Preservation of the donor-acceptor character of a carbazole-phenalenone dyad upon adsorption on Pt(111)

. 2021 Jan 26 ; 3 (2) : 538-549. [epub] 20201208

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36131745

Donor-acceptor molecules are a subject of great attention due to their immense potential in molecular electronics and photovoltaics. Despite numerous extensive studies demonstrating their functionality in solution, the donor-acceptor character is usually lost upon adsorption on a conducting substrate. Here the concept of breaking the conjugation between the donor and acceptor unit by insertion of a bridge is used. Furthermore, the bridge introduces a kink into the dyad and thus, reduces the possibility of hybridization with the substrate. A donor-bridge-acceptor dyad composed of carbazole and phenalenone units joined through a flexible bridge is synthesized and deposited on a Pt(111) surface. Its electronic properties are investigated with a combination of low temperature scanning tunneling microscope measurements and density functional theory simulations. Two preferential adsorption configurations are identified, in which individual molecules form strong bonds to the substrate and to a Pt adatom. Differential conductance measurements and atomistic simulations evidence the preservation of a reduced donor-acceptor character upon adsorption of the molecule, where this reduction is ascribed to the strong molecule-metal hybridization. Our results highlight the changes in donor-acceptor character of the dyad induced by the substrate and provide guidelines for the use of donor-bridge-acceptor molecules as functional units in solid-state devices.

Zobrazit více v PubMed

Ricks A. B. Brown K. E. Wenninger M. Karlen S. D. Berlin Y. A. Co D. T. Wasielewski M. R. J. Am. Chem. Soc. 2012;134:4581–4588. doi: 10.1021/ja205913q. PubMed DOI

Olivier Y. Moral M. Muccioli L. Sancho-García J.-C. J. Mater. Chem. C. 2017;5:5718–5729. doi: 10.1039/C6TC05075A. DOI

Müller T. J. J. and Bunz U. H., Functional Organic Materials: Syntheses, Strategies and Applications, Wiley-VCH, Weinheim, Germany, 2007

Bay S. Villnow T. Ryseck G. Rai-Constapel V. Gilch P. Müller T. J. J. ChemPlusChem. 2013;78:137–141. doi: 10.1002/cplu.201200279. DOI

Levi L. Müller T. J. J. Chem. Soc. Rev. 2016;45:2825–2846. doi: 10.1039/C5CS00805K. PubMed DOI

Benelli T., Tomasulo M. and Raymo F. M., in Molecular Switches, ed. B. L. Feringa and W. R. Browne, Wiley-VCH, Weinheim, Germany, 2011, pp. 697–717

Kawauchi H. Suzuki S. Kozaki M. Okada K. Islam D.-M. S. Araki Y. Ito O. Yamanaka K.-i. J. Phys. Chem. A. 2008;112:5878–5884. doi: 10.1021/jp800716e. PubMed DOI

Wenger O. S. Chem. Soc. Rev. 2011;40:3538–3550. doi: 10.1039/C1CS15044H. PubMed DOI

Kuss-Petermann M. Wenger O. S. Angew. Chem., Int. Ed. 2016;55:815–819. doi: 10.1002/anie.201509809. PubMed DOI

Tao C. Sun J. Zhang X. Yamachika R. Wegner D. Bahri Y. Samsonidze G. Cohen M. L. Louie S. G. Tilley T. D. Segalman R. A. Crommie M. F. Nano Lett. 2009;9:3963–3967. doi: 10.1021/nl901860n. PubMed DOI

Schuler B. Liu S.-X. Geng Y. Decurtins S. Meyer G. Gross L. Nano Lett. 2014;14:3342–3346. doi: 10.1021/nl500805x. PubMed DOI

Hinaut A. Meier T. Pawlak R. Feund S. Jöhr R. Kawai S. Glatzel T. Decurtins S. Müllen K. Narita A. Liu S.-X. Meyer E. Nanoscale. 2018;10:1337–1344. doi: 10.1039/C7NR06261C. PubMed DOI

Meier T. Pawlak R. Kawai S. Geng Y. Liu X. Decurtins S. Hapala P. Baratoff A. Liu S.-X. Jelínek P. Meyer E. Glatzel T. ACS Nano. 2017;11:8413–8420. doi: 10.1021/acsnano.7b03954. PubMed DOI

Ebeling R. Tsukamoto S. Dirksen E. Caciuc V. Müller T. J. J. Atodiresei N. Karthäuser S. J. Phys. Chem. C. 2017;121:26916–26924. doi: 10.1021/acs.jpcc.7b09911. DOI

Haddon R. C. Rayford R. Hirani A. M. J. Org. Chem. 1981;46:4587–4588. doi: 10.1021/jo00335a060. DOI

Chi X. Itkis M. E. Kirschbaum K. Pinkerton A. A. Oakley R. T. Cordes A. W. Haddon R. C. J. Am. Chem. Soc. 2001;123:4041–4048. doi: 10.1021/ja0039785. PubMed DOI

Bensch L. Gruber I. Janiak C. Müller T. J. J. Chem.–Eur. J. 2017;23:10551–10558. doi: 10.1002/chem.201700553. PubMed DOI

Guzow K. Czerwinska M. Ceszlak A. Kozarzewska M. Szabelski M. Czaplewski C. Lukaszewicz A. Kubicki A. A. Wiczk W. Photochem. Photobiol. Sci. 2013;12:284–297. doi: 10.1039/C2PP25114K. PubMed DOI

Manolikakes G. Muñoz Hernandez C. Schade M. A. Metzger A. Knochel P. J. Org. Chem. 2008;73:8422–8436. doi: 10.1021/jo8015852. PubMed DOI

Xu S., Kamada H., Kim E. H., Oda A. and Negishi E.-i., in Metal-Catalyzed Cross-Coupling Reactions and More, ed. A. de Meijere, S. Bräse and M. Oestreich, Wiley-VCH, Weinheim, Germany, 2014, pp. 133–278

Weller A. Z. Phys. Chem. 1982;133:93–98. doi: 10.1524/zpch.1982.133.1.093. DOI

Felici R. Pedio M. Borgatti F. Iannotta S. Capozi M. Ciullo G. Stierle A. Nat. Mater. 2005;4:688–692. doi: 10.1038/nmat1456. PubMed DOI

Huang M. Phys. Chem. Chem. Phys. 2012;14:4959–4963. doi: 10.1039/C2CP23592G. PubMed DOI

Kiguchi M. Tal O. Wohlthat S. Pauly F. Krieger M. Djukic D. Cuevas J. C. van Ruitenbeek J. M. Phys. Rev. Lett. 2008;101:046801. doi: 10.1103/PhysRevLett.101.046801. PubMed DOI

Otero R. Vázquez de Parga A. L. Gallego J. M. Surf. Sci. Rep. 2017;72:105–145. doi: 10.1016/j.surfrep.2017.03.001. DOI

Pinardi A. L. Biddau G. van De Ruit K. Otero-Irurueta G. Gardonio S. Lizzit S. Schennach R. Flipse C. F. López M. F. Méndez J. Pérez R. Martín-Gago J. A. Nanotechnology. 2014;25:385602. doi: 10.1088/0957-4484/25/38/385602. PubMed DOI

Ugolotti A. Harivyasi S. S. Baby A. Dominguez M. Pinardi A. L. López M. F. Martín-Gago J. A. Fratesi G. Floreano L. Brivio G. P. J. Phys. Chem. C. 2017;121:22797–22805. doi: 10.1021/acs.jpcc.7b06555. DOI

Jacob T. Muller R. P. Goddard, III W. A. J. Phys. Chem. B. 2003;107:9465–9476. doi: 10.1021/jp030716r. DOI

Papoian G. Norskov J. K. Hoffmann R. J. Am. Chem. Soc. 2000;122:4129–4144. doi: 10.1021/ja993483j. DOI

Gu Z. Balbuena P. B. J. Phys. Chem. C. 2007;111:9877–9883. doi: 10.1021/jp0711693. DOI

Ihm H. Ajo H. M. Gottfried J. M. Bera P. Campbell C. T. J. Phys. Chem. B. 2004;108:14627–14633. doi: 10.1021/jp040159o. DOI

Liu W. Carrasco J. Santra B. Michaelides A. Scheffler M. Tkatchenko A. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:245405. doi: 10.1103/PhysRevB.86.245405. DOI

Gupta V. P., Principles and Applications of Quantum Chemistry, Academic Press, London, UK, 2016

Jia X. An W. J. Phys. Chem. C. 2018;122:21897–21909. doi: 10.1021/acs.jpcc.8b06321. DOI

Vitali L. Levita G. Ohmann R. Comisso A. De Vita A. Kern K. Nat. Mater. 2010;9:320–323. doi: 10.1038/nmat2625. PubMed DOI

Rusu P. C. Brocks G. Phys. Rev. B: Condens. Matter Mater. Phys. 2006;74:073414. doi: 10.1103/PhysRevB.74.073414. DOI

Yang X. Lu R. Gai F. Xue P. Zhan Y. Chem. Commun. 2010;46:1088–1090. doi: 10.1039/B918986F. PubMed DOI

Soler J. M. Artacho E. Gale J. D. García A. Junquera J. Ordejón P. Sánchez-Portal D. J. Phys.: Condens. Matter. 2002;14:2745–2779. doi: 10.1088/0953-8984/14/11/302. PubMed DOI

Dion M. Rydberg H. Schröder E. Langreth D. C. Lundqvist B. I. Phys. Rev. Lett. 2004;92:246401. doi: 10.1103/PhysRevLett.92.246401. PubMed DOI

Román-Pérez G. Soler J. M. Phys. Rev. Lett. 2009;103:096102. doi: 10.1103/PhysRevLett.103.096102. PubMed DOI

Momma K. Izumi F. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Tersoff J. Hamann D. R. Phys. Rev. B: Condens. Matter Mater. Phys. 1985;31:805. doi: 10.1103/PhysRevB.31.805. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...