Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis

. 2024 Nov ; 273 () : 58-77. [epub] 20240716

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39025226
Odkazy

PubMed 39025226
PubMed Central PMC11832458
DOI 10.1016/j.trsl.2024.07.003
PII: S1931-5244(24)00144-0
Knihovny.cz E-zdroje

Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.

Zobrazit více v PubMed

Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. PubMed PMC

Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circ Res. 2020;127(3):427–447. PubMed PMC

Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research. 2016 https://f1000research.com/articles/5-752 [cited 2023 Oct 31]. Available from: PubMed PMC

Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C. α-Smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell. 2003;14(6):2508–2519. Jun. PubMed PMC

Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–1323. PubMed PMC

Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J Cell Biol. 2006;172(2):259–268. PubMed PMC

Lockhart M, Wirrig E, Phelps A, Wessels A. Extracellular matrix and heart development. Birt Defects Res A Clin Mol Teratol. 2011;91(6):535–550. PubMed PMC

Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing my heart: the role of extracellular matrix on cardiac development, homeostasis, and injury response. Front Cell Dev Biol. 2021;8 PubMed PMC

Myocardial Extracellular Matrix | Circulation Research. [cited 2023 Oct 31]. Available from: https://www.ahajournals.org/doi/10.1161/circresaha.114.302533. DOI

Mauretti A, Spaans S, Bax NAM, Sahlgren C, Bouten CVC. Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells Int. 2017;2017 PubMed PMC

Piek A, de Boer RA, Silljé HHW. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016;21(2):199–211. PubMed PMC

Sultana N, Zhang L, Yan J, et al. Resident c-kit+ cells in the heart are not cardiac stem cells. Nat Commun. 2015;6(1):8701. PubMed PMC

Nagata Y, Bertrand PB, Baliyan V, et al. Abnormal mechanics relate to myocardial fibrosis and ventricular arrhythmias in patients with mitral valve prolapse. Circ Cardiovasc Imaging. 2023;16(4) PubMed PMC

Morfino P, Aimo A, Castiglione V, Gálvez-Montón C, Emdin M, Bayes-Genis A. Treatment of cardiac fibrosis: from neuro-hormonal inhibitors to CAR-T cell therapy. Heart Fail Rev. 2023;28(2):555–569. PubMed PMC

Raziyeva K, Kim Y, Zharkinbekov Z, Temirkhanova K, Saparov A. Novel therapies for the treatment of cardiac fibrosis following myocardial infarction. Biomedicines. 2022;10(9):2178. PubMed PMC

Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(12):1388–1393. PubMed

Parichatikanond W, Luangmonkong T, Mangmool S, Kurose H. Therapeutic targets for the treatment of cardiac fibrosis and cancer: focusing on TGF-β signaling. Front Cardiovasc Med. 2020 https://www.frontiersin.org/articles/10.3389/fcvm.2020.00034 [cited 2023 Oct 31];7. Available from: PubMed DOI PMC

Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. PubMed PMC

Kouzbari K, Hossan MR, Arrizabalaga JH, et al. Oscillatory shear potentiates latent TGF-β1 activation more than steady shear as demonstrated by a novel force generator. Sci Rep. 2019;9(1):6065. PubMed PMC

Zhao H, Li X, Zhao S, et al. Microengineered in vitro model of cardiac fibrosis through modulating myofibroblast mechanotransduction. Biofabrication. 2014;6(4) PubMed

Mainardi A, Carminati F, Ugolini GS, et al. A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts. Lab Chip. 2021;21(21):4177–4195. PubMed PMC

Visone R, Paoletti C, Cordiale A, et al. In vitro mechanical stimulation to reproduce the pathological hallmarks of human cardiac fibrosis on a beating chip and predict the efficacy of drugs and advanced therapies. Adv Healthc Mater. n/a(n/a):2301481. PubMed PMC

Iseoka H, Miyagawa S, Sakai Y, Sawa Y. Cardiac fibrosis models using human induced pluripotent stem cell-derived cardiac tissues allow anti-fibrotic drug screening in vitro. Stem Cell Res. 2021;54 PubMed

Campostrini G, Meraviglia V, Giacomelli E, et al. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat Protoc. 2021;16(4):2213–2256. PubMed PMC

Zhang J, Tao R, Campbell KF, et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nat Commun. 2019;10(1):2238. PubMed PMC

Lian X, Zhang J, Azarin SM, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–175. PubMed PMC

Cao X, Yakala GK, van den Hil FE, Cochrane A, Mummery CL, Orlova VV. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives. Stem Cell Rep. 2019;12(6):1282–1297. PubMed PMC

Differentiation and characterization of human iPSC-derived vascular endothelial cells under physiological shear stress. [cited 2023 Oct 31]. Available from: https://star-protocols.cell.com/protocols/528. PubMed PMC

Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate - Jimenez-Vazquez - 2022 - Current Protocols - Wiley Online Library. [cited 2023 Oct 31]. Available from: https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cpz1.601. PubMed DOI PMC

Konstandin MH, Toko H, Gastelum GM, et al. Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circ Res. 2013;113(2):115–125. PubMed PMC

Zhang J, Gregorich ZR, Tao R, et al. Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. eLife. 11:e69028. PubMed PMC

Martino F, Varadarajan NM, Perestrelo AR, et al. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci Transl Med. 2022;14(672):eabo5715. PubMed

Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–3683. PubMed

Tan YH, Helms HR, Nakayama KH. Decellularization strategies for regenerating cardiac and skeletal muscle tissues. Front Bioeng Biotechnol. 2022;10 PubMed PMC

Kitahara H, Yagi H, Tajima K, et al. Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact Cardiovasc Thorac Surg. 2016;22(5):571–579. May. PubMed PMC

Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018;19(12):4117. PubMed PMC

Giobbe GG, Crowley C, Luni C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 2019;10(1):5658. PubMed PMC

Perestrelo AR, Silva AC, Oliver-De La Cruz J, et al. Multiscale analysis of extracellular matrix remodeling in the failing heart. Circ Res. 2021;128(1):24–38. PubMed

Shi X, Young CD, Zhou H, Wang X. Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules. 2020;10(12):1666. PubMed PMC

Dolivo DM, Larson SA, Dominko T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 2017;38:49–58. PubMed PMC

Bordignon P, Bottoni G, Xu X, et al. Dualism of FGF and TGF-β signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant. Cell Rep. 2019;28(9):2358–2372. e6. PubMed PMC

Farini A, Gowran A, Bella P, et al. Fibrosis rescue improves cardiac function in dystrophin-deficient mice and duchenne patient-specific cardiomyocytes by immunoproteasome modulation. Am J Pathol. 2019;189(2):339–353. PubMed

Gurung S, Werkmeister JA, Gargett CE. Inhibition of transforming growth factor-β receptor signaling promotes culture expansion of undifferentiated human endometrial mesenchymal stem/stromal cells. Sci Rep. 2015;5:15042. PubMed PMC

Luo L, Zhang Y, Chen H, et al. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif. 2020;54(2):e12969. PubMed PMC

Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinf. 2021;22(1):433. PubMed PMC

D Clemons T, Bradshaw M, Toshniwal P, et al. Coherency image analysis to quantify collagen architecture: implications in scar assessment. RSC Adv. 2018;8(18):9661–9669. PubMed PMC

Tamiello C, Bouten CVC, Baaijens FPT. Competition between cap and basal actin fiber orientation in cells subjected to contact guidance and cyclic strain. Sci Rep. 2015;5(1):8752. PubMed PMC

Horzum U, Ozdil B, Pesen-Okvur D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 2014;1:56–59. PubMed PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. PubMed PMC

Dao D, Fraser AN, Hung J, Ljosa V, Singh S, Carpenter AE. CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinforma Oxf Engl. 2016;32(20):3210–3212. PubMed PMC

Stein JM, Arslan U, Franken M, et al. Software tool for automatic quantification of sarcomere length and organization in fixed and live 2D and 3D muscle cell cultures in vitro. Curr Protoc. 2022;2(7):e462. PubMed

Wiśniewski JR. Quantitative Evaluation of Filter Aided Sample Preparation (FASP) and multienzyme digestion FASP protocols. Anal Chem. 2016;88(10):5438–5443. PubMed

Kolde R. 2019. pheatmap: Pretty Heatmaps. R Package Version 1.0. 12.

Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50(D1):D543–D552. PubMed PMC

Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11(8):1061–1072. PubMed

A Murine Model of Holt-Oram Syndrome Defines Roles of the T-Box Transcription Factor Tbx5 in Cardiogenesis and Disease: Cell. [cited 2023 Nov 1]. Available from: https://www.cell.com/fulltext/S0092-8674(01)00493-7. PubMed

Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9(13):1654–1666. PubMed

Defining the Cardiac Fibroblast. [cited 2023 Nov 1]. Available from: https://www.jstage.jst.go.jp/article/circj/80/11/80_CJ-16-1003/_article/-char/en.

Alt E, Yan Y, Gehmert S, et al. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell. 2011;103(4):197–208. Apr. PubMed

Pesce M, Duda GN, Forte G, et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol. 2023;20(5):309–324. PubMed

Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction. Circ Res. 2016;119(1):91–112. PubMed PMC

Gilles G, McCulloch AD, Brakebusch CH, Herum KM. Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction. PLoS One. 2020;15(10) PubMed PMC

Moita MR, Silva MM, Diniz C, et al. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med. 2022 https://www.frontiersin.org/articles/10.3389/fcvm.2022.1015473 [cited 2023 Dec 27];9. Available from: PubMed DOI PMC

Tillmanns J, Hoffmann D, Habbaba Y, et al. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol. 2015;87:194–203. PubMed

Saadat S, Noureddini M, Mahjoubin-Tehran M, et al. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players. Front Cardiovasc Med. 2021;7 PubMed PMC

Serini G, Bochaton-Piallat ML, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 1998;142(3):873–881. PubMed PMC

Klingberg F, Chau G, Walraven M, et al. The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J Cell Sci. 2018;131(5) PubMed PMC

White ES, Muro AF. Fibronectin splice variants: understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life. 2011;63(7):538–546. Jul. PubMed

Felisbino MB, Rubino M, Travers JG, et al. Substrate stiffness modulates cardiac fibroblast activation, senescence, and proinflammatory secretory phenotype. Am J Physiol-Heart Circ Physiol. 2024;326(1):H61–H73. PubMed PMC

Chen PY, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6(1):33407. PubMed PMC

Wu Y, Tran T, Dwabe S, et al. A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat. 2017;163(3):449–460. PubMed PMC

Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 127(10):3770–83. PubMed PMC

Origin of Cardiac Fibroblasts and the Role of Periostin | Circulation Research. [cited 2023 Nov 1]. Available from: https://www.ahajournals.org/doi/10.1161/circresaha.109.201400. PubMed DOI PMC

Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal. 2009;3(3–4):337–347. Dec. PubMed PMC

Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The charming world of the extracellular matrix: a dynamic and protective network of the intestinal wall. Front Med. 2021;8 https://www.frontiersin.org/articles/10.3389/fmed.2021.610189 [cited 2023 Nov 1]Available from: PubMed DOI PMC

Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest. 2001;107(9):1049–1054. PubMed PMC

Wang K, Meng X, Guo Z. Elastin structure, synthesis, regulatory mechanism and relationship with cardiovascular diseases. Front Cell Dev Biol. 2021;9 https://www.frontiersin.org/articles/10.3389/fcell.2021.596702 [cited 2023 Nov 15]Available from: PubMed DOI PMC

Foronjy RF, Sun J, Lemaitre V, D'armiento JM. Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens Res. 2008;31(4):725–735. PubMed

Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: from tension to function. Front Physiol. 2018;9 https://www.frontiersin.org/articles/10.3389/fphys.2018.00824 [cited 2023 Nov 1]Available from: PubMed DOI PMC

Jaglinski T, Kochmann D, Stone D, Lakes RS. Composite materials with viscoelastic stiffness greater than diamond. Science. 2007;315(5812):620–622. PubMed

Bhana B, Iyer RK, Chen WLK, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010;105(6):1148–1160. PubMed

Forte G, Pagliari S, Ebara M, et al. Substrate stiffness modulates gene expression and phenotype in neonatal cardiomyocytes in vitro. Tissue Eng Part A. 2012;18(17–18):1837–1848. Sep. PubMed

Engler AJ, Carag-Krieger C, Johnson CP, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121(Pt 22):3794–3802. PubMed PMC

Ribeiro AJS, Ang YS, Fu JD, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci USA. 2015;112(41):12705–12710. PubMed PMC

Ergir E, Oliver-De La Cruz J, Fernandes S, et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep. 2022;12(1):17409. PubMed PMC

Mosqueira D, Pagliari S, Uto K, et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano. 2014;8(3):2033–2047. PubMed

Bourajjaj M, Armand AS, Da Costa Martins PA, et al. NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem. 2008;283(32):22295–22303. PubMed

Pu WT, Ma Q, Izumo S. NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Circ Res. 2003;92(7):725–731. PubMed

Bui TA, Stafford N, Oceandy D. Genetic and pharmacological YAP activation induces proliferation and improves survival in human induced pluripotent stem cell-derived cardiomyocytes. Cells. 2023;12(17):2121. PubMed PMC

Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors Is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy | Circulation. [cited 2023 Dec 28]. Available from: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.117.031788. PubMed DOI PMC

Galie P, Khalid N, Carnahan K, Westfall M, Stegemann J. Substrate stiffness affects sarcomere and costamere structure and electrophysiological function of isolated adult cardiomyocytes. Cardiovasc Pathol. 2012;22 PubMed PMC

Rodriguez AG, Han SJ, Regnier M, Sniadecki NJ. Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J. 2011;101(10):2455–2464. PubMed PMC

Notari M, Ventura-Rubio A, Bedford-Guaus S, et al. The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci Adv. 2018;4:eaao5553. PubMed PMC

Wang X, Senapati S, Akinbote A, Gnanasambandam B, Park PSH, Senyo SE. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomater. 2020;113:380–392. PubMed PMC

Runte KE, Bell SP, Selby DE, et al. Relaxation and the role of calcium in isolated contracting myocardium from patients with hypertensive heart disease and heart failure with preserved ejection fraction. Circ Heart Fail. 2017;10(8) PubMed PMC

Hinderer S, Schenke-Layland K. Cardiac fibrosis – A short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:77–82. PubMed

Funakoshi S, Yoshida Y. Recent progress of iPSC technology in cardiac diseases. Arch Toxicol. 2021;95(12):3633–3650. PubMed PMC

The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells - PubMed. [cited 2023 Nov 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/33114386/. PubMed PMC

Oberwallner B, Brodarac A, Choi YH, et al. Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A. 2014;102(9):3263–3272. PubMed

Baharvand H, Azarnia M, Parivar K, Ashtiani SK. The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2005;38(3):495–503. Mar. PubMed

Kramer LA, Greek R. Human stakeholders and the use of animals in drug development. Bus Soc Rev. 2018;123(1):3–58.

Rother J, Richter C, Turco L, et al. Crosstalk of cardiomyocytes and fibroblasts in co-cultures. Open Biol. 2015;5(6) PubMed PMC

Denu RA, Nemcek S, Bloom DD, et al. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 2016;136(2):85–97. PubMed PMC

Ivey MJ, Tallquist MD. Defining the cardiac fibroblast. Circ J Off J Jpn Circ Soc. 2016;80(11):2269–2276. PubMed PMC

Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 2005;65(1):40–51. PubMed

Stellato M, Czepiel M, Distler O, Błyszczuk P, Kania G. Identification and isolation of cardiac fibroblasts from the adult mouse heart using two-color flow cytometry. Front Cardiovasc Med. 2019;6 https://www.frontiersin.org/articles/10.3389/fcvm.2019.00105 [cited 2023 Nov 1]Available from: PubMed DOI PMC

Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta BBA. 2017;1863(1):298–309. PubMed PMC

D'Urso M, Kurniawan NA. Mechanical and physical regulation of fibroblast–myofibroblast transition: from cellular mechanoresponse to tissue pathology. Front Bioeng Biotechnol. 2020;8 https://www.frontiersin.org/articles/10.3389/fbioe.2020.609653 [cited 2023 Nov 1]Available from: PubMed DOI PMC

Schroer AK, Merryman WD. Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. J Cell Sci. 2015;128(10):1865–1875. PubMed PMC

Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng. 2022;13 PubMed PMC

Tsuda T. Extracellular interactions between fibulins and Transforming Growth Factor (TGF)-β in physiological and pathological conditions. Int J Mol Sci. 2018;19(9):2787. PubMed PMC

Tropoelastin Improves Post-Infarct Cardiac Function | Circulation Research. [cited 2023 Nov 2]. Available from: https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.122.321123. PubMed DOI PMC

Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol. 2006;290(6):H2196–H2203. PubMed

Wang Z, Golob MJ, Chesler NC, Wang Z, Golob MJ, Chesler NC. Viscoelastic and viscoplastic materials. IntechOpen; 2016. Viscoelastic properties of cardiovascular tissues.https://www.intechopen.com/chapters/51650 [cited 2024 Jan 21]. Available from:

Nordsletten D, Capilnasiu A, Zhang W, et al. A viscoelastic model for human myocardium. Acta Biomater. 2021;135:441–457. PubMed

Hong Y, Zhao Y, Li H, et al. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol. 2023;11 https://www.frontiersin.org/articles/10.3389/fbioe.2023.1155052 [cited 2024 Jun 1]Available from: PubMed DOI PMC

Pioner JM, Santini L, Palandri C, et al. Calcium handling maturation and adaptation to increased substrate stiffness in human iPSC-derived cardiomyocytes: The impact of full-length dystrophin deficiency. Front Physiol. 2022;13 https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.1030920/full [cited 2024 Jun 1]Available from: PubMed DOI PMC

Pandey P, Hawkes W, Hu J, et al. Cardiomyocytes sense matrix rigidity through a combination of muscle and non-muscle myosin contractions. Dev Cell. 2018;44(3):326–336. e3. PubMed PMC

Moreo A, Ambrosio G, De Chiara B, et al. Influence of myocardial fibrosis on left ventricular diastolic function. Circ Cardiovasc Imaging. 2009;2(6):437–443. Nov. PubMed PMC

Diastolic dysfunction is associated with cardiac fibrosis in the senescence-accelerated mouse | American Journal of Physiology-Heart and Circulatory Physiology. [cited 2024 Jan 21]. Available from: https://journals.physiology.org/doi/full/10.1152/ajpheart.00407.2010. PubMed DOI PMC

Xie Z, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1(3):e90. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...