A Pollen-Based Assisted Migration for Rapid Forest Adaptation
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
TO01000243
EEA/Norway Grants 2014-2021 and the Technological Agency of the Czech Republic
PubMed
39744783
PubMed Central
PMC11694094
DOI
10.1111/gcb.70014
Knihovny.cz E-zdroje
- Klíčová slova
- forest nurseries, forestry policy, gene flow, genetic diversity, heterosis, natural selection, phytosanitary risks, seed orchards,
- MeSH
- fyziologická adaptace MeSH
- klimatické změny * MeSH
- lesnictví * metody MeSH
- lesy * MeSH
- pyl * MeSH
- tok genů MeSH
- zachování přírodních zdrojů metody MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Climate change poses an unprecedented threat to forest ecosystems, necessitating innovative adaptation strategies. Traditional assisted migration approaches, while promising, face challenges related to environmental constraints, forestry practices, phytosanitary risks, economic barriers, and legal constraints. This has sparked debate within the scientific community, with some advocating for the broader implementation of assisted migration despite these limitations, while others emphasize the importance of local adaptation, which may not keep pace with the rapid rate of climate change. This opinion paper proposes a novel pollen-based assisted migration strategy as a potential middle ground in this debate. By leveraging existing seed orchard infrastructure for controlled pollen transfer, this approach aims to enhance forest resilience through the introduction of genetic material from climatically suitable sources while acknowledging local adaptation. We assess the genetic implications of the proposed strategy through computer simulation. Additionally, we examine the ecological implications of assisted gene flow, discussing the potential benefits of heterosis and the risks of outbreeding depression in intra-specific hybrid populations. We further explore the advantages of pollen-based migration in mitigating phytosanitary risks, reducing economic barriers, and simplifying legal considerations compared to traditional seed or seedling transfer methods. Regional perspectives on adapting pollen-based assisted migration are provided, with specific examples from Northern and Central Europe. We highlight how this approach could be integrated into existing forestry practices and regulatory frameworks within the European Union. We conclude by advocating for the inclusion of pollen-based assisted migration in future international projects and operational forestry, emphasizing the need for adaptable policies that can support innovative forest management strategies in the face of climate change.
Animal Breeding and Genomics Wageningen University and Research Wageningen The Netherlands
Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
Forestry Research Institute of Sweden Uppsala Science Park Uppsala Sweden
Zobrazit více v PubMed
Aitken, S. N. , and Bemmels J. B.. 2016. “Time to Get Moving: Assisted Gene Flow of Forest Trees.” Evolutionary Applications 9, no. 1: 271–290. 10.1111/eva.12293. PubMed DOI PMC
Aitken, S. N. , and Whitlock M. C.. 2013. “Assisted Gene Flow to Facilitate Local Adaptation to Climate Change.” Annual Review of Ecology, Evolution, and Systematics 44: 367–388. 10.1146/annurev-ecolsys-110512-135747. DOI
Aitken, S. N. , Yeaman S., Holliday J. A., Wang T., and Curtis‐McLane S.. 2008. “Adaptation, Migration or Extirpation: Climate Change Outcomes for Tree Populations.” Evolutionary Applications 1, no. 1: 95–111. 10.1111/j.1752-4571.2007.00013.x. PubMed DOI PMC
Basler, D. , and Körner C.. 2012. “Photoperiod Sensitivity of Bud Burst in 14 Temperate Forest Tree Species.” Agricultural and Forest Meteorology 165: 73–81. 10.1016/j.agrformet.2012.06.001. DOI
Batkhuu, N.‐O. , Lee D. K., Tsogtbaatar J., and Park Y. D.. 2010. “Seed Quality of Siberian Larch ( Larix sibirica Ldb.) From Geographically Diverse Seed Sources in Mongolia.” Scandinavian Journal of Forest Research 25, no. sup8: 101–108. 10.1080/02827581.2010.485815. DOI
Benning, J. W. , and Moeller D. A.. 2021. “Plant–Soil Interactions Limit Lifetime Fitness Outside a Native Plant's Geographic Range Margin.” Ecology 102, no. 3: e03254. 10.1002/ecy.3254. PubMed DOI
Berlin, M. , Almqvist C., Haapanen M., et al. 2019. Common Scots Pine Deployment Recommendations for Sweden and Finland. Uppsala: Skogforsk Report. https://www.skogforsk.se/cd_20190510095857/contentassets/d6472db34bec4f10b0c9b5c694f2fd08/arbetsrapport‐1017‐2019.pdf.
Berlin, M. , Persson T., Jansson G., et al. 2016. “Scots Pine Transfer Effect Models for Growth and Survival in Sweden and Finland.” Silva Fennica 50, no. 3: 1562. 10.14214/sf.1562. DOI
Birchler, J. A. , Yao H., Chudalayandi S., Vaiman D., and Veitia R. A.. 2010. “Heterosis.” Plant Cell 22, no. 7: 2105–2112. 10.1105/tpc.110.076133. PubMed DOI PMC
Bose, A. K. , Moser B., Rigling A., et al. 2020. “Memory of Environmental Conditions Across Generations Affects the Acclimation Potential of Scots Pine.” Plant, Cell & Environment 43, no. 5: 1288–1299. 10.1111/pce.13729. PubMed DOI PMC
Bouma, A. , Kuchling G., Zhai S. Y., and Mitchell N.. 2020. “Assisted Colonisation Trials for the Western Swamp Turtle Show That Juveniles Can Grow in Cooler and Wetter Climates.” Endangered Species Research 43: 75–88. 10.3354/ESR01053. DOI
Branchereau, C. , Hardner C., Dirlewanger E., et al. 2023. “Genotype‐By‐Environment and QTL‐By‐Environment Interactions in Sweet Cherry ( Prunus avium L.) for Flowering Date.” Frontiers in Plant Science 14: 1142974. 10.3389/fpls.2023.1142974. PubMed DOI PMC
Branchereau, C. , Quero‐García J., Zaracho‐Echagüe N. H., et al. 2022. “New Insights Into Flowering Date in Prunus: Fine Mapping of a Major QTL in Sweet Cherry.” Horticulture Research 9: uhac042. 10.1093/hr/uhac042. PubMed DOI PMC
Brasier, C. M. 2008. “The Biosecurity Threat to the UK and Global Environment From International Trade in Plants.” Plant Pathology 57, no. 5: 792–808. 10.1111/j.1365-3059.2008.01886.x. DOI
Bräutigam, K. , Vining K. J., Lafon‐Placette C., et al. 2013. “Epigenetic Regulation of Adaptive Responses of Forest Tree Species to the Environment.” Ecology and Evolution 3, no. 2: 399–415. 10.1002/ece3.461. PubMed DOI PMC
Brown, C. D. , and Vellend M.. 2014. “Non‐Climatic Constraints on Upper Elevational Plant Range Expansion Under Climate Change.” Proceedings of the Royal Society B: Biological Sciences 281, no. 1794: 20141779. 10.1098/rspb.2014.1779. PubMed DOI PMC
Bruce, A. B. 1910. “The Mendelian Theory of Heredity and the Augmentation of Vigor.” Science 32, no. 827: 627–628. 10.1126/science.32.827.627.b. PubMed DOI
Buckler, E. S. , Holland J. B., Bradbury P. J., et al. 2009. “The Genetic Architecture of Maize Flowering Time.” Science 325, no. 5941: 714–718. 10.1126/science.1174276. PubMed DOI
Burczyk, J. , Adams W. T., Moran G. F., and Griffin A. R.. 2002. “Complex Patterns of Mating Revealed in a Eucalyptus regnans Seed Orchard Using Allozyme Markers and the Neighbourhood Model.” Molecular Ecology 11, no. 11: 2379–2391. 10.1046/j.1365-294X.2002.01603.x. PubMed DOI
Burdon, R. D. , Carson M. J., and Shelbourne C. J. A.. 2008. “Achievements in Forest Tree Genetic Improvement in Australia and New Zealand 10: Pinus radiata in New Zealand.” Australian Forestry 71, no. 4: 263–279. 10.1080/00049158.2008.10675045. DOI
Burns, R. M. , Honkala B. H., and [Technical coordinators] . 1990. “Silvics of North America: Volume 2. Hardwoods.” In Agriculture Handbook 654. Washington, DC: United States Department of Agriculture (USDA), Forest Service.
Campbell, I. D. , McDonald K., Flannigan M. D., and Kringayark J.. 1999. “Long‐Distance Transport of Pollen Into the Arctic.” Nature 399, no. 6731: 29–30. 10.1038/19891. DOI
Canadell, J. G. , and Raupach M. R.. 2008. “Managing Forests for Climate Change Mitigation.” Science 320, no. 5882: 1456–1457. 10.1126/science.1155458. PubMed DOI
Castède, S. , Campoy J. A., García J. Q., et al. 2014. “Genetic Determinism of Phenological Traits Highly Affected by Climate Change in Prunus avium : Flowering Date Dissected Into Chilling and Heat Requirements.” New Phytologist 202, no. 2: 703–715. 10.1111/nph.12658. PubMed DOI
Chaix, G. , Monteuuis O., Garcia C., et al. 2011. “Genetic Variation in Major Phenotypic Traits Among Diverse Genetic Origins of Teak ( Tectona grandis L.f.) Planted in Taliwas, Sabah, East Malaysia.” Annals of Forest Science 68, no. 5: 1015–1026. 10.1007/s13595-011-0109-8. DOI
Chakraborty, D. , Ciceu A., Ballian D., et al. 2024. “Assisted Tree Migration Can Preserve the European Forest Carbon Sink Under Climate Change.” Nature Climate Change 14: 845–852. 10.1038/s41558-024-02080-5. DOI
Chakraborty, D. , Móricz N., Rasztovits E., Dobor L., and Schueler S.. 2021. “Provisioning Forest and Conservation Science With High‐Resolution Maps of Potential Distribution of Major European Tree Species Under Climate Change.” Annals of Forest Science 78, no. 2: 26. 10.1007/s13595-021-01029-4. DOI
Clark, J. S. , Fastie C., Hurtt G., et al. 1998. “Reid's Paradox of Rapid Plant Migration: Dispersal Theory and Interpretation of Paleoecological Records.” Bioscience 48, no. 1: 13–24.
Clark, P. W. , D'Amato A. W., Palik B. J., et al. 2023. “A Lack of Ecological Diversity in Forest Nurseries Limits the Achievement of Tree‐Planting Objectives in Response to Global Change.” Bioscience 73, no. 8: 575–586. 10.1093/biosci/biad049. DOI
Clark, P. W. , Freeman A. J., D'Amato A. W., et al. 2022. “Restoring a Keystone Tree Species for the Future: American Chestnut Assisted Migration Plantings in an Adaptive Silviculture Experiment.” Forest Ecology and Management 523: 120505. 10.1016/j.foreco.2022.120505. DOI
Cooper, H. F. , Grady K. C., Cowan J. A., Best R. J., Allan G. J., and Whitham T. G.. 2019. “Genotypic Variation in Phenological Plasticity: Reciprocal Common Gardens Reveal Adaptive Responses to Warmer Springs but Not to Fall Frost.” Global Change Biology 25, no. 1: 187–200. 10.1111/gcb.14494. PubMed DOI
Critchfield, W. B. 1967. “Crossability and Relationships of the Closed‐Cone Pines.” Silvae Genetica 16: 89–97. https://www.sauerlaender‐verlag.com/CMS/fileadmin/content/dokument/archiv/silvaegenetica/16_1967/16‐3‐89.pdf.
Darwin, C. 1876. The Effects of Cross‐ and Self‐Fertilization in the Vegetable Kingdom. London: John Murray.
Dauphin, B. , Rellstab C., Wüest R. O., et al. 2023. “Re‐Thinking the Environment in Landscape Genomics.” Trends in Ecology & Evolution 38, no. 3: 261–274. 10.1016/j.tree.2022.10.010. PubMed DOI
Davenport, C. B. 1908. “Degeneration, Albinism and Inbreeding.” Science 28, no. 718: 454–455. http://www.jstor.org/stable/1634614. PubMed
De La Torre, A. R. , Puiu D., Crepeau M. W., et al. 2019. “Genomic Architecture of Complex Traits in Loblolly Pine.” New Phytologist 221, no. 4: 1789–1801. 10.1111/nph.15535. PubMed DOI
De la Torre, A. R. , Wilhite B., Puiu D., et al. 2021. “Dissecting the Polygenic Basis of Cold Adaptation Using Genome‐Wide Association of Traits and Environmental Data in Douglas‐Fir.” Genes 12, no. 1: 110. 10.3390/genes12010110. PubMed DOI PMC
Depardieu, C. , Gérardi S., Nadeau S., et al. 2021. “Connecting Tree‐Ring Phenotypes, Genetic Associations and Transcriptomics to Decipher the Genomic Architecture of Drought Adaptation in a Widespread Conifer.” Molecular Ecology 30, no. 16: 3898–3917. 10.1111/mec.15846. PubMed DOI PMC
Dickson, R. L. , Sweet G. B., and Mitchell N. D.. 2000. “Predicting Pinus radiata Female Strobilus Production for Seed Orchard Site Selection in New Zealand.” Forest Ecology and Management 133, no. 3: 197–215. 10.1016/S0378-1127(99)00233-9. DOI
Dirlewanger, E. , Quero‐García J., Le Dantec L., et al. 2012. “Comparison of the Genetic Determinism of Two Key Phenological Traits, Flowering and Maturity Dates, in Three Prunus Species: Peach, Apricot and Sweet Cherry.” Heredity 109, no. 5: 280–292. 10.1038/hdy.2012.38. PubMed DOI PMC
Doerksen, T. K. , Bousquet J., and Beaulieu J.. 2014. “Inbreeding Depression in Intra‐Provenance Crosses Driven by Founder Relatedness in White Spruce.” Tree Genetics & Genomes 10, no. 1: 203–212. 10.1007/s11295-013-0676-y. DOI
Dungey, H. S. 2001. “Pine Hybrids—A Review of Their Use Performance and Genetics.” Forest Ecology and Management 148, no. 1: 243–258. 10.1016/S0378-1127(00)00539-9. DOI
East, E. M. 1908. “Inbreeding in Corn Reports of the Connecticut Agricultural Experimental Station for 1907.” pp. 419–428.
Eriksson, G. , and Ilstedt B.. 1986. “Stem Volume of Intra‐ and Interprovenance Families of Picea abies (L.) Karst.” Scandinavian Journal of Forest Research 1, no. 1–4: 141–152. 10.1080/02827588609382407. DOI
Eschen, R. , Roques A., and Santini A.. 2015. “Taxonomic Dissimilarity in Patterns of Interception and Establishment of Alien Arthropods, Nematodes and Pathogens Affecting Woody Plants in Europe.” Diversity and Distributions 21, no. 1: 36–45. 10.1111/ddi.12267. DOI
Faulkner, R. 1975. Seed Orchards, Forestry Commission Bulletin No. 54. London: Forestry Commission Bulletin.
Feng, L. , Sun J., Shi Y., Wang G., and Wang T.. 2020. “Predicting Suitable Habitats of Camptotheca acuminata Considering Both Climatic and Soil Variables.” Forests 11, no. 8: 891. 10.3390/f11080891. DOI
Findlater, K. , Peterson St‐Laurent G., Hagerman S., and Kozak R.. 2020. “Surprisingly Malleable Public Preferences for Climate Adaptation in Forests.” Environmental Research Letters 15: 034045. 10.1088/1748-9326/ab7464. DOI
Franić, I. , Prospero S., Hartmann M., et al. 2019. “Are Traded Forest Tree Seeds a Potential Source of Nonnative Pests?” Ecological Applications 29, no. 7: e01971. 10.1002/eap.1971. PubMed DOI
Franks, S. J. , and Hoffmann A. A.. 2012. “Genetics of Climate Change Adaptation.” Annual Review of Genetics 46: 185–208. 10.1146/annurev-genet-110711-155511. PubMed DOI
Funda, T. , and El‐Kassaby Y. A.. 2012. “Seed Orchard Genetics.” CABI Reviews 7: 1–23. 10.1079/PAVSNNR2012701. DOI
Gailing, O. , Wachter H., Heyder J., Schmitt H.‐P., and Finkeldey R.. 2012. “Chloroplast DNA Analysis in Oak Stands ( Quercus robur L.) in North Rhine‐Westphalia With Presumably Slavonian Origin: Is There an Association Between Geographic Origin and Bud Phenology?” Journal of Applied Botany and Food Quality 81, no. 2: 165–171. https://ojs.openagrar.de/index.php/JABFQ/issue/view/825.
Gapare, W. J. 2000. “Predicted and Realized Genetic Gain in Eucalyptus grandis Breeding Seedling Orchard in Zimbabwe.” Southern African Forestry Journal 189, no. 1: 11–15. 10.1080/10295925.2000.9631275. DOI
Gorte, R. W. , and Sheikh P. A.. 2010. Deforestation and Climate Change. Washington DC: Congressional Research Service.
Goto, S. , Iijima H., Ogawa H., and Ohya K.. 2011. “Outbreeding Depression Caused by Intraspecific Hybridization Between Local and Nonlocal Genotypes in Abies Sachalinensis .” Restoration Ecology 19, no. 2: 243–250. 10.1111/j.1526-100X.2009.00568.x. DOI
Grummer, J. A. , Booker T. R., Matthey‐Doret R., Nietlisbach P., Thomaz A. T., and Whitlock M. C.. 2022. “The Immediate Costs and Long‐Term Benefits of Assisted Gene Flow in Large Populations.” Conservation Biology 36, no. 4: e13911. 10.1111/cobi.13911. PubMed DOI
Harfouche, A. , Bahrman N., Baradat P., Guyon J. P., Petit R. J., and Kremer A.. 2000. “Provenance Hybridization in a Diallel Mating Scheme of Maritime Pine ( Pinus pinaster ). II. Heterosis.” Canadian Journal of Forest Research 30, no. 1: 10–16. 10.1139/x99-179. DOI
Harfouche, A. , and Kremer A.. 2000. “Provenance Hybridization in a Diallel Mating Scheme of Maritime Pine ( Pinus pinaster ). I. Means and Variance Components.” Canadian Journal of Forest Research 30, no. 1: 1–9. 10.1139/x99-178. DOI
Hazarika, R. , Bolte A., Bednárová D., et al. 2021. “Multi‐Actor Perspectives on Afforestation and Reforestation Strategies in Central Europe Under Climate Change.” Annals of Forest Science 78, no. 3: 60. 10.1007/s13595-021-01044-5. DOI
Hei, N. , Hussein S., and Laing M.. 2016. “Heterosis and Combining Ability Analysis of Slow Rusting Stem Rust Resistance and Yield and Related Traits in Bread Wheat.” Euphytica 207, no. 3: 501–514. 10.1007/s10681-015-1526-9. DOI
Hemery, G. E. , Clark J. R., Aldinger E., et al. 2010. “Growing Scattered Broadleaved Tree Species in Europe in a Changing Climate: A Review of Risks and Opportunities.” Forestry: An International Journal of Forest Research 83, no. 1: 65–81. 10.1093/forestry/cpp034. DOI
Hereford, J. 2009. “A Quantitative Survey of Local Adaptation and Fitness Trade‐Offs.” American Naturalist 173, no. 5: 579–588. 10.1086/597611. PubMed DOI
Heuchel, A. , Hall D., Zhao W., Gao J., Wennstrom U., and Wang X.‐R.. 2022. “Genetic Diversity and Background Pollen Contamination in Norway Spruce and Scots Pine Seed Orchard Crops.” Forest Research 2: 1–12. 10.48130/FR-2022-0008. PubMed DOI PMC
Hoegh‐Guldberg, O. , Hughes L., McIntyre S., et al. 2008. “Assisted Colonization and Rapid Climate Change.” Science 321, no. 5887: 345–346. 10.1126/science.1157897. PubMed DOI
Horbach, S. , Rauschkolb R., and Römermann C.. 2023. “Flowering and Leaf Phenology Are More Variable and Stronger Associated to Functional Traits in Herbaceous Compared to Tree Species.” Flora 300: 152218. 10.1016/j.flora.2023.152218. DOI
IPCC . 2022. “Climate Change 2022: Mitigation of Climate Change.” In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Shukla P. R., Skea J., Slade R., et al. Cambridge, UK and New York, NY, USA: Cambridge University Press. 10.1017/9781009157926. DOI
Ivetić, V. , Devetaković J., Nonić M., Stanković D., and Šijačić‐Nikolić M.. 2016. “Genetic Diversity and Forest Reproductive Material—From Seed Source Selection to Planting.” iForest ‐ Biogeosciences and Forestry 9, no. 5: 801–812. 10.3832/ifor1577-009. DOI
Jansen, S. , and Geburek T.. 2016. “Historic Translocations of European Larch ( Larix decidua Mill.) Genetic Resources Across Europe–A Review From the 17th Until the Mid‐20th Century.” Forest Ecology and Management 379: 114–123. 10.1016/J.FORECO.2016.08.007. DOI
Jansen, S. , Konrad H., and Geburek T.. 2017. “The Extent of Historic Translocation of Norway Spruce Forest Reproductive Material in Europe.” Annals of Forest Science 74, no. 3: 56. 10.1007/s13595-017-0644-z. DOI
Jayawickrama, K. J. S. , and Balocchi L. C.. 1993. “Tree Improvement in Chile: Two Decades of Progress.” Journal of Forestry 91, no. 6: 43–47. 10.1093/jof/91.6.43. DOI
Johnsen, Ø. , Dæhlen O. G., Østreng G., and Skrøppa T.. 2005. “Daylength and Temperature During Seed Production Interactively Affect Adaptive Performance of Picea abies Progenies.” New Phytologist 168, no. 3: 589–596. 10.1111/j.1469-8137.2005.01538.x. PubMed DOI
Johnsen, Ø. , Kvaalen H., Yakovlev I., Dæhlen O. G., Fossdal C. G., and Skrøppa T.. 2009. “An Epigenetic Memory From Time of Embryo Development Affects Climatic Adaptation in Norway Spruce.” In The 8th International Plant Cold Hardiness Seminar (8IPCH), 3–9. Saskatchewan, Canada: CABI Digital Library. 10.1079/9781845935139.0099. DOI
Johnson, I. G. , Robinson G., and O'Hara A. J.. 1992. “Wood Production and Economic Gains From the Use of Seed Orchard Stock in Radiata Pine Plantations in New South Wales.” Australian Forestry 55, no. 1–4: 126–134. 10.1080/00049158.1992.10676106. DOI
Jones, D. F. 1917. “Dominance of Linked Factors as a Means of Accounting for Heterosis.” Genetics 2, no. 5: 466–479. 10.1093/genetics/2.5.466. PubMed DOI PMC
Jung, T. , Orlikowski L., Henricot B., et al. 2016. “Widespread Phytophthora Infestations in European Nurseries Put Forest, Semi‐Natural and Horticultural Ecosystems at High Risk of Phytophthora Diseases.” Forest Pathology 46, no. 2: 134–163. 10.1111/efp.12239. DOI
Kaya, Z. , and Lindgren D.. 1992. “The Genetic Variation of Inter‐Provenance Hybrids of Picea abies and Possible Breeding Consequences.” Scandinavian Journal of Forest Research 7, no. 1–4: 15–26. 10.1080/02827589209382694. DOI
Kelly, E. , and Phillips B. L.. 2016. “Targeted Gene Flow for Conservation.” Conservation Biology 30, no. 2: 259–267. 10.1111/cobi.12623. PubMed DOI
Konnert, M. , Fady B., Gömöry D., et al. 2015. “Use and Transfer of Forest Reproductive Material in Europe in the Context of Climate Change.” In European Forest Genetic Resources Programme (EUFORGEN), 75. Rome, Italy: Bioversity International.
Korecký, J. , and El‐Kassaby Y. A.. 2016. “Pollination Dynamics Variation in a Douglas‐Fir Seed Orchard as Revealed by Microsatellite Analysis.” Silva Fennica 50, no. 4: 1682. 10.14214/sf.1682. DOI
Kramer, K. 1995. “Phenotypic Plasticity of the Phenology of Seven European Tree Species in Relation to Climatic Warming.” Plant, Cell & Environment 18, no. 2: 93–104. 10.1111/j.1365-3040.1995.tb00356.x. DOI
Langlet, O. 1971. “Two Hundred Years Genecology.” Taxon 20, no. 5–6: 653–721. 10.2307/1218596. DOI
Larsen, J. 1981. “Waldbauliche und ertragskundliche Erfahrungen mit verschiedenen Provenienzen der Weißtanne ( Abies alba Mill.) in Dänemark.” Forstwissenschaftliches Centralblatt 100: 275–286. 10.1007/BF02640644. DOI
Laube, J. , Sparks T. H., Estrella N., Höfler J., Ankerst D. P., and Menzel A.. 2014. “Chilling Outweighs Photoperiod in Preventing Precocious Spring Development.” Global Change Biology 20, no. 1: 170–182. 10.1111/gcb.12360. PubMed DOI
Ledig, F. T. , Rehfeldt G. E., and Jaquish B.. 2012. “Projections of Suitable Habitat Under Climate Change Scenarios: Implications for Trans‐Boundary Assisted Colonization.” American Journal of Botany 99, no. 7: 1217–1230. 10.3732/ajb.1200059. PubMed DOI
Lefèvre, F. 2004. “Human Impacts on Forest Genetic Resources in the Temperate Zone: An Updated Review.” Forest Ecology and Management 197, no. 1: 257–271. 10.1016/j.foreco.2004.05.017. DOI
Leksono, B. , Kurinobu S., and Ide Y.. 2008. “Realized Genetic Gains Observed in Second Generation Seedling Seed Orchards of Eucalyptus pellita in Indonesia.” Journal of Forest Research 13, no. 2: 110–116. 10.1007/s10310-008-0061-0. DOI
Levkoev, E. , Kilpeläinen A., Luostarinen K., et al. 2017. “Differences in Growth and Wood Density in Clones and Provenance Hybrid Clones of Norway Spruce.” Canadian Journal of Forest Research 47, no. 3: 389–399. 10.1139/cjfr-2016-0285. DOI
Li, B. , McKeand S., and Weir R.. 1999. “Tree Improvement and Sustainable Forestry–Impact of Two Cycles of Loblolly Pine Breeding in the USA.” Forest Genetics 6, no. 4: 229–234.
Liebhold, A. M. , Brockerhoff E. G., Garrett L. J., Parke J. L., and Britton K. O.. 2012. “Live Plant Imports: The Major Pathway for Forest Insect and Pathogen Invasions of the US.” Frontiers in Ecology and the Environment 10, no. 3: 135–143. 10.1890/110198. DOI
Liesebach, H. , Liepe K., and Bäucker C.. 2021. “Towards New Seed Orchard Designs in Germany—A Review.” Silvae Genetica 70, no. 1: 84–98. 10.2478/sg-2021-0007. DOI
Lindner, M. , Maroschek M., Netherer S., et al. 2010. “Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems.” Forest Ecology and Management 259, no. 4: 698–709. 10.1016/J.FORECO.2009.09.023. DOI
Liziniewicz, M. , Berlin M., Solvin T., et al. 2023. “Development of a Universal Height Response Model for Transfer of Norway Spruce ( Picea abies L. Karst) in Fennoscandia.” Forest Ecology and Management 528: 120628. PubMed PMC
Lstibůrek, M. , García‐Gil M. R., and Steffenrem A.. 2023. “Rolling Front Landscape Breeding.” Annals of Forest Science 80, no. 1: 36.
Lynch, M. , and Walsh B.. 1998. Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates.
Madhibha, T. , Murepa R., Musokonyi C., and Gapare W.. 2013. “Genetic Parameter Estimates for Interspecific Eucalyptus Hybrids and Implications for Hybrid Breeding Strategy.” New Forests 44, no. 1: 63–84. 10.1007/s11056-011-9302-8. DOI
Marchal, A. , Muñoz F., Millier F., Sánchez L., and Pâques L. E.. 2017. “Hybrid Larch Heterosis: For Which Traits and Under Which Genetic Control?” Tree Genetics & Genomes 13, no. 5: 92. 10.1007/s11295-017-1177-1. DOI
McKone, M. J. , and Hernández D. L.. 2021. “Community‐Level Assisted Migration for Climate‐Appropriate Prairie Restoration.” Restoration Ecology 29, no. 7: e13416. 10.1111/rec.13416. DOI
Milesi, P. , Berlin M., Chen J., et al. 2019. “Assessing the Potential for Assisted Gene Flow Using Past Introduction of Norway Spruce in Southern Sweden: Local Adaptation and Genetic Basis of Quantitative Traits in Trees.” Evolutionary Applications 12, no. 10: 1946–1959. 10.1111/eva.12855. PubMed DOI PMC
Miller, L. K. , and DeBell J.. 2013. “Current Seed Orchard Techniques and Innovations.” In National Proceedings: Forest and Conservation Nursery Associations – 2012. Proceedings RMRS‐P‐69, edited by Haase D. L., Pinto J. R., Wilkinson K. M., and Technical Coordinators, 80–86. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Missanjo, E. , Kamanga‐Thole G., and Manda V.. 2013. “Estimation of Genetic and Phenotypic Parameters for Growth Traits in a Clonal Seed Orchard of Pinus Kesiya in Malawi.” International Scholarly Research Notices 2013, no. 1: 346982. 10.1155/2013/346982. DOI
Moll, R. H. , Lonnquist J. H., Fortuno J. V., and Johnson E. C.. 1965. “The Relationship of Heterosis and Genetic Divergence in Maize.” Genetics 52, no. 1: 139–144. 10.1093/genetics/52.1.139. PubMed DOI PMC
Montwé, D. , Isaac‐Renton M., Hamann A., and Spiecker H.. 2018. “Cold Adaptation Recorded in Tree Rings Highlights Risks Associated With Climate Change and Assisted Migration.” Nature Communications 9, no. 1: 1574. 10.1038/s41467-018-04039-5. PubMed DOI PMC
Moriguchi, Y. , Tani N., Itoo S., et al. 2005. “Gene Flow and Mating System in Five Cryptomeria japonica D. Don Seed Orchards as Revealed by Analysis of Microsatellite Markers.” Tree Genetics & Genomes 1, no. 4: 174–183. 10.1007/s11295-005-0023-z. DOI
Mueller, J. M. , and Hellmann J. J.. 2008. “An Assessment of Invasion Risk From Assisted Migration.” Conservation Biology 22, no. 3: 562–567. 10.1111/j.1523-1739.2008.00952.x. PubMed DOI
Müller, F. 1997. “Walderhaltung in Oesterreich: Zehn Jahre Sicherung forstlicher Genressourcen.” LÖBF‐Mitteilungen 22, no. 4: 50–53.
Myking, T. , Rusanen M., Steffenrem A., Kjær E. D., and Jansson G.. 2016. “Historic Transfer of Forest Reproductive Material in the Nordic Region: Drivers, Scale and Implications.” Forestry: An International Journal of Forest Research 89, no. 4: 325–337. 10.1093/forestry/cpw020. DOI
Na, S.‐J. , Lee H.‐S., Han S.‐U., Park J.‐M., and Kang K.‐S.. 2015. “Estimation of Genetic Gain and Diversity Under Various Genetic Thinning Scenarios in a Breeding Seed Orchard of Quercus acutissima .” Scandinavian Journal of Forest Research 30, no. 5: 377–381. 10.1080/02827581.2015.1018936. DOI
Nathan, R. , Horvitz N., He Y., Kuparinen A., Schurr F. M., and Katul G. G.. 2011. “Spread of North American Wind‐Dispersed Trees in Future Environments.” Ecology Letters 14, no. 3: 211–219. 10.1111/j.1461-0248.2010.01573.x. PubMed DOI
Nathan, R. , Katul G. G., Horn H. S., et al. 2002. “Mechanisms of Long‐Distance Dispersal of Seeds by Wind.” Nature 418, no. 6896: 409–413. 10.1038/nature00844. PubMed DOI
Neophytou, C. , van Loo M., and Hasenauer H.. 2020. “Genetic Diversity in Introduced Douglas‐Fir and Its Natural Regeneration in Central Europe.” Forestry: An International Journal of Forest Research 93, no. 4: 535–544. 10.1093/forestry/cpz055. DOI
Ni, M. , and Vellend M.. 2024. “Soil Properties Constrain Predicted Poleward Migration of Plants Under Climate Change.” New Phytologist 241, no. 1: 131–141. 10.1111/nph.19164. PubMed DOI
Nicodemus, A. , Varghese M., Nagarajan B., and Lindgren D.. 2009. “Annual Fertility Variation in Clonal Seed Orchards of Teak ( Tectona grandis L.F.) and Its Impact on Seed Crop.” Silvae Genetica 58, no. 1–6: 85–93. 10.1515/sg-2009-0011. DOI
Nielsen, U. B. , Xu J., and Hansen O. K.. 2020. “Genetics in and Opportunities for Improvement of Nordmann Fir (Abies nordmanniana (Steven) Spach) Christmas Tree Production.” Tree Genetics & Genomes 16, no. 5: 66. 10.1007/s11295-020-01461-z. DOI
O'Hara, K. L. 2016. “What Is Close‐To‐Nature Silviculture in a Changing World?” Forestry: An International Journal of Forest Research 89, no. 1: 1–6. 10.1093/forestry/cpv043. DOI
Pearse, I. S. , Koenig W. D., Funk K. A., and Pesendorfer M. B.. 2015. “Pollen Limitation and Flower Abortion in a Wind‐Pollinated, Masting Tree.” Ecology 96, no. 2: 587–593. 10.1890/14-0297.1. PubMed DOI
Petit, R. J. , Aguinagalde I., de Beaulieu J.‐L., et al. 2003. “Glacial Refugia: Hotspots but Not Melting Pots of Genetic Diversity.” Science 300, no. 5625: 1563–1565. 10.1126/science.1083264. PubMed DOI
Powers, L. 1944. “An Expansion of Jones's Theory for the Explanation of Heterosis.” American Naturalist 78, no. 776: 275–280. 10.1086/281199. DOI
Rehfeldt, G. E. , Tchebakova N. M., Parfenova Y. I., Wykoff W. R., Kuzmina N. A., and Milyutin L. I.. 2002. “Intraspecific Responses to Climate in Pinus sylvestris .” Global Change Biology 8, no. 9: 912–929. 10.1046/j.1365-2486.2002.00516.x. DOI
Reid, C. 1899. The Origin of the British Flora. London: Dulau.
Reid, D. J. S. 2008. “British Columbia's Seed Orchard Program: Multi Species Management With Integration to the End User.” In Proceedings of a Seed Orchard Conference, Umeå, Sweden, 26–28 September 2007, edited by Lindgren D., 204–214. Sweden: Swedish University of Agricultural Sciences.
Richardson, D. M. , Hellmann J. J., McLachlan J. S., et al. 2009. “Multidimensional Evaluation of Managed Relocation.” Proceedings of the National Academy of Sciences 106, no. 24: 9721–9724. 10.1073/pnas.0902327106. PubMed DOI PMC
Riehl, J. F. L. , Cole C. T., Morrow C. J., et al. 2023. “Genomic and Transcriptomic Analyses Reveal Polygenic Architecture for Ecologically Important Traits in Aspen ( Populus tremuloides Michx.).” Ecology and Evolution 13, no. 10: e10541. 10.1002/ece3.10541. PubMed DOI PMC
Rockwood, D. L. , Huber D. A., and White T. L.. 2001. “Provenance and Family Variability in Slash Pine ( Pinus elliottii var. elliottii Engelm.) Grown in Southern Brazil and Northeastern Argentina.” New Forests 21, no. 2: 115–125. 10.1023/A:1011850009675. DOI
Sáenz‐Romero, C. , Lindig‐Cisneros R. A., Joyce D. G., Beaulieu J., St Clair J. B., and Jaquish B. C.. 2016. “Assisted Migration of Forest Populations for Adapting Trees to Climate Change.” Revista Chapingo Serie Ciencias Forestales y Del Ambiente 22, no. 3: 303–323. 10.5154/r.rchscfa.2014.10.052. DOI
Sáenz‐Romero, C. , Neill G., Aitken S. N., and Lindig‐Cisneros R.. 2021. “Assisted Migration Field Tests in Canada and Mexico: Lessons, Limitations, and Challenges.” Forests 12, no. 1: 9. 10.3390/f12010009. DOI
Saha, S. , Kuehne C., Kohnle U., et al. 2012. “Growth and Quality of Young Oaks (Quercus Robur and Quercus petraea ) Grown in Cluster Plantings in Central Europe: A Weighted Meta‐Analysis.” Forest Ecology and Management 283: 106–118. 10.1016/j.foreco.2012.07.021. DOI
Sánchez‐Pérez, R. , Del Cueto J., Dicenta F., and Martínez‐Gómez P.. 2014. “Recent Advancements to Study Flowering Time in Almond and Other Prunus Species.” Frontiers in Plant Science 5: 334. 10.3389/fpls.2014.00334. PubMed DOI PMC
Savolainen, O. , Pyhäjärvi T., and Knürr T.. 2007. “Gene Flow and Local Adaptation in Trees.” Annual Review of Ecology, Evolution, and Systematics 38: 595–619. 10.1146/annurev.ecolsys.38.091206.095646. DOI
Schreiber, S. G. , Hacke U. G., and Hamann A.. 2015. “Variation of Xylem Vessel Diameters Across a Climate Gradient: Insight From a Reciprocal Transplant Experiment With a Widespread Boreal Tree.” Functional Ecology 29, no. 11: 1392–1401. 10.1111/1365-2435.12455. DOI
Secretariat of the Convention on Biological Diversity . 2011. “Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising From Their Utilization to the Convention on Biological Diversity.” https://www.cbd.int/abs/doc/protocol/nagoya‐protocol‐en.pdf.
Shelton, W. R. , Mitchell R. J., Christopher D. A., Jack L. P., and Karron J. D.. 2024. “Among‐Individual Variation in Flowering Phenology Affects Flowering Synchrony and Mating Opportunity.” American Journal of Botany 111, no. 1: e16269. 10.1002/ajb2.16269. PubMed DOI
Shi, T. , Arnold R. J., Kang W., et al. 2016. “Genetic Variation and Gains for Two Generations of Eucalyptus dunnii in China.” Australian Forestry 79, no. 1: 15–24. 10.1080/00049158.2015.1086720. DOI
Shull, G. H. 1908. “The Composition of a Field of Maize.” Journal of Heredity 1: 296–301.
Shull, G. H. 1914. “Duplicate Genes for Capsule‐Form in Bursa bursa‐pastoris .” Zeitschrift für Induktive Abstammungs‐ und Vererbungslehre 12, no. 1: 97–149. 10.1007/BF01837282. DOI
Silvestro, R. , Rossi S., Zhang S., Froment I., Huang J. G., and Saracino A.. 2019. “From Phenology to Forest Management: Ecotypes Selection Can Avoid Early or Late Frosts, but Not Both.” Forest Ecology and Management 436: 21–26. 10.1016/j.foreco.2019.01.005. DOI
Singh, P. , St Clair J. B., Lind B. M., et al. 2024. “Genetic Architecture of Disease Resistance and Tolerance in Douglas‐Fir Trees.” New Phytologist 243, no. 2: 705–719. 10.1111/nph.19797. PubMed DOI
Sittaro, F. , Paquette A., Messier C., and Nock C. A.. 2017. “Tree Range Expansion in Eastern North America Fails to Keep Pace With Climate Warming at Northern Range Limits.” Global Change Biology 23, no. 8: 3292–3301. 10.1111/gcb.13622. PubMed DOI
Skogforsk . 2024. “Planter's Guide.” https://www.skogforsk.se/plantersguide.
Smith, C. , Baker J. C. A., and Spracklen D. V.. 2023. “Tropical Deforestation Causes Large Reductions in Observed Precipitation.” Nature 615, no. 7951: 270–275. 10.1038/s41586-022-05690-1. PubMed DOI PMC
So, T. , Theilade I., and Dell B.. 2010. “Conservation and Utilization of Threatened Hardwood Species Through Reforestation? An Example of Afzelia Xylocarpa (Kruz.) Craib and Dalbergia cochinchinensis Pierre in Cambodia.” Pacific Conservation Biology 16, no. 2: 101–116. https://www.publish.csiro.au/PC/PC100101.
Song, J. , Ratcliffe B., Kess T., Lai B. S., Korecký J., and El‐Kassaby Y. A.. 2018. “Temporal Quantification of Mating System Parameters in a Coastal Douglas‐Fir Seed Orchard Under Manipulated Pollination Environment.” Scientific Reports 8, no. 1: 11593. 10.1038/s41598-018-30041-4. PubMed DOI PMC
Stejskal, J. , Horák J., and Typta J.. 2016. “Effect of Hybridization in the Firs: Artificial Hybridization May Lead to Higher Survival Rate.” European Journal of Forest Research 135: 1097–1105. 10.1007/s10342-016-0996-1. DOI
Ste‐Marie, C. , Nelson A., Dabros A., and Bonneau M.‐E.. 2011. “Assisted Migration: Introduction to a Multifaceted Concept.” Forestry Chronicle 87, no. 6: 724–730. 10.5558/tfc2011-089. DOI
Stinziano, J. R. , and Way D. A.. 2014. “Combined Effects of Rising [CO2] and Temperature on Boreal Forests: Growth, Physiology and Limitations.” Botany 92, no. 6: 425–436. 10.1139/cjb-2013-0314. DOI
Swain, T.‐L. , Verryn S. D., and Laing M. D.. 2013. “A Comparison of the Effect of Genetic Improvement, Seed Source and Seedling Seed Orchard Variables on Progeny Growth in Eucalyptus nitens in South Africa.” Tree Genetics & Genomes 9, no. 3: 767–778. 10.1007/s11295-013-0593-0. DOI
Tabel, U. 1997. “Erhaltung forstlicher Genressourcen in der Bundesrepublik Deutschland.” AFZ/Der Wald 52, no. 5: 259–261.
Turner, J. A. 1997. “Realised Genetic Gain in Pinus radiata From "850" Seed‐Orchard Seedlots Grown Commercially in the Central North Island, New Zealand. Part 1: Growth.” New Zealand Journal of Forestry Science 27, no. 2: 142–157.
Urrestarazu, J. , Muranty H., Denancé C., et al. 2017. “Genome‐Wide Association Mapping of Flowering and Ripening Periods in Apple.” Frontiers in Plant Science 8: 1923. 10.3389/fpls.2017.01923. PubMed DOI PMC
Van Daele, F. , Honnay O., and De Kort H.. 2022. “Genomic Analyses Point to a Low Evolutionary Potential of Prospective Source Populations for Assisted Migration in a Forest Herb.” Evolutionary Applications 15, no. 11: 1859–1874. 10.1111/eva.13485. PubMed DOI PMC
Vettraino, A. M. , Potting R., and Raposo R.. 2018. “EU Legislation on Forest Plant Health: An Overview With a Focus on Fusarium circinatum .” Forests 9, no. 9: 568. 10.3390/f9090568. DOI
Visser, M. E. 2008. “Keeping Up With a Warming World; Assessing the Rate of Adaptation to Climate Change.” Proceedings of the Royal Society B: Biological Sciences 275, no. 1635: 649–659. PubMed PMC
Wadgymar, S. M. , Cumming M. N., and Weis A. E.. 2015. “The Success of Assisted Colonization and Assisted Gene Flow Depends on Phenology.” Global Change Biology 21, no. 10: 3786–3799. 10.1111/gcb.12988. PubMed DOI
Wadgymar, S. M. , and Weis A. E.. 2017. “Phenological Mismatch and the Effectiveness of Assisted Gene Flow.” Conservation Biology 31, no. 3: 547–558. 10.1111/cobi.12877. PubMed DOI
Way, D. A. , and Montgomery R. A.. 2015. “Photoperiod Constraints on Tree Phenology, Performance and Migration in a Warming World.” Plant, Cell & Environment 38, no. 9: 1725–1736. 10.1111/pce.12431. PubMed DOI
Weis, A. E. 2015. “On the Potential Strength and Consequences for Nonrandom Gene Flow Caused by Local Adaptation in Flowering Time.” Journal of Evolutionary Biology 28, no. 3: 699–714. 10.1111/jeb.12612. PubMed DOI
West‐Eberhard, M. J. 1989. “Phenotypic Plasticity and the Origins of Diversity.” Annual Review of Ecology and Systematics 20, no. 1: 249–278. 10.1146/annurev.es.20.110189.001341. DOI
White, T. L. , Adams W. T., and Neale D. B.. 2007. Forest Genetics. Cambridge MA: CABI Publishing.
Whitlock, M. C. , Ingvarsson P. K., and Hatfield T.. 2000. “Local Drift Load and the Heterosis of Interconnected Populations.” Heredity 84, no. 4: 452–457. 10.1046/j.1365-2540.2000.00693.x. PubMed DOI
Whitlock, R. , Stewart G. B., Goodman S. J., et al. 2013. “A Systematic Review of Phenotypic Responses to Between‐Population Outbreeding.” Environmental Evidence 2, no. 1: 13. 10.1186/2047-2382-2-13. DOI
Wu, H. X. , Eldridge K. G., Matheson A. C., et al. 2007. “Achievements in Forest Tree Improvement in Australia and New Zealand 8. Successful Introduction and Breeding of Radiata Pine in Australia.” Australian Forestry 70, no. 4: 215–225. 10.1080/00049158.2007.10675023. DOI
Würschum, T. , Zhu X., Zhao Y., Jiang Y., Reif J. C., and Maurer H. P.. 2023. “Maximization Through Optimization? On the Relationship Between Hybrid Performance and Parental Genetic Distance.” Theoretical and Applied Genetics 136, no. 9: 186. 10.1007/s00122-023-04436-5. PubMed DOI PMC
Xu, J. , Nielsen U. B., and Hansen O. K.. 2018. “Ad Hoc Breeding of Abies bornmülleriana for Christmas Tree Production Using a Combination of DNA Markers and Quantitative Genetics—A Case Study.” Tree Genetics & Genomes 14, no. 5: 64. 10.1007/s11295-018-1276-7. DOI
Xu, W. , and Prescott C. E.. 2024. “Can Assisted Migration Mitigate Climate‐Change Impacts on Forests?” Forest Ecology and Management 556: 121738. 10.1016/j.foreco.2024.121738. DOI
Xu, W. , Rhemtulla J. M., Luo D., and Wang T.. 2024. “Common Drivers Shaping Niche Distribution and Climate Change Responses of One Hundred Tree Species.” Journal of Environmental Management 370: 123074. 10.1016/j.jenvman.2024.123074. PubMed DOI
Yu, D. , Gu X., Zhang S., et al. 2021. “Molecular Basis of Heterosis and Related Breeding Strategies Reveal Its Importance in Vegetable Breeding.” Horticulture Research 8: 120. 10.1038/s41438-021-00552-9. PubMed DOI PMC
Zanewich, K. P. , Pearce D. W., and Rood S. B.. 2018. “Heterosis in Poplar Involves Phenotypic Stability: Cottonwood Hybrids Outperform Their Parental Species at Suboptimal Temperatures.” Tree Physiology 38, no. 6: 789–800. 10.1093/treephys/tpy019. PubMed DOI
Zhu, K. , Woodall C. W., and Clark J. S.. 2012. “Failure to Migrate: Lack of Tree Range Expansion in Response to Climate Change.” Global Change Biology 18, no. 3: 1042–1052. 10.1111/j.1365-2486.2011.02571.x. DOI