Health Beneficial Properties of Grapevine Seed Extract and Its Influence on Selected Biochemical Markers in the Blood, Liver and Kidneys of Rattus norvegicus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA - ZF/2016 - AP011
Internal grant agency of Faculty of Horticulture, Mendel university in Brno
CZ.02.1.01/0.0/0.0/16_017/0002334
Research Infrastructure for Young Scientists
PubMed
33917585
PubMed Central
PMC8038788
DOI
10.3390/molecules26072099
PII: molecules26072099
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, biochemical markers, cadmium, grape seed extract, protective effect, rattus norvegicus,
- MeSH
- alanintransaminasa krev MeSH
- antioxidancia analýza MeSH
- aspartátaminotransferasy krev MeSH
- biologické markery metabolismus MeSH
- extrakt ze semen vinné révy farmakologie MeSH
- fytonutrienty analýza MeSH
- játra účinky léků enzymologie metabolismus MeSH
- kadmium krev MeSH
- katalasa metabolismus MeSH
- kreatinin krev MeSH
- krysa rodu Rattus MeSH
- ledviny účinky léků metabolismus MeSH
- metalothionein metabolismus MeSH
- močovina krev MeSH
- potkani Wistar MeSH
- semena rostlinná chemie MeSH
- superoxiddismutasa metabolismus MeSH
- zdraví * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alanintransaminasa MeSH
- antioxidancia MeSH
- aspartátaminotransferasy MeSH
- biologické markery MeSH
- extrakt ze semen vinné révy MeSH
- fytonutrienty MeSH
- kadmium MeSH
- katalasa MeSH
- kreatinin MeSH
- metalothionein MeSH
- močovina MeSH
- superoxiddismutasa MeSH
Cadmium (Cd) is a heavy metal that occurs in all areas of the environment, including the food chain. In the body, it causes oxidative stress by producing free radicals that are harmful to the cells. Grape seed extract (GSE) contains a wide range of biologically active components that help to neutralize the adverse effects of free radicals. In this study, the effects of GSE prepared form semi-resistant grapevine cultivar Cerason, which is rich in phenolics, on biochemical markers of brown rats exposed to the effects of cadmium were monitored. GSE increased the plasma antioxidant activity and, in the kidneys and the liver, Cd content was significantly lowered by GSE co-administration. Accordingly, the increase in creatinine content and alanine aminotransferase activity and the decrease of catalase and superoxide dismutase activities caused by cadmium were slowed down by GSE co-administration. The results of this work reveal that grape seed extract offers a protective effect against the intake of heavy metals into the organism.
Zobrazit více v PubMed
Gao M.L., Yang Y.J., Song Z.G. Effects of graphene oxide on cadmium uptake and photosynthesis performance in wheat seedlings. Ecotox. Environ. Saf. 2019;173:165–173. doi: 10.1016/j.ecoenv.2019.01.093. PubMed DOI
Schutze G., Becker R., Dammgen U., Nagel D., Schlutow A., Weigel J. Assessment of risks to human health and the environment from cadmium in fertilisers. Landbauforsch. Volk. 2003;53:63–170.
Verma N., Yadav A., Bal S., Gupta R., Aggarwal N. In Vitro Studies on Ameliorative Effects of Limonene on Cadmium-Induced Genotoxicity in Cultured Human Peripheral Blood Lymphocytes. Appl. Biochem. Biotechnol. 2019;187:1384–1397. doi: 10.1007/s12010-018-2881-5. PubMed DOI
Donmez H.H., Donmez N., Kisadere I., Undag I. Protective effect of quercetin on some hematological parameters in rats exposed to cadmium. Biotech. Histochem. 2019;94:381–386. doi: 10.1080/10520295.2019.1574027. PubMed DOI
Abu-El-Zahab H.S.H., Hamza R.Z., Montaser M.M., El-Mahdi M.M., Al-Harthi W.A. Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice. Ecotox. Environ. Saf. 2019;173:419–428. doi: 10.1016/j.ecoenv.2019.02.041. PubMed DOI
Bernard A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 2008;128:557–564. PubMed
Garcia-Jares C., Vazquez A., Lamas J.P., Pajaro M., Alvarez-Casas M., Lores M. Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants. 2015;4:737–749. doi: 10.3390/antiox4040737. PubMed DOI PMC
Giribabu N., Karim K., Kilari E.K., Kassim N.M., Salleh N. Anti-Inflammatory, Antiapoptotic and Proproliferative Effects of Vitis vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Male Rats. Can. J. Diabetes. 2018;42:138–149. doi: 10.1016/j.jcjd.2017.04.005. PubMed DOI
Dulundu E., Ozel Y., Topaloglu U., Toklu H., Ercan F., Gedik N., Sener G. Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction. J. Gastroenterol. Hepatol. 2007;22:885–892. doi: 10.1111/j.1440-1746.2007.04875.x. PubMed DOI
Enginar H., Cemek M., Karaca T., Unak P. Effect of grape seed extract on lipid peroxidation, antioxidant activity and peripheral blood lymphocytes in rats exposed to x-radiation. Phytother. Res. 2007;21:1029–1035. doi: 10.1002/ptr.2201. PubMed DOI
Gutierrez-Gamboa G., Gomez-Plaza E., Bautista-Ortin A.B., Garde-Cerdan T., Moreno-Simunovic Y., Martinez-Gil A.M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019;99:2846–2854. doi: 10.1002/jsfa.9496. PubMed DOI
Giannini B., Mulinacci N., Pasqua G., Innocenti M., Valletta A., Cecchini F. Phenolics and antioxidant activity in different cultivars/clones of Vitis vinifera L. seeds over two years. Plant Biosyst. 2016;150:1408–1416. doi: 10.1080/11263504.2016.1174174. DOI
Edo-Roca M., Sanchez-Ortiz A., Nadal M., Lampreave M., Valls J. Vine vigor and cluster uniformity on Vitis vinifera L. seed procyanidin composition in a warm Mediterranean climate. Span. J. Agric. Res. 2014;12:772–786. doi: 10.5424/sjar/2014123-5188. DOI
Alkhedaide A., Youssef G., El-Zoghby R., Mahmoud M., Atwa S. Cadmium induced hepatic intoxication and amelioration by grape seed extract. Int. J. Pharmacol. Toxicol. 2017;6:1. doi: 10.14419/ijpt.v6i1.8555. DOI
Huff J., Lunn R.M., Waalkes M.P., Tomatis L., Infante P.F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health. 2007;13:202–212. doi: 10.1179/oeh.2007.13.2.202. PubMed DOI PMC
Hiatt V., Huff J.E. The environmental impact of cadmium: An overview. Int. J. Environ. Stud. 1975;7:277–285. doi: 10.1080/00207237508709704. DOI
Department of Health and Human Services (HHS) Public Health Assessments Completed, Agency for Toxic Substances and Disease Registry (ATSDR) Fed. Regist. 1999;64:4422–4423. PubMed
Li X., Jiang X.W., Sun J.X., Zhu C.J., Li X.L., Tian L.M., Liu L., Bai W.B. Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity. Ann. N.Y. Acad. Sci. 2017;1398:5–19. doi: 10.1111/nyas.13344. PubMed DOI
Kaplan Lawrence A.P.A.J. Clinical Chemistry: Theory, Analysis, Correlation. 5th ed. Mosby; Maryland Heights, MO, USA: 2009.
Marshall W.J., Bangert S.K. Clinical Biochemistry: Metabolic and Clinical Aspects. Churchill Livingstone/Elsevier; London, UK: 2008.
Navaneethan D., Rasool M. p-Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats. Ren. Fail. 2014;36:244–251. doi: 10.3109/0886022X.2013.835268. PubMed DOI
Himmelfarb J., Sayegh M.H. Chronic Kidney Disease, Dialysis, and Transplantation E-Book: A Companion to Brenner and Rector’s The Kidney—Expert Consult: Online and Print. Elsevier Health Sciences; Amsterdam, The Netherlands: 2010.
Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., Opdenakker K., Nair A.R., Munters E., Artois T.J., et al. Cadmium stress: An oxidative challenge. Biometals. 2010;23:927–940. doi: 10.1007/s10534-010-9329-x. PubMed DOI
Pereira D.M., Valentao P., Pereira J.A., Andrade P.B. Phenolics: From Chemistry to Biology. Molecules. 2009;14:2202–2211. doi: 10.3390/molecules14062202. DOI
Evcimen M., Aslan R., Gulay M.S. Protective effects of polydatin and grape seed extract in rats exposed to cadmium. Drug Chem. Toxicol. 2020;43:225–233. doi: 10.1080/01480545.2018.1480629. PubMed DOI
Bannister J.V., Bannister W.H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 1987;22:111–180. doi: 10.3109/10409238709083738. PubMed DOI
Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. CMLS. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC
Jones D.P. Intracellular catalase function: Analysis of the catalatic activity by product formation in isolated liver cells. Arch. Biochem. Biophys. 1982;214:806–814. doi: 10.1016/0003-9861(82)90087-X. PubMed DOI
Stipek S., Borovanský J., Jones Č., Homoka J., Klener P., Lukáš M., Špičák J., Tesař V., Zeman M., Zima T., et al. Antioxidants and Free Radicals in Health and Disease. Grada Publishing; Prague, Czech Republic: 2000. p. 314.
Dukic-Cosic D., Baralic K., Javorac D., Djordjevic A.B., Bulat Z. An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 2020;19:56–62. doi: 10.1016/j.cotox.2019.12.002. DOI
Eckschlager T., Adam V., Hrabeta J., Figova K., Kizek R. Metallothioneins and cancer. Curr. Protein Pept. Sci. 2009;10:360–375. doi: 10.2174/138920309788922243. PubMed DOI
Krizkova S., Kepinska M., Emri G., Rodrigo M.A.M., Tmejova K., Nerudova D., Kizek R., Adam V. Microarray analysis of metallothioneins in human diseases-A review. J. Pharm. Biomed. Anal. 2016;117:464–473. doi: 10.1016/j.jpba.2015.09.031. PubMed DOI
Klaassen C.D., Liu J., Diwan B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009;238:215–220. doi: 10.1016/j.taap.2009.03.026. PubMed DOI PMC
Shiyntum H.N., Ushakova G.A. Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses. Visnyk Dnipropetr. Univ.-Biol. Med. 2015;6:103–107. doi: 10.15421/021519. DOI
Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC
Aebi H. In: Methods of Enzymatic Analysis. 2nd ed. Bergmeyer H.U., editor. Vol. 2. Verlag Chemie; Weinheim, Germany: 1974. p. 12.
Fabrik I., Krizkova S., Huska D., Adam V., Hubalek J., Trnkova L., Eckschlager T., Kukacka J., Prusa R., Kizek R. Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis. 2008;20:1521–1532. doi: 10.1002/elan.200704215. DOI