A Comparison of Muscle Activity Between the Cambered and Standard Bar During the Bench Press Exercise
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32765305
PubMed Central
PMC7378805
DOI
10.3389/fphys.2020.00875
Knihovny.cz E-zdroje
- Klíčová slova
- EMG, internal movement structure, range of motion, resistance training, training equipment,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to compare the electromyographic activity between the standard and cambered bar during the bench press (BP) exercise. Twelve resistance-trained males performed the flat BP with a standard and a cambered bar at selected loads (50%, 70%, and 90% 1RM). Muscle activation assessed by surface electromyography (sEMG) was recorded for the pectoralis major, anterior deltoid, and the lateral and long heads of the triceps brachii during each attempt. A three-way repeated measures ANOVA indicated statistically significant main interaction for bar × load × muscle (p < 0.01); bar × load (p < 0.01); bar × muscle (p < 0.01); load × muscle (p < 0.01). There was also a main effect for the bar (p < 0.01); load (p < 0.01); and muscle group (p < 0.01). The post hoc analysis for the main multiple interaction effect of bar × load × muscle showed a statistically significant increase in sEMG for the standard bar in the pectoralis major compared to the cambered bar at 50% 1RM (p < 0.01) and 90% 1RM (p < 0.01), as well as in the triceps brachii long at 90% 1RM (p < 0.01). Furthermore, a statistically significant decrease in sEMG was registered for the standard bar in the anterior deltoid compared to the cambered bar at 90% 1RM (p = 0.02). The results indicated that the cambered bar was superior in activating the anterior deltoid muscle compared to the standard bar during the BP exercise, whereas the standard bar provided higher pectoralis major and triceps brachii long head sEMG activity at 90% 1RM.
Department of Kinesiology California State University Fullerton Fullerton CA United States
Department of Sport Games Faculty of Physical Education and Sport Charles University Prague Czechia
Zobrazit více v PubMed
Ackland D. C., Pandy M. G. (2009). Lines of action and stabilizing potential of the shoulder musculature. J. Anat. 215 184–197. 10.1111/j.1469-7580.2009.01090.x PubMed DOI PMC
Bloomquist K., Langberg H., Karlsen S., Madsgaard S., Boesen M., Raastad T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 113 2133–2142. 10.1007/s00421-013-2642-7 PubMed DOI
Caterisano A., Moss R. F., Pellinger T. K., Woodruff K., Lewis V. C., Booth W., et al. (2002). The effect of back squat depth on the EMG activity of 4 superficial hip and thigh muscles. J. Strength Cond. Res. 16 428–432. 10.1519/00124278-200208000-00014 PubMed DOI
Cohen J. (2013). Statistical Power Analysis for the Behavioral Sciences. Burlington, NJ: Elsevier Science.
Corey S. W. (1991). The cambered bar. Strength Cond. J. 13 36–38.
Cronin J. B., McNair P. J., Marshall R. N. (2001). Magnitude and decay of stretch-induced enhancement of power output. Eur. J. Appl. Physiol. 84 575–581. 10.1007/s004210100433 PubMed DOI
Dunnick D. D., Brown L. E., Coburn J. W., Lynn S. K., Barillas S. R. (2015). Bench press upper-body muscle activation between stable and unstable loads. J. Strength Cond. Res. 29 3279–3283. 10.1519/JSC.0000000000001198 PubMed DOI
Enoka R. M., Duchateau J. (2015). Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes understanding of the control of neuromuscular function. J. Appl. Physiol. 119 1516–1518. 10.1152/japplphysiol.00280.2015 PubMed DOI
Farias D., de A., Willardson J. M., Paz G. A., Bezerra E., de S., et al. (2017). Maximal strength performance and muscle activation for the bench press and triceps extension exercises adopting dumbbell, barbell, and machine modalities over multiple sets. J. Strength Cond. Res. 31 1879–1887. 10.1519/JSC.0000000000001651 PubMed DOI
Farina D., Fosci M., Merletti R. (2002). Motor unit recruitment strategies investigated by surface EMG variables. J. Appl. Physiol. 92 235–247. 10.1152/jappl.2002.92.1.235 PubMed DOI
Hartmann H., Wirth K., Klusemann M., Dalic J., Matuschek C., Schmidtbleicher D. (2012). Influence of squatting depth on jumping performance. J. Strength Cond. Res. 26 3243–3261. 10.1519/JSC.0b013e31824ede62 PubMed DOI
Hermens H. J., Freriks B., Disselhorst-Klug C., Rau G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10 361–374. 10.1016/S1050-6411(00)00027-4 PubMed DOI
Kandel E. R., Jessell T. M., Schwartz J. H., Siegelbaum S. A., Hudspeth A. J., Mack S. (2013). Principles of Neural Science, 5th Edn New York, NY: McGraw-Hill.
Kawakami Y., Muraoka T., Ito S., Kanehisa H., Fukunaga T. (2002). In vivo muscle fibre behaviour during counter-movement exercise in humans reveals a significant role for tendon elasticity. J. Physiol. 540(Pt 2) 635–646. 10.1113/jphysiol.2001.013459 PubMed DOI PMC
Krevolin J. L., Pandy M. G., Pearce J. C. (2004). Moment arm of the patellar tendon in the human knee. J. Biomech. 37 785–788. 10.1016/j.jbiomech.2003.09.010 PubMed DOI
Krol H., Golas A. (2017). Effect of barbell weight on the structure of the flat bench press. J. Strength Cond. Res. 31 1321–1337. 10.1519/JSC.0000000000001816 PubMed DOI PMC
Krosshaug T. (2012). “Revealing “secrets” of strength training exercises with kinetic analyses,” in Proceedings of the 8th International Conference on Strength Training (ICTS 2012), Oslo, 81–83.
Krzysztofik M., Wilk M., Golas A., Lockie R. G., Maszczyk A., Zajac A. (2020). Does eccentric-only and concentric-only activation increase power output? Med. Sci. Sports Exerc. 52 484–489. 10.1249/MSS.0000000000002131 PubMed DOI
Krzysztofik M., Wilk M., Wojdala G., Golas A. (2019). Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int. J. Environ. Res. Public Health 16:4897. 10.3390/ijerph16244897 PubMed DOI PMC
Martínez-Cava A., Hernández-Belmonte A., Courel-Ibáñez J., Morán-Navarro R., González-Badillo J. J., Pallarés J. G. (2019). Bench press at full range of motion produces greater neuromuscular adaptations than partial executions after prolonged resistance training. J. Strength Cond. Res. 10.1519/JSC.0000000000003391 [Epub ahead of print]. PubMed DOI
Mills K. R. (2005). The basics of electromyography. J. Neurol. Neurosurg. Psychiatry 76 Suppl. 2(Suppl. 2) ii32–ii35. 10.1136/jnnp.2005.069211 PubMed DOI PMC
Padulo J., Tiloca A., Powell D., Granatelli G., Bianco A., Paoli A. (2013). EMG amplitude of the biceps femoris during jumping compared to landing movements. SpringerPlus 2:520. 10.1186/2193-1801-2-520 PubMed DOI PMC
Pallarés J. G., Cava A. M., Courel-Ibáñez J., González-Badillo J. J., Morán-Navarro R. (2020). Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 20 115–124. 10.1080/17461391.2019.1612952 PubMed DOI
Saeterbakken A. H., Mo D.-A., Scott S., Andersen V. (2017). The effects of bench press variations in competitive athletes on muscle activity and performance. J. Hum. Kinet. 57 61–71. 10.1515/hukin-2017-0047 PubMed DOI PMC
Saeterbakken A. H., Tillaar R. V. D., Fimland M. S. (2011). A comparison of muscle activity and 1-RM strength of three chest-press exercises with different stability requirements. J. Sports Sci. 29 533–538. 10.1080/02640414.2010.543916 PubMed DOI
Sakamoto A., Sinclair P. J. (2012). Muscle activations under varying lifting speeds and intensities during bench press. Eur. J. Appl. Physiol. 112 1015–1025. 10.1007/s00421-011-2059-0 PubMed DOI
Schoenfeld B. J., Grgic J. (2020). Effects of range of motion on muscle development during resistance training interventions: a systematic review. SAGE Open Med. 8:205031212090155. 10.1177/2050312120901559 PubMed DOI PMC
Stastny P., Golas A., Blazek D., Maszczyk A., Wilk M., Pietraszewski P., et al. (2017). A systematic review of surface electromyography analyses of the bench press movement task. PLoS One 12:e0171632. 10.1371/journal.pone.0171632 PubMed DOI PMC
Tillaar R., Sæterbakken A., Ettema G. (2012). Is the sticking region in bench press the result of diminishing potentiation? J. Sports Sci. 30 591–599. 10.1080/02640414.2012.658844 PubMed DOI
Tillaar R. V. D., Ettema G. (2009). A comparison of kinematics and muscle activity between successful and unsuccessful attempts in bench press. Med. Sci. Sports Exerc. 41 2056–2063. 10.1249/MSS.0b013e3181a8c360 PubMed DOI
Tillaar R. V. D., Ettema G. (2010). The “sticking period” in bench press. J. Sports Sci. 28 529–535. 10.1080/02640411003628022 PubMed DOI
Tillaar R. V. D., Ettema G. (2013). A comparison of muscle activity in concentric and counter movement maximum bench press. J. Hum. Kinet. 38 63–71. 10.2478/hukin-2013-0046 PubMed DOI PMC
Tillaar R. V. D., Saeterbakken A. H. (2012). The sticking region in three chest-press exercises with increasing degrees of freedom. J. Strength Cond. Res. 26 2962–2969. 10.1519/JSC.0b013e3182443430 PubMed DOI
Tillaar R. V. D., Saeterbakken A. H. (2013). Fatigue effects upon sticking region and electromyography in a six-repetition maximum bench press. J. Sports Sci. 31 1823–1830. 10.1080/02640414.2013.803593 PubMed DOI
Turner A. N., Jeffreys I. (2010). The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond. J. 32 87–99. 10.1519/SSC.0b013e3181e928f9 DOI
Van den Tillaar R., Sousa C. (2019). Comparison of muscle activation and barbell kinematics during bench press with different loads. AKUT 25, 37–50. 10.12697/akut.2019.25.03 DOI
Welsch E. A., Bird M., Mayhew J. L. (2005). Electromyographic activity of the pectoralis major and anterior deltoid muscles during three upper-body lifts. J. Strength Cond. Res. 19 449–452. 10.1519/14513.1 PubMed DOI
Wilk M., Gepfert M., Krzysztofik M., Mostowik A., Filip A., Hajduk G., et al. (2020a). Impact of duration of eccentric movement in the one-repetition maximum test result in the bench press among women. J. Sports Sci. Med. 19 317–322. PubMed PMC
Wilk M., Golas A., Stastny P., Nawrocka M., Krzysztofik M., Zajac A. (2018). Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 62 241–250. 10.2478/hukin-2018-0034 PubMed DOI PMC
Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Del Coso J., et al. (2020b). the effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 72 151–159. 10.2478/hukin-2020-0001 PubMed DOI PMC
Wilk M., Tufano J. J., Zajac A. (2020c). The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise – a mini-review. J. Strength Cond. Res. 10.1519/JSC.0000000000003636 [Epub ahead of print]. PubMed DOI
World Medical Association (2013). World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191. 10.1001/jama.2013.281053 PubMed DOI