Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30356887
PubMed Central
PMC6190857
DOI
10.3389/fphys.2018.01417
Knihovny.cz E-zdroje
- Klíčová slova
- in vitro organ models, lab-on-a-chip, mechanical cell actuation, mechanobiology, microfluidics, organ-on-a-chip,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mechanobiology-on-a-chip is a growing field focusing on how mechanical inputs modulate physico-chemical output in microphysiological systems. It is well known that biomechanical cues trigger a variety of molecular events and adjustment of mechanical forces is therefore essential for mimicking in vivo physiologies in organ-on-a-chip technology. Biomechanical inputs in organ-on-a-chip systems can range from variations in extracellular matrix type and stiffness and applied shear stresses to active stretch/strain or compression forces using integrated flexible membranes. The main advantages of these organ-on-a-chip systems are therefore (a) the control over spatiotemporal organization of in vivo-like tissue architectures, (b) the ability to precisely control the amount, duration and intensity of the biomechanical stimuli, and (c) the capability of monitoring in real time the effects of applied mechanical forces on cell, tissue and organ functions. Consequently, over the last decade a variety of microfluidic devices have been introduced to recreate physiological microenvironments that also account for the influence of physical forces on biological functions. In this review we present recent advances in mechanobiological lab-on-a-chip systems and report on lessons learned from these current mechanobiological models. Additionally, future developments needed to engineer next-generation physiological and pathological organ-on-a-chip models are discussed.
Austrian Cluster for Tissue Regeneration Vienna Austria
Competence Center for Mechanobiology Brno Czechia
Department of Biomaterials Science Institute of Dentistry University of Turku Turku Finland
Zobrazit více v PubMed
Ahearne M. (2014). Introduction to cell-hydrogel mechanosensing. PubMed DOI PMC
Altmann B., Löchner A., Swain M., Kohal R. J., Giselbrecht S., Gottwald E., et al. (2014). Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. PubMed DOI
Baker B. M., Chen C. S. (2012). Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. PubMed DOI PMC
Baratchi S., Khoshmanesh K., Woodman O. L., Potocnik S., Peter K., McIntyre P. (2017). Molecular sensors of blood flow in endothelial cells. PubMed DOI
Benam K. H., Villenave R., Lucchesi C., Varone A., Hubeau C., Lee H.-H., et al. (2016). SL Small airway-on-a-chip enables analysis of human lung inflammation and drug responses PubMed DOI
Bhatia S. N., Ingber D. E. (2014). Microfluidic organs-on-chips. PubMed DOI
Brown J. A., Pensabene V., Markov D. A., Allwardt V., Diana Neely M., Shi M., et al. (2015). Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. PubMed DOI PMC
Charwat V., Olmos Calvo I., Rothbauer M., Kratz S. R. A., Jungreuthmayer C., Zanghellini J., et al. (2018). Combinatorial in Vitro and in silico approach to describe shear-force dependent uptake of nanoparticles in microfluidic vascular models. PubMed DOI
Chen C., Mehl B. T., Munshi A. S., Townsend A. D., Spence D. M., Martin R. S. (2016). 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. PubMed DOI PMC
Chen G., Ushida T., Tateishi T. (2002). Scaffold design for tissue engineering.
Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. PubMed DOI
Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. PubMed DOI
Ertl P. (2015). Recent advances of biologically inspired 3D microfluidic hydrogel cell culture systems. DOI
Eyckmans J., Boudou T., Yu X., Chen C. S. (2011). A hitchhiker’s guide to mechanobiology. PubMed DOI PMC
Fennema E., Rivron N., Rouwkema J., van Blitterswijk C., de Boer J. (2013). Spheroid culture as a tool for creating 3D complex tissues. PubMed DOI
García S., Sunyer R., Olivares A., Noailly J., Atencia J., Trepat X. (2015). Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. PubMed DOI
Gizzi A., Giannitelli S. M., Trombetta M., Cherubini C., Filippi S., De Ninno A., et al. (2017). Computationally informed design of a multi-axial actuated microfluidic chip device. PubMed DOI PMC
Griep L. M., Wolbers F., De Wagenaar B., Ter Braak P. M., Weksler B. B., Romero I. A., et al. (2013). BBB on CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. PubMed DOI
Griffith L. G., Swartz M. A. (2006). Capturing complex 3D tissue physiology in vitro. PubMed DOI
Haase K., Kamm R. D. (2017). Advances in on-chip vascularization. PubMed DOI PMC
Hasenberg T., Mühleder S., Dotzler A., Bauer S., Labuda K., Holnthoner W., et al. (2015). Emulating human microcapillaries in a multi-organ-chip platform. PubMed DOI
Hassell B. A., Goyal G., Lee E., Sontheimer-Phelps A., Levy O., Chen C. S., et al. (2017). Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in Vitro. PubMed DOI
Hsu Y.-H., Moya M. L., Hughes C. C. W., George S. C., Lee A. P. (2013). A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. PubMed DOI PMC
Huh D., Hamilton G. A., Ingber D. E. (2011). From 3D cell culture to organs-on-chips. PubMed DOI PMC
Huh D., Leslie D. C., Matthews B. D., Fraser J. P., Jurek S., Hamilton G. A., et al. (2012). A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. PubMed DOI PMC
Huh D., Matthews B. D., Mammoto A., Montoya-Zavala M., Hsin H. Y., Ingber D. E. (2010). Reconstituting organ-level lung functions on a chip. PubMed DOI PMC
Jain A., Barrile R., van der Meer A. D., Mammoto A., Mammoto T., De Ceunynck K., et al. (2018). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. PubMed DOI PMC
Jansen K. A., Donato D. M., Balcioglu H. E., Schmidt T., Danen E. H. J., Koenderink G. H. (2015). A guide to mechanobiology: where biology and physics meet. PubMed DOI
Jeon J. S., Bersini S., Gilardi M., Dubini G., Charest J. L., Moretti M., et al. (2015). Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. PubMed DOI PMC
Jeon J. S., Bersini S., Whisler J. A., Chen M. B., Dubini G., Charest J. L., et al. (2014). Generation of 3D functional microvascular networks with mural cell-differentiated human mesenchymal stem cells in microfluidic vasculogenesis systems. PubMed DOI PMC
Kim H. J., Li H., Collins J. J., Ingber D. E. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PubMed DOI PMC
Kim S., Chung M., Jeon N. L. (2016). Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. PubMed DOI
Kim J., Kang M., Jensen E. C., Mathies R. A. (2012). Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. PubMed DOI PMC
Kim S., Kim W., Lim S., Jeon J. (2017). Vasculature-On-A-Chip for In vitro disease models. PubMed DOI PMC
Kim S., Lee H., Chung M., Jeon N. L. (2013). Engineering of functional, perfusable 3D microvascular networks on a chip. PubMed DOI
Kumar S. (2014). Cellular mechanotransduction: stiffness does matter. PubMed DOI
Lee S.-A., No D. Y., Kang E., Ju J., Kim D.-S., Lee S.-H. (2013). Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic stellate cell interactions and flow effects. PubMed DOI
Li Y., Huang G., Li M., Wang L., Elson E. L., Jian Lu T., et al. (2016). An approach to quantifying 3D responses of cells to extreme strain. PubMed DOI PMC
Liu H., Simmons C. A., Sun Y. (2016). A microfabricated platform with on-chip strain sensing and hydrogel arrays for 3D mechanical stimulation of cells. DOI
Lovett M., Lee K., Edwards A., Kaplan D. L. (2009). Vascularization strategies for tissue engineering. PubMed DOI PMC
Marsano A., Conficconi C., Lemme M., Occhetta P., Gaudiello E., Votta E., et al. (2016). Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. PubMed DOI
Michielin F., Serena E., Pavan P., Elvassore N. (2015). Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. DOI
Middleton K., Al-Dujaili S., Mei X., Günther A., You L. (2017a). Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation. PubMed DOI
Middleton K., Kondiboyina A., Borrett M., Cui Y., Mei X., You L. (2017b). Microfluidics approach to investigate the role of dynamic similitude in osteocyte mechanobiology. PubMed DOI
Occhetta P., Isu G., Lemme M., Conficconi C., Oertle P., Räz C., et al. (2018). A three-dimensional in vitro dynamic micro-tissue model of cardiac scar formation. PubMed DOI
Park J., Lee B. K., Jeong G. S., Hyun J. K., Lee C. J., Lee S.-H. (2015). Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. PubMed DOI
Park S.-H., Sim W. Y., Min B.-H., Yang S. S., Khademhosseini A., Kaplan D. L. (2012). Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PubMed DOI PMC
Patibandla P. K., Rogers A. J., Giridharan G. A., Pallero M. A., Murphy-Ullrich J. E., Sethu P. (2014). Hyperglycemic arterial disturbed flow niche as an in vitro model of atherosclerosis. PubMed DOI
Pavesi A., Adriani G., Rasponi M., Zervantonakis I. K., Fiore G. B., Kamm R. D. (2015). Controlled electromechanical cell stimulation on-a-chip. PubMed DOI PMC
Riehl B. D., Park J.-H., Kwon I. K., Lim J. Y. (2012). Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. PubMed DOI PMC
Rogers C. I., Qaderi K., Woolley A. T., Nordin G. P. (2015). 3D printed microfluidic devices with integrated valves. PubMed DOI PMC
Rothbauer M., Wartmann D., Charwat V., Ertl P. (2015). Recent advances and future applications of microfluidic live-cell microarrays. PubMed DOI
Rothbauer M., Zirath H., Ertl P. (2017). Recent advances in microfluidic technologies for cell-to-cell interaction studies. PubMed DOI
Sellgren K. L., Hawkins B. T., Grego S. (2015). An optically transparent membrane supports shear stress studies in a three- dimensional microfluidic neurovascular unit model An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. PubMed DOI PMC
Shachar M., Benishti N., Cohen S. (2012). Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. PubMed DOI
Smith Q., Gerecht S. (2014). Going with the flow: microfluidic platforms in vascular tissue engineering. PubMed DOI PMC
Soffe R., Baratchi S., Nasabi M., Tang S. Y., Boes A., McIntyre P., et al. (2017). Lateral trapezoid microfluidic platform for investigating mechanotransduction of cells to spatial shear stress gradients. DOI
Sticker D., Lechner S., Jungreuthmayer C., Zanghellini J., Ertl P. (2017). Microfluidic migration and wound healing assay based on mechanically induced injuries of defined and highly reproducible areas. PubMed DOI
Sung J. H., Kam C., Shuler M. L. (2010). A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. PubMed DOI
Ugolini G. S., Pavesi A., Rasponi M., Fiore G. B., Kamm R., Soncini M. (2017). Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. PubMed DOI PMC
Ugolini G. S., Rasponi M., Pavesi A., Santoro R., Kamm R., Fiore G. B., et al. (2016). On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. PubMed DOI
van Duinen V., Trietsch S. J., Joore J., Vulto P., Hankemeier T. (2015). Microfluidic 3D cell culture: from tools to tissue models. PubMed DOI
van Engeland N. C. A., Pollet A. M. A. O., den Toonder J. M. J., Bouten C. V. C., Stassen O. M. J. A., Sahlgren C. M. (2018). A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. PubMed DOI PMC
Venugopal Menon N., Tay H. M., Pang K. T., Dalan R., Wong S. C., Wang X., et al. (2018). A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. PubMed DOI PMC
Villenave R., Wales S. Q., Hamkins-Indik T., Papafragkou E., Weaver J. C., Ferrante T. C., et al. (2017). Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PubMed DOI PMC
Wang J. H.-C., Thampatty B. P. (2006). An introductory review of cell mechanobiology. PubMed DOI
Wang X., Lee J., Ali M., Kim J., Lacerda C. M. R. (2017). Phenotype transformation of aortic valve interstitial cells due to applied shear stresses within a microfluidic chip. PubMed DOI
Wang Y., Wang L., Guo Y., Zhu Y., Qin J. (2018). Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. PubMed DOI PMC
Zheng C., Zhang X., Li C., Pang Y., Huang Y. (2017). Microfluidic device for studying controllable hydrodynamic flow induced cellular responses. PubMed DOI
Zhou J., Niklason L. E. (2012). Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cells. PubMed DOI PMC
A primer to traction force microscopy