Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka

. 2015 ; 6 () : 506. [epub] 20150521

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26052322

Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool.

Zobrazit více v PubMed

Angel R., Claus P., Conrad R. (2012). Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862. 10.1038/ismej.2011.141 PubMed DOI PMC

Avery G. B., Martens C. S. (1999). Controls on the stable carbon isotopic composition of biogenic methane produced in a tidal freshwater estaurine sediment. Geochim. Cosmochim. Acta 63, 1075–1082. 10.1016/S0016-7037(98)00315-9 DOI

Banning N., Brock F., Fry J. C., Parkes R. J., Hornibrook E. R. C., Weightman A. J. (2005). Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ. Microbiol. 7, 947–960. 10.1111/j.1462-2920.2004.00766.x PubMed DOI

Bastviken D., Tranvik L. J., Downing J. A., Crill P. M., Enrich-Prast A. (2011). Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50. 10.1126/science.1196808 PubMed DOI

Beckmann S., Manefield M. (2014). Acetoclastic methane formation from Eucalyptus detritus in pristine hydrocarbon-rich river sediments by Methanosarcinales. FEMS Microbiol. Ecol. 90, 587–598. 10.1111/1574-6941.12418 PubMed DOI

Berger U., Heyer J. (1989). The methane cycle in the Saale River. J. Basic Microbiol. 29, 195–213. 10.1002/jobm.3620290402 DOI

Blair N., Leu A., Munoz E., Olsen J., Kwong E., Des Marais D. J. (1985). Carbon isotopic fractionation in heterotrophic microbial-metabolism. Appl. Environ. Microbiol. 50, 996–1001. PubMed PMC

Blaser M. B., Dreisbach L. K., Conrad R. (2013). Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2. Appl. Environ. Microbiol. 79, 1787–1794. 10.1128/AEM.03203-12 PubMed DOI PMC

Brand W. A. (1996). High precision isotope ratio monitoring techniques in mass spectrometry. J. Mass Spectrom. 31, 225–235. 10.1002/(Sici)1096-9888(199603)31:3<225::Aid-Jms319>3.0.Co;2-L PubMed DOI

Bretschko G., Klemens W. E. (1986). Quantitative methods and aspects in the study of the interstitial fauna of running waters. Stygologia 2, 297–316. 10.1371/journal.pone.0080804 DOI

Buriankova I., Brablcova L., Mach V., Dvorak P., Chaudhary P. P., Rulik M. (2013). Identification of methanogenic archaea in the hyporheic sediment of Sitka Stream. PLoS ONE 8:e80804. 10.1371/journal.pone.0080804 PubMed DOI PMC

Buriankova I., Brablcova L., Mach V., Hyblova A., Badurova P., Cupalova J., et al. (2012). Methanogens and methanotrophs distribution in the hyporheic sediments of a small lowland stream. Fund. Appl. Limnol. 181, 87–102. 10.1127/1863-9135/2012/0283 DOI

Chan O. C., Claus P., Casper P., Ulrich A., Lueders T., Conrad R. (2005). Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ. Microbiol. 7, 1139–1149. 10.1111/j.1462-2920.2005.00790.x PubMed DOI

Chen J. Q., Yin X. J. (2013). Stratified communities of methanogens in the Jiulong River estuarine sediments, Southern China. Indian J. Microbiol. 53, 432–437. 10.1007/s12088-013-0397-9 PubMed DOI PMC

Chidthaisong A., Chin K. J., Valentine D. L., Tyler S. C. (2002). A comparison of isotope fractionation of carbon and hydrogen from paddy field rice roots and soil bacterial enrichments during CO2/H2 methanogenesis. Geochim. Cosmochim. Acta 66, 983–995. 10.1016/S0016-7037(01)00812-2 DOI

Chin K. J., Lueders T., Friedrich M. W., Klose M., Conrad R. (2004). Archaeal community structure and pathway of methane formation on rice roots. Microb. Ecol. 47, 59–67. 10.1007/s00248-003-2014-7 PubMed DOI

Chin K. J., Lukow T., Conrad R. (1999). Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65, 2341–2349. PubMed PMC

Ciais P. C., Sabine G., Bala L., Bopp V., Brovkin J., Thornton P., et al. (2014). Carbon and other biogeochemical cycles, in IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (Cambridge; New York, NY: Cambridge University Press; ), 465–570.

Conrad R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol. 28, 193–202. 10.1111/j.1574-6941.1999.tb00575.x DOI

Conrad R. (2005). Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739–752. 10.1016/j.orggeochem.2004.09.006 DOI

Conrad R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292. 10.1111/j.1758-2229.2009.00038.x PubMed DOI

Conrad R., Claus P., Casper P. (2010). Stable isotope fractionation during the methanogenic degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse Fuchskuhle. Limnol. Oceanogr. 55, 1932–1942. 10.4319/lo.2010.55.5.1932 DOI

Conrad R., Claus P., Chidthaisong A., Lu Y., Fernandez Scavino A., Liu Y., et al. (2014). Stable carbon isotope biogeochemistry of propionate and acetate in methanogenic soils and lake sediments. Org. Geochem. 73, 1–7. 10.1016/j.orggeochem.2014.03.010 DOI

Conrad R., Klose M. (1999). How specific is the inhibition by methyl fluoride of acetoclastic methanogenesis in anoxic rice field soil? FEMS Microbiol. Ecol. 30, 47–56. 10.1111/j.1574-6941.1999.tb00634.x DOI

Conrad R., Klose M. (2011). Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis. Geochim. Cosmochim. Acta 75, 1531–1539. 10.1016/j.gca.2010.12.019 DOI

Conrad R., Klose M., Claus P., Dan J. (2009a). Activity and composition of the methanogenic archaeal community in soil vegetated with wild versus cultivated rice. Soil Biol. Biochem. 41, 1390–1395. 10.1016/j.soilbio.2009.03.013 DOI

Conrad R., Klose M., Lu Y., Chidthaisong A. (2012). Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw. Front. Microbiol. 3:4. 10.3389/fmicb.2012.00004 PubMed DOI PMC

Conrad R., Klose M., Noll M. (2009b). Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ. Microbiol. 11, 1844–1853. 10.1111/j.1462-2920.2009.01909.x PubMed DOI

Conrad R., Klose M., Noll M., Kemnitz D., Bodelier P. L. E. (2008). Soil type links microbial colonization of rice roots to methane emission. Glob. Change Biol. 14, 657–669. 10.1111/j.1365-2486.2007.01516.x DOI

Conrad R., Noll M., Claus P., Klose M., Bastos W., Enrich-Prast A. (2011). Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments. Biogeosciences 8, 795–814. 10.5194/bg-8-795-2011 DOI

Crawford J. T., Striegl R. G., Wickland K. P., Dornblaser M. M., Stanley E. H. (2013). Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. J. Geophys. Res. Biogeosci. 118, 482–494. 10.1002/jgrg.20034 DOI

Daebeler A., Gansen M., Frenzel P. (2013). Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil. PLoS ONE 8:e53656. 10.1371/journal.pone.0053656 PubMed DOI PMC

De Angelis M. A., Scranton M. I. (1993). Fate of methane in the Hudson River and Estuary. Global Biogeochem. Cycles 7, 509–523. 10.1029/93GB01636 DOI

Dolfing J. (2014). Thermodynamic constraints on syntrophic acetate oxidation. Appl. Environ. Microbiol. 80, 1539–1541. 10.1128/AEM.03312-13 PubMed DOI PMC

Drake H. L., Küsel K., Matthies C. (2006). Acetogenic prokaryotes, in The Prokaryotes; An Evolving Electronic Resource for Microbial Cummunity, 3rd Edn., eds Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (Berlin; Heidelberg: Springer-Verlag; ), 354–420.

Dunbar J., Ticknor L. O., Kuske C. R. (2001). Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol. 67, 190–197. 10.1128/AEM.67.1.190-197.2001 PubMed DOI PMC

Erkel C., Kube M., Reinhardt R., Liesack W. (2006). Genome of Rice Cluster I archaea—the key methane producers in the rice rhizosphere. Science 313, 370–372. 10.1126/science.1127062 PubMed DOI

Gar'Kusha D. N., Fedorov Y. A., Khromov M. I. (2010). Methane in the water and bottom sediments of the mouth area of the Severnaya Dvina River (White Sea). Oceanology 50, 498–512. 10.1134/S0001437010040065 DOI

Gelwicks J. T., Risatti J. B., Hayes J. M. (1989). Carbon isotope effects associated with autotrophic acetogenesis. Org. Geochem. 14, 441–446. 10.1016/0146-6380(89)90009-0 PubMed DOI

Gelwicks J. T., Risatti J. B., Hayes J. M. (1994). Carbon isotope effects associated with aceticlastic methanogenesis. Appl. Environ. Microbiol. 60, 467–472. PubMed PMC

Goevert D., Conrad R. (2009). Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil. Appl. Environ. Microbiol. 75, 2605–2612. 10.1128/AEM.02680-08 PubMed DOI PMC

Hayes J. M. (1993). Factors controlling C-13 contents of sedimentary organic-compounds - principles and evidence. Mar. Geol. 113, 111–125. 10.1016/0025-3227(93)90153-M DOI

Heuer V. B., Krueger M., Elvert M., Hinrichs K. U. (2010). Experimental studies on the stable carbon isotope biogeochemistry of acetate in lake sediments. Org. Geochem. 41, 22–30. 10.1016/j.orggeochem.2009.07.004 DOI

Hlavacova E., Rulik M., Cap L. (2005). Anaerobic microbial metabolism in hyporheic sediment of a gravel bar in a small lowland stream. River Res. Appl. 21, 1003–1011. 10.1002/rra.866 DOI

Hlavacova E., Rulik M., Cap L., Mach V. (2006). Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Arch. Hydrobiol. 165, 339–353. 10.1127/0003-9136/2006/0165-0339 DOI

Janssen P. H., Frenzel P. (1997). Inhibition of methanogenesis by methyl fluoride: studies of pure and defined mixed cultures of anaerobic bacteria and archaea. Appl. Environ. Microbiol. 63, 4552–4557. PubMed PMC

Jones J. B., Holmes R. M., Fisher S. G., Grimm N. B., Greene D. M. (1995). Methanogenesis in Arizona, USA dryland streams. Biogeochemistry 31, 155–173. 10.1007/BF00004047 DOI

Kemnitz D., Chin K. J., Bodelier P., Conrad R. (2004). Community analysis of methanogenic archaea within a riparian flooding gradient. Environ. Microbiol. 6, 449–461. 10.1111/j.1462-2920.2004.00573.x PubMed DOI

Kotsyurbenko O. R., Glagolev M. V., Nozhevnikova A. N., Conrad R. (2001). Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol. Ecol. 38, 153–159. 10.1111/j.1574-6941.2001.tb00893.x DOI

Krummen M., Hilkert A. W., Juchelka D., Duhr A., Schluter H. J., Pesch R. (2004). A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 18, 2260–2266. 10.1002/rcm.1620 PubMed DOI

Kuesel K., Drake H. L. (1995). Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl. Environ. Microbiol. 61, 3667–3675. PubMed PMC

Lilley M., De Angelis M., Olson E. (1996). Methane concentrations and estimated fluxes from Pacific Northwest rivers. Mitt. Int. Ver. Limnol. 25, 187–196.

Liu W. T., Marsh T. L., Cheng H., Forney L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516–4522. 10.1029/2012GB004306 PubMed DOI PMC

Lueders T., Chin K. J., Conrad R., Friedrich M. (2001). Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ. Microbiol. 3, 194–204. 10.1046/j.1462-2920.2001.00179.x PubMed DOI

Ma K., Conrad R., Lu Y. H. (2012). Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl. Environ. Microbiol. 78, 445–454. 10.1128/AEM.06934-11 PubMed DOI PMC

Martens C. S., Kelley C. A., Chanton J. P., Showers W. J. (1992). Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, Western Alaska. J. Geophys. Res. Atmos. 97, 16689–16701. 10.1029/91JD02885 DOI

Moura J. M. S., Martens C. S., Moreira M. Z., Lima R. L., Sampaio I. C. G., Mendlovitz H. P., et al. (2008). Spatial and seasonal variations in the stable carbon isotopic composition of methane in stream sediments of eastern Amazonia. Tellus 60B, 21–31. 10.3402/tellusb.v60i1.16889 DOI

Musenze R. S., Werner U., Grinham A., Udy J., Yuan Z. G. (2014). Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Sci. Total Environ. 472, 719–729. 10.1016/j.scitotenv.2013.11.085 PubMed DOI

Ortiz-Llorente M. J., Alvarez-Cobelas M. (2012). Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos. Environ. 59, 328–337. 10.1016/j.atmosenv.2012.05.031 DOI

Penning H., Claus P., Casper P., Conrad R. (2006). Carbon isotope fractionation during acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment. Appl. Environ. Microbiol. 72, 5648–5652. 10.1128/AEM.00727-06 PubMed DOI PMC

Penning H., Conrad R. (2006). Carbon isotope effects associated with mixed-acid fermentation of saccharides by Clostridium papyrosolvens. Geochim. Cosmochim. Acta 70, 2283–2297. 10.1016/j.gca.2006.01.017 DOI

Penning H., Conrad R. (2007). Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org. Geochem. 38, 2058–2069. 10.1016/j.orggeochem.2007.08.004 DOI

Ramakrishnan B., Lueders T., Dunfield P., Conrad R., Friedrich M. W. (2001). Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol. Ecol. 37, 175–186. 10.1111/j.1574-6941.2001.tb00865.x DOI

Rui J. P., Qiu Q. F., Lu Y. H. (2011). Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol. Ecol. 77, 264–273. 10.1111/j.1574-6941.2011.01104.x PubMed DOI

Rulík M., Bednarík A., Mach V., Brablcová L., Buriánková L., Badurová P., et al. (2013). Methanogenic system of a small lowland stream Sitka, Czech Republic, in Biomass now - Cultivation and Utilization, ed Matovic M. D. (Rijeka: InTech; ), 395–426. 10.5772/3437 DOI

Sanders I. A., Heppell C. M., Cotton J. A., Wharton G., Hildrew A. G., Flowers E. J., et al. (2007). Emission of methane from chalk streams has potential implications for agricultural practices. Freshw. Biol. 52, 1176–1186. 10.1111/j.1365-2427.2007.01745.x DOI

Schindler J. E., Krabbenhoft D. P. (1998). The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43, 157–174. 10.1023/A:1006005311257 DOI

Springer E., Sachs M. S., Woese C. R., Boone D. R. (1995). Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol. 45, 554–559. 10.1099/00207713-45-3-554 PubMed DOI

Striegl R. G., Dornblaser M. M., McDonald C. P., Rover J. R., Stets E. G. (2012). Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem. Cycles 26, 1–11. 10.1029/2012GB004306 DOI

Sugimoto A., Wada E. (1993). Carbon isotopic composition of bacterial methane in a soil incubation experiment—contributions of acetate and CO2/H2. Geochim. Cosmochim. Acta 57, 4015–4027. 10.1016/0016-7037(93)90350-6 DOI

Trimmer M., Hildrew A. G., Jackson M. C., Pretty J. L., Grey J. (2009). Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. Limnol. Oceanogr. 54, 1541–1547. 10.4319/lo.2009.54.5.1541 DOI

Valentine D. L., Chidthaisong A., Rice A., Reeburgh W. S., Tyler S. C. (2004). Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochim. Cosmochim. Acta 68, 1571–1590. 10.1016/j.gca.2003.10.012 DOI

Wang D. Q., Chen Z. L., Sun W. W., Hu B. B., Xu S. Y. (2009). Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net. Sci. China Ser. B Chem. 52, 652–661. 10.1007/s11426-009-0024-0 DOI

Youngblut N. D., Dell'Aringa M., Whitaker R. J. (2014). Differentiation between sediment and hypolimnion methanogen communities in humic lakes. Environ. Microbiol. 16, 1411–1423. 10.1111/1462-2920.12330 PubMed DOI

Yuan Y. L., Conrad R., Lu Y. H. (2011). Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil. Environ. Microbiol. Rep. 3, 320–328. 10.1111/j.1758-2229.2010.00228.x PubMed DOI

Zaiss U. (1981). Seasonal studies of methanogenesis and desulfurication in sediments of the River Saar. Zentralblatt Fur Bakteriologie Mikrobiologie Und Hygiene I Abteilung Originale C-Allgemeine Angewandte Und Okologische Mikrobiologie 2, 76–89.

Zeleke J., Lu S. L., Wang J. G., Huang J. X., Li B., Ogram A. V., et al. . (2013). Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River Estuary, China. Microb. Ecol. 66, 257–267. 10.1007/s00248-012-0155-2 PubMed DOI

Zinder S. H., Koch M. (1984). Non-aceticlastic methanogenesis from acetate - acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138, 263–272. 10.1007/BF00402133 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Is the methanogenic community reflecting the methane emissions of river sediments?-comparison of two study sites

. 2017 Aug ; 6 (4) : . [epub] 20170316

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...