.1242/jcs.001586 PubMed DOI

Zhao Y., Lim C. C., Sawyer D. B., Liao R., Zhang X. (2005). Cellular force measurements using single-spaced polymeric microstructures: isolating cells from base substrate. J. Micromech. Microeng. 15 1649–1656. 10.1088/0960-1317/15/9/006 DOI

Zheng X. R., Zhang X. (2011). Microsystems for cellular force measurement: a review. J. Micromech. Microeng. 21:054003. 10.1088/0960-1317/21/5/054003 PubMed DOI

Zhong M.-C., Wei X.-B., Zhou J.-H., Wang Z.-Q., Li Y.-M. (2013). Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4:1768. 10.1038/ncomms2786 PubMed DOI

Ziemann F., Rädler J., Sackmann E. (1994). Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys. J. 66 2210–2216. 10.1016/S0006-3495(94)81017-3 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A primer to traction force microscopy

. 2022 May ; 298 (5) : 101867. [epub] 20220326

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace