Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30356887
PubMed Central
PMC6190857
DOI
10.3389/fphys.2018.01417
Knihovny.cz E-zdroje
- Klíčová slova
- in vitro organ models, lab-on-a-chip, mechanical cell actuation, mechanobiology, microfluidics, organ-on-a-chip,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mechanobiology-on-a-chip is a growing field focusing on how mechanical inputs modulate physico-chemical output in microphysiological systems. It is well known that biomechanical cues trigger a variety of molecular events and adjustment of mechanical forces is therefore essential for mimicking in vivo physiologies in organ-on-a-chip technology. Biomechanical inputs in organ-on-a-chip systems can range from variations in extracellular matrix type and stiffness and applied shear stresses to active stretch/strain or compression forces using integrated flexible membranes. The main advantages of these organ-on-a-chip systems are therefore (a) the control over spatiotemporal organization of in vivo-like tissue architectures, (b) the ability to precisely control the amount, duration and intensity of the biomechanical stimuli, and (c) the capability of monitoring in real time the effects of applied mechanical forces on cell, tissue and organ functions. Consequently, over the last decade a variety of microfluidic devices have been introduced to recreate physiological microenvironments that also account for the influence of physical forces on biological functions. In this review we present recent advances in mechanobiological lab-on-a-chip systems and report on lessons learned from these current mechanobiological models. Additionally, future developments needed to engineer next-generation physiological and pathological organ-on-a-chip models are discussed.
Austrian Cluster for Tissue Regeneration Vienna Austria
Competence Center for Mechanobiology Brno Czechia
Department of Biomaterials Science Institute of Dentistry University of Turku Turku Finland
Zobrazit více v PubMed
Ahearne M. (2014). Introduction to cell-hydrogel mechanosensing. Interface Focus 4:20130038. 10.1098/rsfs.2013.0038 PubMed DOI PMC
Altmann B., Löchner A., Swain M., Kohal R. J., Giselbrecht S., Gottwald E., et al. (2014). Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. Biomaterials 35 3208–3219. 10.1016/j.biomaterials.2013.12.088 PubMed DOI
Baker B. M., Chen C. S. (2012). Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125 3015–3024. 10.1242/jcs.079509 PubMed DOI PMC
Baratchi S., Khoshmanesh K., Woodman O. L., Potocnik S., Peter K., McIntyre P. (2017). Molecular sensors of blood flow in endothelial cells. Trends Mol. Med. 23 850–868. 10.1016/j.molmed.2017.07.007 PubMed DOI
Benam K. H., Villenave R., Lucchesi C., Varone A., Hubeau C., Lee H.-H., et al. (2016). SL Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13 151–157. 10.1038/nmeth.3697 PubMed DOI
Bhatia S. N., Ingber D. E. (2014). Microfluidic organs-on-chips. Nat. Biotechnol. 32 760–772. 10.1038/nbt.2989 PubMed DOI
Brown J. A., Pensabene V., Markov D. A., Allwardt V., Diana Neely M., Shi M., et al. (2015). Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9:054124. 10.1063/1.4934713 PubMed DOI PMC
Charwat V., Olmos Calvo I., Rothbauer M., Kratz S. R. A., Jungreuthmayer C., Zanghellini J., et al. (2018). Combinatorial in Vitro and in silico approach to describe shear-force dependent uptake of nanoparticles in microfluidic vascular models. Anal. Chem. 90 3651–3655. 10.1021/acs.analchem.7b04788 PubMed DOI
Chen C., Mehl B. T., Munshi A. S., Townsend A. D., Spence D. M., Martin R. S. (2016). 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. Anal. Methods 8 6005–6012. 10.1039/C6AY01671E PubMed DOI PMC
Chen G., Ushida T., Tateishi T. (2002). Scaffold design for tissue engineering. Macromol. Biosci. 2 67–77.
Drury J. L., Mooney D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24 4337–4351. 10.1016/S0142-9612(03)00340-5 PubMed DOI
Engler A. J., Sen S., Sweeney H. L., Discher D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126 677–689. 10.1016/j.cell.2006.06.044 PubMed DOI
Ertl P. (2015). Recent advances of biologically inspired 3D microfluidic hydrogel cell culture systems. Cell Biol. Cell Metab. 2:005 10.24966/CBCM-1943/100005 DOI
Eyckmans J., Boudou T., Yu X., Chen C. S. (2011). A hitchhiker’s guide to mechanobiology. Dev. Cell 21 35–47. 10.1016/j.devcel.2011.06.015 PubMed DOI PMC
Fennema E., Rivron N., Rouwkema J., van Blitterswijk C., de Boer J. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31 108–115. 10.1016/j.tibtech.2012.12.003 PubMed DOI
García S., Sunyer R., Olivares A., Noailly J., Atencia J., Trepat X. (2015). Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 15:12. 10.1039/C5LC00140D PubMed DOI
Gizzi A., Giannitelli S. M., Trombetta M., Cherubini C., Filippi S., De Ninno A., et al. (2017). Computationally informed design of a multi-axial actuated microfluidic chip device. Sci. Rep. 7:5489. 10.1038/s41598-017-05237-9 PubMed DOI PMC
Griep L. M., Wolbers F., De Wagenaar B., Ter Braak P. M., Weksler B. B., Romero I. A., et al. (2013). BBB on CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed. Microdev. 15 145–150. 10.1007/s10544-012-9699-7 PubMed DOI
Griffith L. G., Swartz M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7 211–224. 10.1038/nrm1858 PubMed DOI
Haase K., Kamm R. D. (2017). Advances in on-chip vascularization. Regen. Med. 12 285–302. 10.2217/rme-2016-0152 PubMed DOI PMC
Hasenberg T., Mühleder S., Dotzler A., Bauer S., Labuda K., Holnthoner W., et al. (2015). Emulating human microcapillaries in a multi-organ-chip platform. J. Biotechnol. 216 1–10. 10.1016/j.jbiotec.2015.09.038 PubMed DOI
Hassell B. A., Goyal G., Lee E., Sontheimer-Phelps A., Levy O., Chen C. S., et al. (2017). Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in Vitro. Cell Rep. 21 508–516. 10.1016/j.celrep.2017.09.043 PubMed DOI
Hsu Y.-H., Moya M. L., Hughes C. C. W., George S. C., Lee A. P. (2013). A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13 2990–2998. 10.1039/c3lc50424g PubMed DOI PMC
Huh D., Hamilton G. A., Ingber D. E. (2011). From 3D cell culture to organs-on-chips. Trends Cell Biol. 21 745–754. 10.1016/j.tcb.2011.09.005 PubMed DOI PMC
Huh D., Leslie D. C., Matthews B. D., Fraser J. P., Jurek S., Hamilton G. A., et al. (2012). A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4:159ra147. 10.1126/scitranslmed.3004249 PubMed DOI PMC
Huh D., Matthews B. D., Mammoto A., Montoya-Zavala M., Hsin H. Y., Ingber D. E. (2010). Reconstituting organ-level lung functions on a chip. Science 328 1662–1668. 10.1126/science.1188302 PubMed DOI PMC
Jain A., Barrile R., van der Meer A. D., Mammoto A., Mammoto T., De Ceunynck K., et al. (2018). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin. Pharmacol. Ther. 103 332–340. 10.1002/cpt.742 PubMed DOI PMC
Jansen K. A., Donato D. M., Balcioglu H. E., Schmidt T., Danen E. H. J., Koenderink G. H. (2015). A guide to mechanobiology: where biology and physics meet. Biochim. Biophys. Acta Mol. Cell Res. 1853 3043–3052. 10.1016/j.bbamcr.2015.05.007 PubMed DOI
Jeon J. S., Bersini S., Gilardi M., Dubini G., Charest J. L., Moretti M., et al. (2015). Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. U.S.A. 112 214–219. 10.1073/pnas.1417115112 PubMed DOI PMC
Jeon J. S., Bersini S., Whisler J. A., Chen M. B., Dubini G., Charest J. L., et al. (2014). Generation of 3D functional microvascular networks with mural cell-differentiated human mesenchymal stem cells in microfluidic vasculogenesis systems. Integr. Biol. 6 555–563. 10.1039/c3ib40267c PubMed DOI PMC
Kim H. J., Li H., Collins J. J., Ingber D. E. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. U.S.A. 113 E7–E15. 10.1073/pnas.1522193112 PubMed DOI PMC
Kim S., Chung M., Jeon N. L. (2016). Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials 78 115–128. 10.1016/j.biomaterials.2015.11.019 PubMed DOI
Kim J., Kang M., Jensen E. C., Mathies R. A. (2012). Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. Anal. Chem. 84 2067–2071. 10.1021/ac202934x PubMed DOI PMC
Kim S., Kim W., Lim S., Jeon J. (2017). Vasculature-On-A-Chip for In vitro disease models. Bioengineering 4:E8. 10.3390/bioengineering4010008 PubMed DOI PMC
Kim S., Lee H., Chung M., Jeon N. L. (2013). Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489. 10.1039/c3lc41320a PubMed DOI
Kumar S. (2014). Cellular mechanotransduction: stiffness does matter. Nat. Mater. 13 918–920. 10.1038/nmat4094 PubMed DOI
Lee S.-A., No D. Y., Kang E., Ju J., Kim D.-S., Lee S.-H. (2013). Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte–hepatic stellate cell interactions and flow effects. Lab Chip 13:3529. 10.1039/c3lc50197c PubMed DOI
Li Y., Huang G., Li M., Wang L., Elson E. L., Jian Lu T., et al. (2016). An approach to quantifying 3D responses of cells to extreme strain. Sci. Rep. 6:19550. 10.1038/srep19550 PubMed DOI PMC
Liu H., Simmons C. A., Sun Y. (2016). A microfabricated platform with on-chip strain sensing and hydrogel arrays for 3D mechanical stimulation of cells. Proc. IEEE Int. Conf. Micro Electro Mech. Syst. 4 267–270. 10.1109/MEMSYS.2016.7421611 PubMed DOI
Lovett M., Lee K., Edwards A., Kaplan D. L. (2009). Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15 353–370. 10.1089/ten.teb.2009.0085 PubMed DOI PMC
Marsano A., Conficconi C., Lemme M., Occhetta P., Gaudiello E., Votta E., et al. (2016). Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16 599–610. 10.1039/C5LC01356A PubMed DOI
Michielin F., Serena E., Pavan P., Elvassore N. (2015). Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Adv. 5 98429–98439. 10.1039/C5RA16957G DOI
Middleton K., Al-Dujaili S., Mei X., Günther A., You L. (2017a). Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation. J. Biomech. 59 35–42. 10.1016/j.jbiomech.2017.05.012 PubMed DOI
Middleton K., Kondiboyina A., Borrett M., Cui Y., Mei X., You L. (2017b). Microfluidics approach to investigate the role of dynamic similitude in osteocyte mechanobiology. J. Orthop. Res. 36 663–671. 10.1002/jor.23773 PubMed DOI
Occhetta P., Isu G., Lemme M., Conficconi C., Oertle P., Räz C., et al. (2018). A three-dimensional in vitro dynamic micro-tissue model of cardiac scar formation. Integr. Biol. 10 174–183. 10.1039/C7IB00199A PubMed DOI
Park J., Lee B. K., Jeong G. S., Hyun J. K., Lee C. J., Lee S.-H. (2015). Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15 141–150. 10.1039/C4LC00962B PubMed DOI
Park S.-H., Sim W. Y., Min B.-H., Yang S. S., Khademhosseini A., Kaplan D. L. (2012). Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS One 7:e46689. 10.1371/journal.pone.0046689 PubMed DOI PMC
Patibandla P. K., Rogers A. J., Giridharan G. A., Pallero M. A., Murphy-Ullrich J. E., Sethu P. (2014). Hyperglycemic arterial disturbed flow niche as an in vitro model of atherosclerosis. Anal. Chem. 86 10948–10954. 10.1021/ac503294p PubMed DOI
Pavesi A., Adriani G., Rasponi M., Zervantonakis I. K., Fiore G. B., Kamm R. D. (2015). Controlled electromechanical cell stimulation on-a-chip. Sci. Rep. 5:11800. 10.1038/srep11800 PubMed DOI PMC
Riehl B. D., Park J.-H., Kwon I. K., Lim J. Y. (2012). Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng. Part B Rev. 18 288–300. 10.1089/ten.teb.2011.0465 PubMed DOI PMC
Rogers C. I., Qaderi K., Woolley A. T., Nordin G. P. (2015). 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9:16501. 10.1063/1.4905840 PubMed DOI PMC
Rothbauer M., Wartmann D., Charwat V., Ertl P. (2015). Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol. Adv. 33(Pt 1), 948–961. 10.1016/j.biotechadv.2015.06.006 PubMed DOI
Rothbauer M., Zirath H., Ertl P. (2017). Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 10:1. 10.1039/C7LC00815E PubMed DOI
Sellgren K. L., Hawkins B. T., Grego S. (2015). An optically transparent membrane supports shear stress studies in a three- dimensional microfluidic neurovascular unit model An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model. Biomicrofluidics 9:061102. 10.1063/1.4935594 PubMed DOI PMC
Shachar M., Benishti N., Cohen S. (2012). Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. Biotechnol. Prog. 28 1551–1559. 10.1002/btpr.1633 PubMed DOI
Smith Q., Gerecht S. (2014). Going with the flow: microfluidic platforms in vascular tissue engineering. Curr. Opin. Chem. Eng. 3 42–50. 10.1016/j.coche.2013.11.001 PubMed DOI PMC
Soffe R., Baratchi S., Nasabi M., Tang S. Y., Boes A., McIntyre P., et al. (2017). Lateral trapezoid microfluidic platform for investigating mechanotransduction of cells to spatial shear stress gradients. Sensors Actuat. B Chem. 251 963–975. 10.1016/j.snb.2017.05.145 DOI
Sticker D., Lechner S., Jungreuthmayer C., Zanghellini J., Ertl P. (2017). Microfluidic migration and wound healing assay based on mechanically induced injuries of defined and highly reproducible areas. Anal. Chem. 89 2326–2333. 10.1021/acs.analchem.6b03886 PubMed DOI
Sung J. H., Kam C., Shuler M. L. (2010). A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10 446–455. 10.1039/B917763A PubMed DOI
Ugolini G. S., Pavesi A., Rasponi M., Fiore G. B., Kamm R., Soncini M. (2017). Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. eLife 6:e22847. 10.7554/eLife.22847 PubMed DOI PMC
Ugolini G. S., Rasponi M., Pavesi A., Santoro R., Kamm R., Fiore G. B., et al. (2016). On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnol. Bioeng. 113 859–869. 10.1002/bit.25847 PubMed DOI
van Duinen V., Trietsch S. J., Joore J., Vulto P., Hankemeier T. (2015). Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35 118–126. 10.1016/j.copbio.2015.05.002 PubMed DOI
van Engeland N. C. A., Pollet A. M. A. O., den Toonder J. M. J., Bouten C. V. C., Stassen O. M. J. A., Sahlgren C. M. (2018). A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip 18 1607–1620. 10.1039/c8lc00286j PubMed DOI PMC
Venugopal Menon N., Tay H. M., Pang K. T., Dalan R., Wong S. C., Wang X., et al. (2018). A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioeng. 2:16103 10.1063/1.4993762 PubMed DOI PMC
Villenave R., Wales S. Q., Hamkins-Indik T., Papafragkou E., Weaver J. C., Ferrante T. C., et al. (2017). Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS One 12:e0169412. 10.1371/journal.pone.0169412 PubMed DOI PMC
Wang J. H.-C., Thampatty B. P. (2006). An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5 1–16. 10.1007/s10237-005-0012-z PubMed DOI
Wang X., Lee J., Ali M., Kim J., Lacerda C. M. R. (2017). Phenotype transformation of aortic valve interstitial cells due to applied shear stresses within a microfluidic chip. Ann. Biomed. Eng. 45 2269–2280. 10.1007/s10439-017-1871-z PubMed DOI
Wang Y., Wang L., Guo Y., Zhu Y., Qin J. (2018). Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv. 8 1677–1685. 10.1039/C7RA11714K PubMed DOI PMC
Zheng C., Zhang X., Li C., Pang Y., Huang Y. (2017). Microfluidic device for studying controllable hydrodynamic flow induced cellular responses. Anal. Chem. 89 3710–3715. 10.1021/acs.analchem.7b00013 PubMed DOI
Zhou J., Niklason L. E. (2012). Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cells. Integr. Biol. 4 1487–1497. 10.1039/c2ib00171c PubMed DOI PMC
A primer to traction force microscopy