Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30174612
PubMed Central
PMC6107778
DOI
10.3389/fphys.2018.01121
Knihovny.cz E-zdroje
- Klíčová slova
- BEEC, Hippo pathway, atomic force microscopy, cell biomechanics, force mapping, mechanical modeling, mechanotransduction, stiffness tomography,
- Publikační typ
- časopisecké články MeSH
The cell biomechanical properties play a key role in the determination of the changes during the essential cellular functions, such as contraction, growth, and migration. Recent advances in nano-technologies have enabled the development of new experimental and modeling approaches to study cell biomechanics, with a level of insights and reliability that were not possible in the past. The use of atomic force microscopy (AFM) for force spectroscopy allows nanoscale mapping of the cell topography and mechanical properties under, nearly physiological conditions. A proper evaluation process of such data is an essential factor to obtain accurate values of the cell elastic properties (primarily Young's modulus). Several numerical models were published in the literature, describing the depth sensing indentation as interaction process between the elastic surface and indenting probe. However, many studies are still relying on the nowadays outdated Hertzian model from the nineteenth century, or its modification by Sneddon. The lack of comparison between the Hertz/Sneddon model with their modern modifications blocks the development of advanced analysis software and further progress of AFM promising technology into biological sciences. In this work, we applied a rationalized use of mechanical models for advanced postprocessing and interpretation of AFM data. We investigated the effect of the mechanical model choice on the final evaluation of cellular elasticity. We then selected samples subjected to different physicochemical modulators, to show how a critical use of AFM data handling can provide more information than simple elastic modulus estimation. Our contribution is intended as a methodological discussion of the limitations and benefits of AFM-based advanced mechanical analysis, to refine the quantification of cellular elastic properties and its correlation to undergoing cellular processes in vitro.
Central European Institute of Technology of Masaryk University Nanobiotechnology Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Biomaterials Science Institute of Dentistry University of Turku Turku Finland
Zobrazit více v PubMed
Ahmed W. W., Fodor É., Betz T. (2015). Active cell mechanics: measurement and theory. Biochim. Biophys. Acta 1853, 3083–3094. 10.1016/j.bbamcr.2015.05.022 PubMed DOI
Alcaraz J., Otero J., Jorba I., Navajas D. (2018). Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin. Cell Dev. Biol. 73, 71–81. 10.1016/j.semcdb.2017.07.020 PubMed DOI
Alhussein G., Shanti A., Farhat I. A., Timraz S. B., Alwahab N. S., Pearson Y. E., et al. . (2016). A spatiotemporal characterization method for the dynamic cytoskeleton. Cytoskeleton 73, 221–232. 10.1002/cm.21297 PubMed DOI PMC
Ayala Y. A., Pontes B., Ether D. S., Pires L. B., Araujo G. R., Frases S., et al. . (2016). Rheological properties of cells measured by optical tweezers. BMC Biophys. 9:5. 10.1186/s13628-016-0031-4 PubMed DOI PMC
Balaban N. Q., Schwarz U. S., Riveline D., Goichberg P., Tzur G., Sabanay I., et al. . (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466–472. 10.1038/35074532 PubMed DOI
Bausch A. R., Kroy K. (2006). A bottom-up approach to cell mechanics. Nat. Phys. 2, 231–238. 10.1038/nphys260 DOI
Benham-Pyle B. W., Pruitt B. L., Nelson W. J. (2015). Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027. 10.1126/science.aaa4559 PubMed DOI PMC
BenÍtez R., Moreno-flores S., Bolos V. J., Toca-Herrera J. L. (2013). A new automatic contact point detection algorithm for AFM force curves: automatic contact point detection for AFM curves. Microsc. Res. Tech. 76, 870–876. 10.1002/jemt.22241 PubMed DOI
Bilodeau G. G. (1992). Regular pyramid punch problem. J. Appl. Mech. 59, 519–523.
Borin D., Pecorari I., Pena B., Sbaizero O. (2018). Novel insights into cardiomyocytes provided by atomic force microscopy. Semin. Cell Dev. Biol. 73, 4–12. 10.1016/j.semcdb.2017.07.003 PubMed DOI
Butt H. J., Cappella B., Kappl M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152. 10.1016/j.surfrep.2005.08.003 DOI
Butt H. J., Jaschke M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1 10.1088/0957-4484/6/1/001 DOI
Cascione M., de Matteis V., Rinaldi R., Leporatti S. (2017). Atomic force microscopy combined with optical microscopy for cells investigation. Microsc. Res. Tech. 80, 109–123. 10.1002/jemt.22696 PubMed DOI
Chadwick R. (2002). Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62, 1520–1530. 10.1137/S0036139901388222 DOI
Cogollo J. F. S., Tedesco M., Martinoia S., Raiteri R. (2011). A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes. Biomed. Microdev. 13, 613–621. 10.1007/s10544-011-9531-9 PubMed DOI
Crick S. L., Yin F. C.P. (2007). Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech. Model. Mechanobiol. 6, 199–210. 10.1007/s10237-006-0046-x PubMed DOI
Cross S. E., Jin Y. S., Rao J., Gimzewski J. K. (2007). Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783. 10.1038/nnano.2007.388 PubMed DOI
Dimitriadis E. K., Horkay F., Maresca J., Kachar B., Chadwick R. S. (2002). Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810. 10.1016/S0006-3495(02)75620-8 PubMed DOI PMC
Discher D. E., Janmey P., Wang Y. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143. 10.1126/science.1116995 PubMed DOI
Dokukin M. E., Guz N. V., Sokolov I. (2013). Quantitative study of the elastic modulus of loosely attached cells in afm indentation experiments. Biophys. J. 104, 2123–2131. 10.1016/j.bpj.2013.04.019 PubMed DOI PMC
Dvir L., Nissim R., Alvarez-Elizondo M. B., Weihs D. (2015). Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells. New J. Phys. 17:043010 10.1088/1367-2630/17/4/043010 DOI
Engler A. J., Rehfeldt F., Sen S., Discher D. E. (2007). Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83, 521–545. 10.1016/S0091-679X(07)83022-6 PubMed DOI
Gavara N., Chadwick R. S. (2012). Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat. Nanotechnol. 7, 733–736. 10.1038/nnano.2012.163 PubMed DOI PMC
Geisse N. A. (2009). AFM and combined optical techniques. Mater. Today 12, 40–45. 10.1016/S1369-7021(09)70201-9 DOI
Guz N., Dokukin M., Kalaparthi V., Sokolov I. (2014). If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575. 10.1016/j.bpj.2014.06.033 PubMed DOI PMC
Hanson L., Zhao W., Lou H.-Y., Lin Z. C., Lee S. W., Chowdary P., et al. . (2015). Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562. 10.1038/nnano.2015.88 PubMed DOI PMC
Heng Y. W., Koh C. G. (2010). Actin cytoskeleton dynamics and the cell division cycle. Int. J. Biochem. Cell Biol. 42, 1622–1633. 10.1016/j.biocel.2010.04.007 PubMed DOI
Huang H., Kamm R. D., Lee R. T. (2004). Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1–C11. 10.1152/ajpcell.00559.2003 PubMed DOI
Huber F., Boire A., López M. P., Koenderink G. H. (2015). Cytoskeletal crosstalk: when three different personalities team up. Curr. Opin. Cell Biol. 32, 39–47. 10.1016/j.ceb.2014.10.005 PubMed DOI
Keremidarska-Markova M., Hristova K., Vladkova T., Krasteva N. (2017). Adipose-derived mesenchymal stem cell behaviour on pdms substrates with different hardness. Comptes rendus de l'Acade'mie bulgare des Sciences 70, 663–670.
Kerr J. P., Robison P., Shi G., et al. . (2015). Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat. Comm. 6:8526. 10.1038/ncomms9526 PubMed DOI PMC
Klaas M., Kangur T., Viil J., Mäemets-Allas K., Minajeva A, Vadi K., et al. . (2016). The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6:27398. 10.1038/srep27398 PubMed DOI PMC
Li M., Dang D., Liu L., Xi N., Wang Y. (2017). Atomic Force Microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Trans. Nanobiosci. 16, 523–540. 10.1109/TNB.2017.2714462 PubMed DOI
Li M., Liu L., Xi N., Wang Y. (2015). Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy. Acta Pharmacol. Sin. 36, 769–782. 10.1038/aps.2015.28 PubMed DOI PMC
Li Q., Kumar A., Makhija E., Shivashankar G. V. (2014). The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35, 961–969. 10.1016/j.biomaterials.2013.10.037 PubMed DOI
Lu D., Kassab G. S. (2011). Role of shear stress and stretch in vascular mechanobiology. J. R. Soc. Interface 8, 1379–1385. 10.1098/rsif.2011.0177 PubMed DOI PMC
Marjoram R. J., Guilluy C., Burridge K. (2016). Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods 94, 19–26. 10.1016/j.ymeth.2015.09.025 PubMed DOI PMC
Melzak K. A., Moreno-Flores S., Yu K., Kizhakkedathu J., Toca-Herrera J. L. (2010). Rationalized approach to the determination of contact point in force-distance curves: application to polymer brushes in salt solutions and in water. Microsc. Res. Tech. 73, 959–964. 10.1002/jemt.20851 PubMed DOI
Merle B., Maier V., Durst K. (2014). Experimental and theoretical confirmation of the scaling exponent 2 in pyramidal load displacement data for depth sensing indentation. Scanning 36, 526–529. 10.1002/sca.21151 PubMed DOI
Moeendarbary E., Harris A. R. (2014). Cell mechanics: principles, practices, and prospects. WIREs Syst. Biol. Med. 6, 371–388. 10.1002/wsbm.1275 PubMed DOI PMC
Müller D. J., Dufrêne Y. F. (2008). Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269. 10.1038/nnano.2008.100 PubMed DOI
Nakaseko Y., Yanagida M. (2001). Cell biology: cytoskeleton in the cell cycle. Nature 412, 291–292. 10.1038/35085684 PubMed DOI
Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., et al. . (2017). YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321. 10.1038/ncomms15321 PubMed DOI PMC
Oyen M. L. (2015). Nanoindentation of hydrated materials and tissues. Curr. Opin. Solid State Mater. Sci. 19, 317–323. 10.1016/j.cossms.2015.03.001 DOI
Pesl M., Pribyl J., Acimovic I., Vilotic A., Jelinkova S., Salykin A., et al. . (2016). Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosens. Bioelectron. 85, 751–757. 10.1016/j.bios.2016.05.073 PubMed DOI
Poon B., Rittel D., Ravichandran G. (2008). An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 45, 6018–6033. 10.1016/j.ijsolstr.2008.07.021 DOI
Radmacher M. (2007). Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol. 83, 347–372. 10.1016/S0091-679X(07)83015-9 PubMed DOI
Roduit C., Sekatski S., Dietler G., Catsicas S., Lafont F., Kasas S. (2009). Stiffness tomography by atomic force microscopy. Biophys. J. 97, 674–677. 10.1016/j.bpj.2009.05.010 PubMed DOI PMC
Schillers H., Rianna C., Schäpe J., Luque T., Doschke H., Wälte M., et al. . (2017). Standardized nanomechanical atomic force microscopy procedure (snap) for measuring soft and biological samples. Sci. Rep. 7:5117. 10.1038/s41598-017-05383-0 PubMed DOI PMC
Shi P., Feng J., Chen C. (2015). Hippo pathway in mammary gland development and breast cancer. Acta Biochim. Biophys. Sin. 47, 53–59. 10.1093/abbs/gmu114 PubMed DOI
Sneddon I. N. (1965). The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57. 10.1016/0020-7225(65)90019-4 DOI
Sokolov I., Dokukin M. E., Guz N. V. (2013). Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 60, 202–213. 10.1016/j.ymeth.2013.03.037 PubMed DOI
Solon J., Levental I., Sengupta K., Georges P. C., Janmey P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93, 4453–4461. 10.1529/biophysj.106.101386 PubMed DOI PMC
VanLandingham M. R., Villarrubia J. S., Guthrie W. F., Meyers G. F. (2001). Nanoindentation of polymers: an overview. Macromol. Symp. 167, 15–44. 10.1002/1521-3900(200103)167:1<15::AID-MASY15>3.0.CO;2-T DOI
Wirtz D. (2009). Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326. 10.1146/annurev.biophys.050708.133724 PubMed DOI
Yim E. K., Sheetz M. P. (2012). Force-dependent cell signaling in stem cell differentiation. Stem Cell Res. Ther. 3:41. 10.1186/scrt132 PubMed DOI PMC
Zemła J., Danilkiewicz J., Orzechowska B., Pabijan J., Seweryn S., Lekka M. (2018). Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues. Semin. Cell Dev. Biol. 73, 115–124. 10.1016/j.semcdb.2017.06.029 PubMed DOI