Temporal quantification of mating system parameters in a coastal Douglas-fir seed orchard under manipulated pollination environment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30072772
PubMed Central
PMC6072752
DOI
10.1038/s41598-018-30041-4
PII: 10.1038/s41598-018-30041-4
Knihovny.cz E-zdroje
- MeSH
- mikrosatelitní repetice * MeSH
- opylení fyziologie MeSH
- Pseudotsuga * genetika růst a vývoj MeSH
- pyl * genetika růst a vývoj MeSH
- semena rostlinná * genetika růst a vývoj MeSH
- šlechtění rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Seed orchards main function is delivering breeding programs' gains in the form of genetically improved seedlings. They are unique experimental populations, perfectly suited for studying various pollination environments (natural or otherwise), affecting their mating system parameters. Here, under different pollination environment (natural and intrusive (pollen augmentation and/or bloom-delay)), the mating system of a second generation, wind-pollinated, coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seed orchard was evaluated over four years. Using DNA microsatellite markers and bulk seed samples, we conducted pedigree reconstruction to assign each seed's male and female parents, followed by determining the extent of pollen contamination (external gene flow), selfing rate, and, parental gametic contribution for each year. Overall, external pollen contamination rates ranged between 10 and 28%, selfing rate varied between 12 and 17%, and 80% of the seed crops were produced by 37-64% of the orchard's parents. Pollination environment and seed crop size substantially influenced the observed results, particularly for small crops as pollen contamination was high in natural (28%) vs. intrusive pollination (10%). Generally, irrespective of the crop size, seed produced under natural pollination had higher pollen contamination, confirming the role of pollination environment manipulation in improving seed crops' genetic quality.
Zobrazit více v PubMed
El-Kassaby YA. Evaluation of the tree-improvement delivery system: factors affecting genetic potential. Tree Physiol. 1995;15:545–550. doi: 10.1093/treephys/15.7-8.545. PubMed DOI
Eriksson G, Lindgren D, Jonsson A. Flowering in a clone trial of Picea abies Karst. Stud. For. Suec. 1973;100:4–45.
El-Kassaby YA, Ritland K. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir orchard. Silvae Genet. 1986;35:224–229.
Funda T, El-Kassaby YA. Seed orchard genetics. CAB Reviews. 2012;013:1–23.
Lai BS, et al. Pollination dynamics in a Douglas-fir seed orchard as revealed by pedigree reconstruction. Ann. For. Sci. 2010;67:808. doi: 10.1051/forest/2010044. DOI
Korecký J, El-Kassaby YA. Pollination dynamics variation in a Douglas-fir seed orchard as revealed by microsatellite analysis. Silva Fenn. 2016;50:1682. doi: 10.14214/sf.1682. DOI
Kess T, El-Kassaby YA. Estimates of pollen contamination and selfing in a coastal Douglas-fir seed orchard. Scand. J. For. Res. 2015;30:266–275.
Stoehr, M. & Webber, J. Orchard pollen contamination: joint estimation of realized levels on current growth and future effects on volume and value at rotation in coastal Douglas-fir in British Columbia. Scand. J. For. Res., 10.1080/02827581.2017.1316420 (2017).
Silen RR, Keane G. Cooling a Douglas-fir seed orchard to avoid pollen contamination. USDA For. Serv., Res. Note PNW. 1969;101:10.
Wakeley, P. C., Wells, O. O. & Campbell, T. E. Mass production of shortleaf x slash pine hybrids by pollinating unbagged female flowers. In: Joint Proc. 2nd Genetics Workshop of Soc. Am. Foresters and 7th Lake States For. Tree Improv. Conf. Res. Pap. NC-6: 78–79 (1966).
Simnitt S, Borisova T, Chavez D, Olmstead M. Frost protection for Georgia peach varieties: current practices and information needs. HortTechnology. 2017;27:344–353. doi: 10.21273/HORTTECH03590-16. DOI
El-Kassaby YA, Davison R. Impact of crop management practices on the seed crop genetic quality in a Douglas-fir seed orchard. Silvae Genet. 1986;39:230–237.
Fashler, A. M. K. & El-Kassaby, Y. A. The effect of water spray cooling treatment on reproductive phenology in a Douglas-fir seed orchard. Silvae Genet. 36, 245–249 (1987).
Bridgwater, F. E., Blush, T. D. & Wheeler, N. C. Supplemental mass pollination. In: USDA For. Serv. Agriculture handbook, Washington, DC. pp. 69–77 (1993).
El-Kassaby YA, Edwards DGW, Cook C. Impact of crop management practices on seed yield in a Douglas-fir seed orchard. Silvae Genet. 1990;39:226–230.
El-Kassaby YA, Barnes S, Cook C, MacLeod DA. Supplemental mass pollination success rate in a mature Douglas-fir seed orchard. Can. J. For. Res. 1993;23:1096–1099. doi: 10.1139/x93-139. DOI
Webber JE. Pollen management for intensive seed orchard production. Tree Physiol. 1995;15:507–514. doi: 10.1093/treephys/15.7-8.507. PubMed DOI
Dow BD, Ashley MV. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J. Hered. 1998;89:62–70. doi: 10.1093/jhered/89.1.62. DOI
Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 2000;9:1037–1048. doi: 10.1046/j.1365-294x.2000.00961.x. PubMed DOI
Slavov GT, et al. Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theor. Appl. Genet. 2004;108:873–880. doi: 10.1007/s00122-003-1490-y. PubMed DOI
Schoen DJ, Stewart SC. Variation in male reproductive investment and male reproductive success in white spruce. Evolution. 1986;40:1109–1120. doi: 10.1111/j.1558-5646.1986.tb05737.x. PubMed DOI
Burczyk J, Prat D. Male reproductive success in pseudotsuga menziesii (Mirb.) Franco: the effects of spatial structure and flowering characteristics. Heredity. 1997;79:638–647. doi: 10.1038/hdy.1997.210. DOI
El-Kassaby YA, Ritland R, Fashler AMK, Devitt WJB. The role of reproductive phenology upon the mating system of a Douglas-fir seed orchard. Silvae Genet. 1988;37:76–82.
Anonymous. 20th Annual report on cooperative tree improvement and hardwood research program. North Carolina State University, Raleigh, North Carolina (1976).
Wright S. Evolution in Mendelian populations. Genetics. 1931;16:97–159. PubMed PMC
El-Kassaby YA, Fashler AMK, Crown M. Variation in fruitfulness in a Douglas-fir seed orchard and its effect on crop management decisions. Silvae Genet. 1989;38:113–121.
El-Kassaby YA, Fashler AMK, Sziklai O. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet. 1984;33:120–125.
El-Kassaby YA, Rudin D, Yazdani R. Levels of outcrossing and contamination in two Scots pine seed orchards. Scand. J. For. Res. 1989;4:41–49. doi: 10.1080/02827588909382544. DOI
El-Kassaby YA, Davidson R. Impact of pollination environment manipulation on the apparent outcrossing rate in a Douglas-fir seed orchard. Heredity. 1991;66:55–59. doi: 10.1038/hdy.1991.7. DOI
Ying CC, Yanchuk AD. The development of British Columbia’s tree seed transfer guidelines: Purpose, concept, methodology, and implementation. For. Ecol. Manage. 2006;227:1–13. doi: 10.1016/j.foreco.2006.02.028. DOI
Slavov GT, Howe GT, Adams WT. Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can. J. For. Res. 2005;35:1592–1603. doi: 10.1139/x05-082. DOI
Smith, D. B. & Adams, W. T. Measuring pollen contamination in clonal seed orchards with the aid of genetic markers. Proc. 17th South. For. Tree Improve. Conf. (USA). pp. 69–77 (1983).
Stoehr MU, L’Hirondelle SJ, Binder WD, Webber JE. Parental environment aftereffects on germination, growth, and adaptive traits in selected white spruce families. Can. J. For. Res. 1998;28:418–426. doi: 10.1139/x98-012. DOI
Xiao-Ru W, Lindgren D, Szmidt AE, Yazdani R. Pollen migration into a seed orchard of Pinus sylvestris L. and the methods of its estimation using allozyme markers. Scand. J. For. Res. 1989;6:3791–3859.
El-Kassaby, Y. A. Genetic-variation within and among conifer populations - review and evaluation of methods. In: biochemical markers in the population genetics of forest trees (eds Fineschi, S. Malvolti, M. E., Cannata, F. & Hattemer, H. H.). SPB Academic Publishing bv, The Hague, The Netherlands pp. 61–76 (1991).
Epperson BK, Clegg MT. First-pollination primacy and pollen selection in the morning glory. Ipomoea purpurea. Heredity. 1987;58:5–14. doi: 10.1038/hdy.1987.2. DOI
Webber JE, Yeh FCH. Test of the first-on, first-in pollination hypothesis in coastal Douglas-fir. Can. J. For. Res. 1987;17:63–68. doi: 10.1139/x87-012. DOI
Woods JH, Heaman JC. Effect of different inbreeding levels on filled seed production in Douglas-fir. Can. J. For. Res. 1989;19:54–59. doi: 10.1139/x89-007. DOI
El-Kassaby YA, Thomson AJ. Effect of seed biology and common seedling nursery production practices on parental contribution rank and relative performance. For. Sci. 1995;42:228–235.
El-Kassaby YA. Representation of Douglas-fir and western hemlock families in seedling crops as affected by seed biology and nursery crop management practices. For. Genet. 2000;7:305–315.
Falconer, D. S. & Mackay, T. F. C. Introduction to quantitative genetics. 4th Ed., Burnt Mill, England: Longman (1996).
Chaisurisri K, El-Kassaby YA. Genetic diversity in a seed production population vs. natural populations of Sitka spruce. Biodivers. Conserv. 1994;3:512–523. doi: 10.1007/BF00115157. DOI
El-Kassaby YA, Ritland K. Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodivers. Conserv. 1996;5:795–813. doi: 10.1007/BF00051787. DOI
Bell GD, Fletcher AM. Computer organised orchard layouts (COOL) based on the permutated neighbourhood design concept. Silvae Genet. 1978;27:223–225.
Edwards DGW, El-Kassaby YA. Douglas-fir genotypic response to seed stratification. Seed Sci. Tech. 1995;23:771–778.
Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–15.
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007;16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x. PubMed DOI
A Pollen-Based Assisted Migration for Rapid Forest Adaptation