Health Beneficial Properties of Grapevine Seed Extract and Its Influence on Selected Biochemical Markers in the Blood, Liver and Kidneys of Rattus norvegicus

. 2021 Apr 06 ; 26 (7) : . [epub] 20210406

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33917585

Grantová podpora
IGA - ZF/2016 - AP011 Internal grant agency of Faculty of Horticulture, Mendel university in Brno
CZ.02.1.01/0.0/0.0/16_017/0002334 Research Infrastructure for Young Scientists

Cadmium (Cd) is a heavy metal that occurs in all areas of the environment, including the food chain. In the body, it causes oxidative stress by producing free radicals that are harmful to the cells. Grape seed extract (GSE) contains a wide range of biologically active components that help to neutralize the adverse effects of free radicals. In this study, the effects of GSE prepared form semi-resistant grapevine cultivar Cerason, which is rich in phenolics, on biochemical markers of brown rats exposed to the effects of cadmium were monitored. GSE increased the plasma antioxidant activity and, in the kidneys and the liver, Cd content was significantly lowered by GSE co-administration. Accordingly, the increase in creatinine content and alanine aminotransferase activity and the decrease of catalase and superoxide dismutase activities caused by cadmium were slowed down by GSE co-administration. The results of this work reveal that grape seed extract offers a protective effect against the intake of heavy metals into the organism.

Zobrazit více v PubMed

Gao M.L., Yang Y.J., Song Z.G. Effects of graphene oxide on cadmium uptake and photosynthesis performance in wheat seedlings. Ecotox. Environ. Saf. 2019;173:165–173. doi: 10.1016/j.ecoenv.2019.01.093. PubMed DOI

Schutze G., Becker R., Dammgen U., Nagel D., Schlutow A., Weigel J. Assessment of risks to human health and the environment from cadmium in fertilisers. Landbauforsch. Volk. 2003;53:63–170.

Verma N., Yadav A., Bal S., Gupta R., Aggarwal N. In Vitro Studies on Ameliorative Effects of Limonene on Cadmium-Induced Genotoxicity in Cultured Human Peripheral Blood Lymphocytes. Appl. Biochem. Biotechnol. 2019;187:1384–1397. doi: 10.1007/s12010-018-2881-5. PubMed DOI

Donmez H.H., Donmez N., Kisadere I., Undag I. Protective effect of quercetin on some hematological parameters in rats exposed to cadmium. Biotech. Histochem. 2019;94:381–386. doi: 10.1080/10520295.2019.1574027. PubMed DOI

Abu-El-Zahab H.S.H., Hamza R.Z., Montaser M.M., El-Mahdi M.M., Al-Harthi W.A. Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice. Ecotox. Environ. Saf. 2019;173:419–428. doi: 10.1016/j.ecoenv.2019.02.041. PubMed DOI

Bernard A. Cadmium & its adverse effects on human health. Indian J. Med. Res. 2008;128:557–564. PubMed

Garcia-Jares C., Vazquez A., Lamas J.P., Pajaro M., Alvarez-Casas M., Lores M. Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants. 2015;4:737–749. doi: 10.3390/antiox4040737. PubMed DOI PMC

Giribabu N., Karim K., Kilari E.K., Kassim N.M., Salleh N. Anti-Inflammatory, Antiapoptotic and Proproliferative Effects of Vitis vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Male Rats. Can. J. Diabetes. 2018;42:138–149. doi: 10.1016/j.jcjd.2017.04.005. PubMed DOI

Dulundu E., Ozel Y., Topaloglu U., Toklu H., Ercan F., Gedik N., Sener G. Grape seed extract reduces oxidative stress and fibrosis in experimental biliary obstruction. J. Gastroenterol. Hepatol. 2007;22:885–892. doi: 10.1111/j.1440-1746.2007.04875.x. PubMed DOI

Enginar H., Cemek M., Karaca T., Unak P. Effect of grape seed extract on lipid peroxidation, antioxidant activity and peripheral blood lymphocytes in rats exposed to x-radiation. Phytother. Res. 2007;21:1029–1035. doi: 10.1002/ptr.2201. PubMed DOI

Gutierrez-Gamboa G., Gomez-Plaza E., Bautista-Ortin A.B., Garde-Cerdan T., Moreno-Simunovic Y., Martinez-Gil A.M. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. J. Sci. Food Agric. 2019;99:2846–2854. doi: 10.1002/jsfa.9496. PubMed DOI

Giannini B., Mulinacci N., Pasqua G., Innocenti M., Valletta A., Cecchini F. Phenolics and antioxidant activity in different cultivars/clones of Vitis vinifera L. seeds over two years. Plant Biosyst. 2016;150:1408–1416. doi: 10.1080/11263504.2016.1174174. DOI

Edo-Roca M., Sanchez-Ortiz A., Nadal M., Lampreave M., Valls J. Vine vigor and cluster uniformity on Vitis vinifera L. seed procyanidin composition in a warm Mediterranean climate. Span. J. Agric. Res. 2014;12:772–786. doi: 10.5424/sjar/2014123-5188. DOI

Alkhedaide A., Youssef G., El-Zoghby R., Mahmoud M., Atwa S. Cadmium induced hepatic intoxication and amelioration by grape seed extract. Int. J. Pharmacol. Toxicol. 2017;6:1. doi: 10.14419/ijpt.v6i1.8555. DOI

Huff J., Lunn R.M., Waalkes M.P., Tomatis L., Infante P.F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health. 2007;13:202–212. doi: 10.1179/oeh.2007.13.2.202. PubMed DOI PMC

Hiatt V., Huff J.E. The environmental impact of cadmium: An overview. Int. J. Environ. Stud. 1975;7:277–285. doi: 10.1080/00207237508709704. DOI

Department of Health and Human Services (HHS) Public Health Assessments Completed, Agency for Toxic Substances and Disease Registry (ATSDR) Fed. Regist. 1999;64:4422–4423. PubMed

Li X., Jiang X.W., Sun J.X., Zhu C.J., Li X.L., Tian L.M., Liu L., Bai W.B. Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity. Ann. N.Y. Acad. Sci. 2017;1398:5–19. doi: 10.1111/nyas.13344. PubMed DOI

Kaplan Lawrence A.P.A.J. Clinical Chemistry: Theory, Analysis, Correlation. 5th ed. Mosby; Maryland Heights, MO, USA: 2009.

Marshall W.J., Bangert S.K. Clinical Biochemistry: Metabolic and Clinical Aspects. Churchill Livingstone/Elsevier; London, UK: 2008.

Navaneethan D., Rasool M. p-Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats. Ren. Fail. 2014;36:244–251. doi: 10.3109/0886022X.2013.835268. PubMed DOI

Himmelfarb J., Sayegh M.H. Chronic Kidney Disease, Dialysis, and Transplantation E-Book: A Companion to Brenner and Rector’s The Kidney—Expert Consult: Online and Print. Elsevier Health Sciences; Amsterdam, The Netherlands: 2010.

Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H., Opdenakker K., Nair A.R., Munters E., Artois T.J., et al. Cadmium stress: An oxidative challenge. Biometals. 2010;23:927–940. doi: 10.1007/s10534-010-9329-x. PubMed DOI

Pereira D.M., Valentao P., Pereira J.A., Andrade P.B. Phenolics: From Chemistry to Biology. Molecules. 2009;14:2202–2211. doi: 10.3390/molecules14062202. DOI

Evcimen M., Aslan R., Gulay M.S. Protective effects of polydatin and grape seed extract in rats exposed to cadmium. Drug Chem. Toxicol. 2020;43:225–233. doi: 10.1080/01480545.2018.1480629. PubMed DOI

Bannister J.V., Bannister W.H., Rotilio G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 1987;22:111–180. doi: 10.3109/10409238709083738. PubMed DOI

Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. CMLS. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC

Jones D.P. Intracellular catalase function: Analysis of the catalatic activity by product formation in isolated liver cells. Arch. Biochem. Biophys. 1982;214:806–814. doi: 10.1016/0003-9861(82)90087-X. PubMed DOI

Stipek S., Borovanský J., Jones Č., Homoka J., Klener P., Lukáš M., Špičák J., Tesař V., Zeman M., Zima T., et al. Antioxidants and Free Radicals in Health and Disease. Grada Publishing; Prague, Czech Republic: 2000. p. 314.

Dukic-Cosic D., Baralic K., Javorac D., Djordjevic A.B., Bulat Z. An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 2020;19:56–62. doi: 10.1016/j.cotox.2019.12.002. DOI

Eckschlager T., Adam V., Hrabeta J., Figova K., Kizek R. Metallothioneins and cancer. Curr. Protein Pept. Sci. 2009;10:360–375. doi: 10.2174/138920309788922243. PubMed DOI

Krizkova S., Kepinska M., Emri G., Rodrigo M.A.M., Tmejova K., Nerudova D., Kizek R., Adam V. Microarray analysis of metallothioneins in human diseases-A review. J. Pharm. Biomed. Anal. 2016;117:464–473. doi: 10.1016/j.jpba.2015.09.031. PubMed DOI

Klaassen C.D., Liu J., Diwan B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009;238:215–220. doi: 10.1016/j.taap.2009.03.026. PubMed DOI PMC

Shiyntum H.N., Ushakova G.A. Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses. Visnyk Dnipropetr. Univ.-Biol. Med. 2015;6:103–107. doi: 10.15421/021519. DOI

Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC

Aebi H. In: Methods of Enzymatic Analysis. 2nd ed. Bergmeyer H.U., editor. Vol. 2. Verlag Chemie; Weinheim, Germany: 1974. p. 12.

Fabrik I., Krizkova S., Huska D., Adam V., Hubalek J., Trnkova L., Eckschlager T., Kukacka J., Prusa R., Kizek R. Employment of electrochemical techniques for metallothionein determination in tumor cell lines and patients with a tumor disease. Electroanalysis. 2008;20:1521–1532. doi: 10.1002/elan.200704215. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...