Preservation of the donor-acceptor character of a carbazole-phenalenone dyad upon adsorption on Pt(111)
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36131745
PubMed Central
PMC9418732
DOI
10.1039/d0na00925c
PII: d0na00925c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Donor-acceptor molecules are a subject of great attention due to their immense potential in molecular electronics and photovoltaics. Despite numerous extensive studies demonstrating their functionality in solution, the donor-acceptor character is usually lost upon adsorption on a conducting substrate. Here the concept of breaking the conjugation between the donor and acceptor unit by insertion of a bridge is used. Furthermore, the bridge introduces a kink into the dyad and thus, reduces the possibility of hybridization with the substrate. A donor-bridge-acceptor dyad composed of carbazole and phenalenone units joined through a flexible bridge is synthesized and deposited on a Pt(111) surface. Its electronic properties are investigated with a combination of low temperature scanning tunneling microscope measurements and density functional theory simulations. Two preferential adsorption configurations are identified, in which individual molecules form strong bonds to the substrate and to a Pt adatom. Differential conductance measurements and atomistic simulations evidence the preservation of a reduced donor-acceptor character upon adsorption of the molecule, where this reduction is ascribed to the strong molecule-metal hybridization. Our results highlight the changes in donor-acceptor character of the dyad induced by the substrate and provide guidelines for the use of donor-bridge-acceptor molecules as functional units in solid-state devices.
Institute of Physics Academy of Sciences of the Czech Republic CZ 162 00 Prague 6 Czech Republic
Peter Grünberg Institut JARA FIT Forschungszentrum Jülich GmbH 52425 Jülich Germany
Zobrazit více v PubMed
Ricks A. B. Brown K. E. Wenninger M. Karlen S. D. Berlin Y. A. Co D. T. Wasielewski M. R. J. Am. Chem. Soc. 2012;134:4581–4588. doi: 10.1021/ja205913q. PubMed DOI
Olivier Y. Moral M. Muccioli L. Sancho-García J.-C. J. Mater. Chem. C. 2017;5:5718–5729. doi: 10.1039/C6TC05075A. DOI
Müller T. J. J. and Bunz U. H., Functional Organic Materials: Syntheses, Strategies and Applications, Wiley-VCH, Weinheim, Germany, 2007
Bay S. Villnow T. Ryseck G. Rai-Constapel V. Gilch P. Müller T. J. J. ChemPlusChem. 2013;78:137–141. doi: 10.1002/cplu.201200279. DOI
Levi L. Müller T. J. J. Chem. Soc. Rev. 2016;45:2825–2846. doi: 10.1039/C5CS00805K. PubMed DOI
Benelli T., Tomasulo M. and Raymo F. M., in Molecular Switches, ed. B. L. Feringa and W. R. Browne, Wiley-VCH, Weinheim, Germany, 2011, pp. 697–717
Kawauchi H. Suzuki S. Kozaki M. Okada K. Islam D.-M. S. Araki Y. Ito O. Yamanaka K.-i. J. Phys. Chem. A. 2008;112:5878–5884. doi: 10.1021/jp800716e. PubMed DOI
Wenger O. S. Chem. Soc. Rev. 2011;40:3538–3550. doi: 10.1039/C1CS15044H. PubMed DOI
Kuss-Petermann M. Wenger O. S. Angew. Chem., Int. Ed. 2016;55:815–819. doi: 10.1002/anie.201509809. PubMed DOI
Tao C. Sun J. Zhang X. Yamachika R. Wegner D. Bahri Y. Samsonidze G. Cohen M. L. Louie S. G. Tilley T. D. Segalman R. A. Crommie M. F. Nano Lett. 2009;9:3963–3967. doi: 10.1021/nl901860n. PubMed DOI
Schuler B. Liu S.-X. Geng Y. Decurtins S. Meyer G. Gross L. Nano Lett. 2014;14:3342–3346. doi: 10.1021/nl500805x. PubMed DOI
Hinaut A. Meier T. Pawlak R. Feund S. Jöhr R. Kawai S. Glatzel T. Decurtins S. Müllen K. Narita A. Liu S.-X. Meyer E. Nanoscale. 2018;10:1337–1344. doi: 10.1039/C7NR06261C. PubMed DOI
Meier T. Pawlak R. Kawai S. Geng Y. Liu X. Decurtins S. Hapala P. Baratoff A. Liu S.-X. Jelínek P. Meyer E. Glatzel T. ACS Nano. 2017;11:8413–8420. doi: 10.1021/acsnano.7b03954. PubMed DOI
Ebeling R. Tsukamoto S. Dirksen E. Caciuc V. Müller T. J. J. Atodiresei N. Karthäuser S. J. Phys. Chem. C. 2017;121:26916–26924. doi: 10.1021/acs.jpcc.7b09911. DOI
Haddon R. C. Rayford R. Hirani A. M. J. Org. Chem. 1981;46:4587–4588. doi: 10.1021/jo00335a060. DOI
Chi X. Itkis M. E. Kirschbaum K. Pinkerton A. A. Oakley R. T. Cordes A. W. Haddon R. C. J. Am. Chem. Soc. 2001;123:4041–4048. doi: 10.1021/ja0039785. PubMed DOI
Bensch L. Gruber I. Janiak C. Müller T. J. J. Chem.–Eur. J. 2017;23:10551–10558. doi: 10.1002/chem.201700553. PubMed DOI
Guzow K. Czerwinska M. Ceszlak A. Kozarzewska M. Szabelski M. Czaplewski C. Lukaszewicz A. Kubicki A. A. Wiczk W. Photochem. Photobiol. Sci. 2013;12:284–297. doi: 10.1039/C2PP25114K. PubMed DOI
Manolikakes G. Muñoz Hernandez C. Schade M. A. Metzger A. Knochel P. J. Org. Chem. 2008;73:8422–8436. doi: 10.1021/jo8015852. PubMed DOI
Xu S., Kamada H., Kim E. H., Oda A. and Negishi E.-i., in Metal-Catalyzed Cross-Coupling Reactions and More, ed. A. de Meijere, S. Bräse and M. Oestreich, Wiley-VCH, Weinheim, Germany, 2014, pp. 133–278
Weller A. Z. Phys. Chem. 1982;133:93–98. doi: 10.1524/zpch.1982.133.1.093. DOI
Felici R. Pedio M. Borgatti F. Iannotta S. Capozi M. Ciullo G. Stierle A. Nat. Mater. 2005;4:688–692. doi: 10.1038/nmat1456. PubMed DOI
Huang M. Phys. Chem. Chem. Phys. 2012;14:4959–4963. doi: 10.1039/C2CP23592G. PubMed DOI
Kiguchi M. Tal O. Wohlthat S. Pauly F. Krieger M. Djukic D. Cuevas J. C. van Ruitenbeek J. M. Phys. Rev. Lett. 2008;101:046801. doi: 10.1103/PhysRevLett.101.046801. PubMed DOI
Otero R. Vázquez de Parga A. L. Gallego J. M. Surf. Sci. Rep. 2017;72:105–145. doi: 10.1016/j.surfrep.2017.03.001. DOI
Pinardi A. L. Biddau G. van De Ruit K. Otero-Irurueta G. Gardonio S. Lizzit S. Schennach R. Flipse C. F. López M. F. Méndez J. Pérez R. Martín-Gago J. A. Nanotechnology. 2014;25:385602. doi: 10.1088/0957-4484/25/38/385602. PubMed DOI
Ugolotti A. Harivyasi S. S. Baby A. Dominguez M. Pinardi A. L. López M. F. Martín-Gago J. A. Fratesi G. Floreano L. Brivio G. P. J. Phys. Chem. C. 2017;121:22797–22805. doi: 10.1021/acs.jpcc.7b06555. DOI
Jacob T. Muller R. P. Goddard, III W. A. J. Phys. Chem. B. 2003;107:9465–9476. doi: 10.1021/jp030716r. DOI
Papoian G. Norskov J. K. Hoffmann R. J. Am. Chem. Soc. 2000;122:4129–4144. doi: 10.1021/ja993483j. DOI
Gu Z. Balbuena P. B. J. Phys. Chem. C. 2007;111:9877–9883. doi: 10.1021/jp0711693. DOI
Ihm H. Ajo H. M. Gottfried J. M. Bera P. Campbell C. T. J. Phys. Chem. B. 2004;108:14627–14633. doi: 10.1021/jp040159o. DOI
Liu W. Carrasco J. Santra B. Michaelides A. Scheffler M. Tkatchenko A. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:245405. doi: 10.1103/PhysRevB.86.245405. DOI
Gupta V. P., Principles and Applications of Quantum Chemistry, Academic Press, London, UK, 2016
Jia X. An W. J. Phys. Chem. C. 2018;122:21897–21909. doi: 10.1021/acs.jpcc.8b06321. DOI
Vitali L. Levita G. Ohmann R. Comisso A. De Vita A. Kern K. Nat. Mater. 2010;9:320–323. doi: 10.1038/nmat2625. PubMed DOI
Rusu P. C. Brocks G. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;74:073414. doi: 10.1103/PhysRevB.74.073414. DOI
Yang X. Lu R. Gai F. Xue P. Zhan Y. Chem. Commun. 2010;46:1088–1090. doi: 10.1039/B918986F. PubMed DOI
Soler J. M. Artacho E. Gale J. D. García A. Junquera J. Ordejón P. Sánchez-Portal D. J. Phys.: Condens. Matter. 2002;14:2745–2779. doi: 10.1088/0953-8984/14/11/302. PubMed DOI
Dion M. Rydberg H. Schröder E. Langreth D. C. Lundqvist B. I. Phys. Rev. Lett. 2004;92:246401. doi: 10.1103/PhysRevLett.92.246401. PubMed DOI
Román-Pérez G. Soler J. M. Phys. Rev. Lett. 2009;103:096102. doi: 10.1103/PhysRevLett.103.096102. PubMed DOI
Momma K. Izumi F. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Tersoff J. Hamann D. R. Phys. Rev. B: Condens. Matter Mater. Phys. 1985;31:805. doi: 10.1103/PhysRevB.31.805. PubMed DOI