• Je něco špatně v tomto záznamu ?

Genomic selection of juvenile height across a single-generational gap in Douglas-fir

FR. Thistlethwaite, B. Ratcliffe, J. Klápště, I. Porth, C. Chen, MU. Stoehr, YA. El-Kassaby,

. 2019 ; 122 (6) : 848-863. [pub] 20190110

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023898
E-zdroje Online Plný text

NLK Free Medical Journals od 2011
PubMed Central od 2011 do Před 1 rokem
Europe PubMed Central od 2011 do Před 1 rokem
ProQuest Central od 2000-01-01 do Před 1 rokem
Open Access Digital Library od 1947-01-01
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem
Public Health Database (ProQuest) od 2000-01-01 do Před 1 rokem

Here, we perform cross-generational GS analysis on coastal Douglas-fir (Pseudotsuga menziesii), reflecting trans-generational selective breeding application. A total of 1321 trees, representing 37 full-sib F1 families from 3 environments in British Columbia, Canada, were used as the training population for (1) EBVs (estimated breeding values) of juvenile height (HTJ) in the F1 generation predicting genomic EBVs of HTJ of 136 individuals in the F2 generation, (2) deregressed EBVs of F1 HTJ predicting deregressed genomic EBVs of F2 HTJ, (3) F1 mature height (HT35) predicting HTJ EBVs in F2, and (4) deregressed F1 HT35 predicting genomic deregressed HTJ EBVs in F2. Ridge regression best linear unbiased predictor (RR-BLUP), generalized ridge regression (GRR), and Bayes-B GS methods were used and compared to pedigree-based (ABLUP) predictions. GS accuracies for scenarios 1 (0.92, 0.91, and 0.91) and 3 (0.57, 0.56, and 0.58) were similar to their ABLUP counterparts (0.92 and 0.60, respectively) (using RR-BLUP, GRR, and Bayes-B). Results using deregressed values fell dramatically for both scenarios 2 and 4 which approached zero in many cases. Cross-generational GS validation of juvenile height in Douglas-fir produced predictive accuracies almost as high as that of ABLUP. Without capturing LD, GS cannot surpass the prediction of ABLUP. Here we tracked pedigree relatedness between training and validation sets. More markers or improved distribution of markers are required to capture LD in Douglas-fir. This is essential for accurate forward selection among siblings as markers that track pedigree are of little use for forward selection of individuals within controlled pollinated families.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023898
003      
CZ-PrNML
005      
20201214131617.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41437-018-0172-0 $2 doi
035    __
$a (PubMed)30631145
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Thistlethwaite, Frances R $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
245    10
$a Genomic selection of juvenile height across a single-generational gap in Douglas-fir / $c FR. Thistlethwaite, B. Ratcliffe, J. Klápště, I. Porth, C. Chen, MU. Stoehr, YA. El-Kassaby,
520    9_
$a Here, we perform cross-generational GS analysis on coastal Douglas-fir (Pseudotsuga menziesii), reflecting trans-generational selective breeding application. A total of 1321 trees, representing 37 full-sib F1 families from 3 environments in British Columbia, Canada, were used as the training population for (1) EBVs (estimated breeding values) of juvenile height (HTJ) in the F1 generation predicting genomic EBVs of HTJ of 136 individuals in the F2 generation, (2) deregressed EBVs of F1 HTJ predicting deregressed genomic EBVs of F2 HTJ, (3) F1 mature height (HT35) predicting HTJ EBVs in F2, and (4) deregressed F1 HT35 predicting genomic deregressed HTJ EBVs in F2. Ridge regression best linear unbiased predictor (RR-BLUP), generalized ridge regression (GRR), and Bayes-B GS methods were used and compared to pedigree-based (ABLUP) predictions. GS accuracies for scenarios 1 (0.92, 0.91, and 0.91) and 3 (0.57, 0.56, and 0.58) were similar to their ABLUP counterparts (0.92 and 0.60, respectively) (using RR-BLUP, GRR, and Bayes-B). Results using deregressed values fell dramatically for both scenarios 2 and 4 which approached zero in many cases. Cross-generational GS validation of juvenile height in Douglas-fir produced predictive accuracies almost as high as that of ABLUP. Without capturing LD, GS cannot surpass the prediction of ABLUP. Here we tracked pedigree relatedness between training and validation sets. More markers or improved distribution of markers are required to capture LD in Douglas-fir. This is essential for accurate forward selection among siblings as markers that track pedigree are of little use for forward selection of individuals within controlled pollinated families.
650    _2
$a genomika $7 D023281
650    _2
$a lineární modely $7 D016014
650    _2
$a modely genetické $7 D008957
650    _2
$a šlechtění rostlin $7 D000069600
650    _2
$a Pseudotsuga $x genetika $x růst a vývoj $7 D028224
651    _2
$a Britská Kolumbie $7 D001955
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ratcliffe, Blaise $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
700    1_
$a Klápště, Jaroslav $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Whakarewarewa, Rotorua, 3046, New Zealand. Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6, 165 21, Czech Republic.
700    1_
$a Porth, Ilga $u Département des sciences du bois et de la forêt, Université Laval, G1V 0A6, Québec, QC, Canada.
700    1_
$a Chen, Charles $u Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078-3035, USA.
700    1_
$a Stoehr, Michael U $u British Columbia Ministry of Forests, Lands and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada.
700    1_
$a El-Kassaby, Yousry A $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. y.el-kassaby@ubc.ca.
773    0_
$w MED00002030 $t Heredity $x 1365-2540 $g Roč. 122, č. 6 (2019), s. 848-863
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30631145 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214131615 $b ABA008
999    __
$a ok $b bmc $g 1596217 $s 1114574
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 122 $c 6 $d 848-863 $e 20190110 $i 1365-2540 $m Heredity $n Heredity $x MED00002030
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...