Here, we perform cross-generational GS analysis on coastal Douglas-fir (Pseudotsuga menziesii), reflecting trans-generational selective breeding application. A total of 1321 trees, representing 37 full-sib F1 families from 3 environments in British Columbia, Canada, were used as the training population for (1) EBVs (estimated breeding values) of juvenile height (HTJ) in the F1 generation predicting genomic EBVs of HTJ of 136 individuals in the F2 generation, (2) deregressed EBVs of F1 HTJ predicting deregressed genomic EBVs of F2 HTJ, (3) F1 mature height (HT35) predicting HTJ EBVs in F2, and (4) deregressed F1 HT35 predicting genomic deregressed HTJ EBVs in F2. Ridge regression best linear unbiased predictor (RR-BLUP), generalized ridge regression (GRR), and Bayes-B GS methods were used and compared to pedigree-based (ABLUP) predictions. GS accuracies for scenarios 1 (0.92, 0.91, and 0.91) and 3 (0.57, 0.56, and 0.58) were similar to their ABLUP counterparts (0.92 and 0.60, respectively) (using RR-BLUP, GRR, and Bayes-B). Results using deregressed values fell dramatically for both scenarios 2 and 4 which approached zero in many cases. Cross-generational GS validation of juvenile height in Douglas-fir produced predictive accuracies almost as high as that of ABLUP. Without capturing LD, GS cannot surpass the prediction of ABLUP. Here we tracked pedigree relatedness between training and validation sets. More markers or improved distribution of markers are required to capture LD in Douglas-fir. This is essential for accurate forward selection among siblings as markers that track pedigree are of little use for forward selection of individuals within controlled pollinated families.
- MeSH
- genomika MeSH
- lineární modely MeSH
- modely genetické MeSH
- Pseudotsuga genetika růst a vývoj MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Britská Kolumbie MeSH
BACKGROUND: To explore poorly understood differences between primary and subsequent somatic embryogenic lines of plants, we induced secondary (2ry) and tertiary (3ry) lines from cotyledonary somatic embryos (SEs) of two Douglas-fir genotypes: SD4 and TD17. The 2ry lines exhibited significantly higher embryogenic potential (SE yields) than the 1ry lines initiated from zygotic embryos (SD4, 2155 vs 477; TD17, 240 vs 29 g- 1 f.w.). Moreover, we observed similar differences in yield between 2ry and 3ry lines of SD4 (2400 vs 3921 g- 1 f.w.). To elucidate reasons for differences in embryogenic potential induced by repetitive somatic embryogenesis we then compared 2ry vs 1ry and 2ry vs 3ry lines at histo-cytological (using LC-MS/MS) and proteomic levels. RESULTS: Repetitive somatic embryogenesis dramatically improved the proliferating lines' cellular organization (genotype SD4's most strongly). Frequencies of singulated, bipolar SEs and compact polyembryogenic centers with elongated suspensors and apparently cleavable embryonal heads increased in 2ry and (even more) 3ry lines. Among 2300-2500 identified proteins, 162 and 228 were classified significantly differentially expressed between 2ry vs 1ry and 3ry vs 2ry lines, respectively, with special emphasis on "Proteolysis" and "Catabolic process" Gene Ontology categories. Strikingly, most of the significant proteins (> 70%) were down-regulated in 2ry relative to 1ry lines, but up-regulated in 3ry relative to 2ry lines, revealing a down-up pattern of expression. GO category enrichment analyses highlighted the opposite adjustments of global protein patterns, particularly for processes involved in chitin catabolism, lignin and L-phenylalanine metabolism, phenylpropanoid biosynthesis, oxidation-reduction, and response to karrikin. Sub-Network Enrichment Analyses highlighted interactions between significant proteins and both plant growth regulators and secondary metabolites after first (especially jasmonic acid, flavonoids) and second (especially salicylic acid, abscisic acid, lignin) embryogenesis cycles. Protein networks established after each induction affected the same "Plant development" and "Defense response" biological processes, but most strongly after the third cycle, which could explain the top embryogenic performance of 3ry lines. CONCLUSIONS: This first report of cellular and molecular changes after repetitive somatic embryogenesis in conifers shows that each cycle enhanced the structure and singularization of EMs through modulation of growth regulator pathways, thereby improving the lines' embryogenic status.
- MeSH
- genové regulační sítě MeSH
- hmotnostní spektrometrie MeSH
- proteomika MeSH
- Pseudotsuga embryologie růst a vývoj metabolismus MeSH
- rostlinné proteiny metabolismus fyziologie MeSH
- semena rostlinná růst a vývoj metabolismus MeSH
- somatická embryogeneze rostlin metody MeSH
- Publikační typ
- časopisecké články MeSH
Seed orchards main function is delivering breeding programs' gains in the form of genetically improved seedlings. They are unique experimental populations, perfectly suited for studying various pollination environments (natural or otherwise), affecting their mating system parameters. Here, under different pollination environment (natural and intrusive (pollen augmentation and/or bloom-delay)), the mating system of a second generation, wind-pollinated, coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seed orchard was evaluated over four years. Using DNA microsatellite markers and bulk seed samples, we conducted pedigree reconstruction to assign each seed's male and female parents, followed by determining the extent of pollen contamination (external gene flow), selfing rate, and, parental gametic contribution for each year. Overall, external pollen contamination rates ranged between 10 and 28%, selfing rate varied between 12 and 17%, and 80% of the seed crops were produced by 37-64% of the orchard's parents. Pollination environment and seed crop size substantially influenced the observed results, particularly for small crops as pollen contamination was high in natural (28%) vs. intrusive pollination (10%). Generally, irrespective of the crop size, seed produced under natural pollination had higher pollen contamination, confirming the role of pollination environment manipulation in improving seed crops' genetic quality.
BACKGROUND: Genomic selection (GS) can offer unprecedented gains, in terms of cost efficiency and generation turnover, to forest tree selective breeding; especially for late expressing and low heritability traits. Here, we used: 1) exome capture as a genotyping platform for 1372 Douglas-fir trees representing 37 full-sib families growing on three sites in British Columbia, Canada and 2) height growth and wood density (EBVs), and deregressed estimated breeding values (DEBVs) as phenotypes. Representing models with (EBVs) and without (DEBVs) pedigree structure. Ridge regression best linear unbiased predictor (RR-BLUP) and generalized ridge regression (GRR) were used to assess their predictive accuracies over space (within site, cross-sites, multi-site, and multi-site to single site) and time (age-age/ trait-trait). RESULTS: The RR-BLUP and GRR models produced similar predictive accuracies across the studied traits. Within-site GS prediction accuracies with models trained on EBVs were high (RR-BLUP: 0.79-0.91 and GRR: 0.80-0.91), and were generally similar to the multi-site (RR-BLUP: 0.83-0.91, GRR: 0.83-0.91) and multi-site to single-site predictive accuracies (RR-BLUP: 0.79-0.92, GRR: 0.79-0.92). Cross-site predictions were surprisingly high, with predictive accuracies within a similar range (RR-BLUP: 0.79-0.92, GRR: 0.78-0.91). Height at 12 years was deemed the earliest acceptable age at which accurate predictions can be made concerning future height (age-age) and wood density (trait-trait). Using DEBVs reduced the accuracies of all cross-validation procedures dramatically, indicating that the models were tracking pedigree (family means), rather than marker-QTL LD. CONCLUSIONS: While GS models' prediction accuracies were high, the main driving force was the pedigree tracking rather than LD. It is likely that many more markers are needed to increase the chance of capturing the LD between causal genes and markers.
- MeSH
- dřevo chemie genetika MeSH
- exom * MeSH
- genomika MeSH
- genotyp MeSH
- lineární modely MeSH
- lokus kvantitativního znaku MeSH
- modely genetické * MeSH
- Pseudotsuga genetika růst a vývoj MeSH
- selekce (genetika) * MeSH
- šlechtění rostlin * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long-term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought-tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed-species stands along an altitudinal gradient (400-1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population-level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.
- MeSH
- fyziologická adaptace MeSH
- jedle fyziologie MeSH
- klimatické změny MeSH
- lesy MeSH
- období sucha * MeSH
- Pseudotsuga fyziologie MeSH
- smrk fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Německo MeSH
- Norsko MeSH
*Increasing evidence about hydraulic redistribution and its ecological consequences is emerging. Hydraulic redistribution results from an interplay between competing plant and soil water potential gradients. In this work, stem-mediated hydraulic redistribution was studied in a 53-year-old Douglas-fir tree during a period of drought. *Sap flux density measurements using the heat field deformation method were performed at four locations: in two large opposing roots and on two sides of the tree stem. Hydraulic redistribution was induced by localized irrigation on one of the measured roots, creating heterogeneous soil water conditions. *Stem-mediated hydraulic redistribution was detected during night-time conditions when water was redistributed from the wet side of the tree to the nonirrigated dry side. In addition to stem-mediated hydraulic redistribution, bidirectional flow in the dry root was observed, indicating radial sectoring in the xylem. *It was observed that, through stem-mediated hydraulic redistribution, Douglas-fir was unable to increase its transpiration despite the fact that sufficient water was available to one part of the root system. This resulted from the strong water potential gradient created by the dry soil in contact with the nonirrigated part of the root system. A mechanism of stem-mediated hydraulic redistribution is proposed and its possible implications are discussed.
- MeSH
- fyziologická adaptace fyziologie MeSH
- kořeny rostlin fyziologie MeSH
- období sucha MeSH
- Pseudotsuga fyziologie MeSH
- půda MeSH
- stonky rostlin fyziologie MeSH
- stromy fyziologie MeSH
- transpirace rostlin fyziologie MeSH
- voda fyziologie MeSH
- xylém MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH