Identification of methanogenic archaea in the hyporheic sediment of Sitka stream
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24278322
PubMed Central
PMC3835567
DOI
10.1371/journal.pone.0080804
PII: PONE-D-12-31458
Knihovny.cz E-zdroje
- MeSH
- Archaea genetika MeSH
- archeální geny MeSH
- fylogeneze MeSH
- genová knihovna MeSH
- geologické sedimenty mikrobiologie MeSH
- methan metabolismus MeSH
- mikrobiologie životního prostředí MeSH
- molekulární sekvence - údaje MeSH
- řeky mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- methan MeSH
Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers.
Zobrazit více v PubMed
Hlaváčová E, Rulík M, Čáp L (2005) Anaerobic microbial metabolism in hyporheic sediment of a gravel bar in a small lowland stream. River Res Appl 21: 1003-1011. doi:10.1002/rra.866. DOI
Sanders IA, Heppell CM, Cotton A, Wharton G, Hildrew AG et al. (2007) Emission of methane from chalk streams has potential implications for agricultural practices. Freshw Biol 6: 1176–1186.
Schindler JE, Krabbenhoft DP (1998) The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43: 157-174. doi:10.1023/A:1006005311257. DOI
Wilcock RJ, Sorrell BK (2008) Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments. Water Air, Soil Pollut 188: 155-170. doi:10.1007/s11270-007-9532-8. DOI
Hlaváčová E, Rulík M, Čáp L, Mach V (2006) Greenhouse gases (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream. Arch Hydrobiol 165: 339-353. doi:10.1127/0003-9136/2006/0165-0339. DOI
Chaban B, Ng SYM, Jarrell KF (2006) Archaeal habitats – from the extreme to the ordinary. Can J Microbiol 52: 73-116. doi:10.1139/w05-147. PubMed: 16541146. PubMed DOI
Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226. doi:10.1006/anae.2000.0345. PubMed: 16887666. PubMed DOI
Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A et al. (2008) Aerobic production of methane in the sea. Nature Geoscience 1: 473 - 478. doi:10.1038/ngeo234. DOI
Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80: 286 - 292. doi:10.1016/j.chemosphere.2010.04.004. PubMed: 20444486. PubMed DOI
Paul K, Nonoh JO, Mikulski L, Brune A (2012) "Methanoplasmatales," Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78(23): 8245-8253. doi:10.1128/AEM.02193-12. PubMed: 23001661. Epub 2012 Sep 21 PubMed DOI PMC
Zhe L, Yahai L (2012) Complete Genome Sequence of a Thermophilic methanogen, Methanocella conradii HZ254, Isolated from Chinese Rice Field Soil. J Bacteriol 194(9): 2398-2399. doi:10.1128/JB.00207-12. PubMed: 22493204. PubMed DOI PMC
Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37: 25–50. doi:10.1016/S1164-5563(01)01067-6. DOI
Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64: 960-969. PubMed: 9501436. PubMed PMC
Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87: 297-308. doi:10.1111/j.1574-6968.1990.tb04928.x. DOI
Chan OC, Claus P, Casper P, Ulrich A, Lueders T et al. (2005) Vertical distribution of methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7: 1139-1149. doi:10.1111/j.1462-2920.2005.00790.x. PubMed: 16011751. PubMed DOI
Jeanthon C, L’Haridon S, Reysenbach AL, Corre E, Vernet M et al. (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Evol Microbiol 49: 583-589. PubMed: 10319479. PubMed
Ganzert L, Jurgens G, Münster U, Wagner D (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59: 476-488. PubMed: 16978241. PubMed
Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50: 13-23. doi:10.1016/j.femsec.2004.05.003. PubMed: 19712373. PubMed DOI
Lin C, Raskin L, Stahl DA (1997) Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyzes using rRNA-targeted oligonucleotide probes. FEMS Microbiol Ecol 22: 281-294. doi:10.1111/j.1574-6941.1997.tb00380.x. DOI
Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 1: 61-86.
Conrad R (2007) Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy 96: 1–63. doi:10.1016/S0065-2113(07)96005-8. DOI
Sugimoto A, Wada E (1995) Hydrogen isotopic composition of bacterial methane: incubation CO2/H2 contribution and acetate fermentation. Geochim Cosmochim Acta 59: 1329 - 1337. doi:10.1016/0016-7037(95)00047-4. DOI
Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. FAO Agricultural Services Bulletin 128.
Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28: 193-202. doi:10.1111/j.1574-6941.1999.tb00575.x. DOI
Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1: 353–363. doi:10.1155/2005/859728. PubMed: 15876569. PubMed DOI PMC
Noll M, Klose M, Conrad R (2010) Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. FEMS Microbiol Ecol 73: 215-225. doi:10.1111/j.1574-6941.2010.00883.x. PubMed: 20491920. PubMed DOI
Chin KJ, Lukow T, Conrad R (1999) Effect of Temperature on Structure and Function of the Methanogenic Archaeal Community in an Anoxic Rice Field Soil. Appl Environ Microbiol 65: 2341-2349. PubMed: 10347011. PubMed PMC
Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of Methyl Coenzyme M Reductase A (mcrA) Genes Associated with Methane-Oxidizing. Archaea - Appl Environ Microbiol 69: 5483-5491. doi:10.1128/AEM.69.9.5483-5491.2003. PubMed DOI PMC
Sheppard SK, McCarthy AJ, Loughnane JP, Gray ND, Head IM et al. (2005) The impact of sludge amendment on methanogen community structure in an upland soil. Appl Soil Ecol 28: 147-162. doi:10.1016/j.apsoil.2004.07.004. DOI
Earl JG, Hall R, Pickup W, Ritchie DA, Edwards C (2003) Analysis of Methanogen Diversity in a Hypereutrophic Lake Using PCR-RFLP Analysis of mcr Sequences. FEMS Microbiol Ecol 46: 270-278. doi:10.1007/s00248-003-2003-x. PubMed DOI
Dhillon A, Lever M, Lloyd KG, Albert DB, Sogin ML et al. (2005) Methanogen Diversity Evidenced by Molecular Characterization of Methyl Coenzyme M Reductase A (mcrA) Genes in Hydrothermal Sediments of the Guaymas Basin. Appl Environ Microbiol 71: 4592-4601. doi:10.1128/AEM.71.8.4592-4601.2005. PubMed: 16085853. PubMed DOI PMC
Ramakrishnan B, Leuders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structure in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37: 175-186. doi:10.1111/j.1574-6941.2001.tb00865.x. DOI
Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148: 3521-3530. PubMed: 12427943. PubMed
Rulík M, Čáp L, Hlaváčová E (2000) Methane in the hyporheic zone of a small lowland stream (Sitka, Czech Republic). Limnologica 30: 359-366. doi:10.1016/S0075-9511(00)80029-8. DOI
Rulík M, Spáčil R (2004) Extracellular enzyme activity within hyporheic sediments of a smalllowland stream. Soil Biol Biochem 36: 1653 - 1662. doi:10.1016/j.soilbio.2004.07.005. DOI
Buriánková I, Brablcová L, Mach V, Hýblová A, Badurová P et al. (2012) Methanogens and methanotrophs distribution in the hyporheic sediments of a small lowland stream. Fundam Appl Limnol 17: 87-102.
Bretschko G, Klemens WE (1986) Quantitative methods and aspects in the study of the interstitial fauna of running waters. Stygologia 2: 297-316.
Leichtfried M (1988) Bacterial substrates in gravel beds of a second order alpine stream (Project Ritrodat-Lunz, Austria). Verh Internat Verein Limnol 23: 1325-1332.
Meyer JL, Likens GE, Sloane J (1981) Phosphorus, nitrogen, and organic carbon flux in a headwater stream. Arch Hydrobiol 91: 28-44.
Truleyová Š, Rulík M, Popelka J (2003) Stream and interstitial water DOC of a gravel bar (Sitka stream, Czech Republic): characteristics, dynamics and presumable origin. Arch Hydrobiol 158: 407-420. doi:10.1127/0003-9136/2003/0158-0407. DOI
Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41: 23-51. doi:10.1023/A:1005929032764. DOI
Jupraputtasri W, Boonapatcharoen N, Cheevadhanarak S, Chaiprasert P, Tanticharoen M et al. (2005) Use of an alternative Archaea-specific probe for methanogen detection. J Microbiol Methods 61: 95- 104. doi:10.1016/j.mimet.2004.11.017. PubMed: 15676200. PubMed DOI
Pernthaler J, Glockner FO, Schonhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods in Microbiology 30: 207-226. doi:10.1016/S0580-9517(01)30046-6. DOI
Smith JM, Castro H, Ogram A (2007) Structure and Function of Methanogens along a Short-Term Restoration Chronosequence in the Florida Everglades. Appl Environ Microbiol 73: 4135-4141. doi:10.1128/AEM.02557-06. PubMed: 17449688. PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL 295 W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673- 4680. doi:10.1093/nar/22.22.4673. PubMed: 7984417. PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731-2739. doi:10.1093/molbev/msr121. PubMed: 21546353. PubMed DOI PMC
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. doi:10.2307/2408678. PubMed DOI
Fenchel T (1998) Bacterial biochemistry: the ecophysiology of mineral cycling. Academic Press; ISBN 0-12-103455-0 49.
Jones JB, Holmes RM, Fisher SG, Grimm NB, Greene DM (1995) Methanogenesis in Arizona, USA dryland streams. Biochemistry 31: 155-173.
Santmire JA, Leff LG (2006) Temporal changes in the bacterial assemblage of a Northeast Ohio stream: a comparison of community and population-level responses. Arch Hydrobiol 166: 491-503.
Nogaro G, Datry T, Mermillod-Blondin F, Descloux S, Montuelle B (2010) Influence of streambed sediment clogging on microbial processes in the hyporheic zone. Freshwat Biol 55: 1288–1302. doi:10.1111/j.1365-2427.2009.02352.x. DOI
Amalfitano S, Fazi S (2008) Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Methods 75: 237- 243. doi:10.1016/j.mimet.2008.06.004. PubMed: 18602952. PubMed DOI
Bjerkan G, Witsø E, Bergh K (2009) Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop 80: 245–250. doi:10.3109/17453670902947457. PubMed: 19404811. PubMed DOI PMC
Fazi S, Amalfitano S, Pernthaler J, Puddu A (2005). Bacterial Communities Associated with Benthic Organic Matter in Headwater Stream Microhabitats. Environ Microbiol 7: 1633 –1640. PubMed
Hunger S, Schmidt O, Hilgarth M, Horn MA, Kolb S et al. (2011) Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. Appl Environ Microbiol 77: 3773-3785. doi:10.1128/AEM.00282-11. PubMed: 21478308. PubMed DOI PMC
Zhang G, Tian J, Jiang N, Guo X, Wang Y et al. (2008) Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10(7): 1850-1860. doi:10.1111/j.1462-2920.2008.01606.x. PubMed: 18373675. PubMed DOI
Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Chang Biol 14: 657–669. doi:10.1111/j.1365-2486.2007.01516.x. DOI
Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G et al. (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77: 533–545. doi:10.1111/j.1574-6941.2011.01134.x. PubMed: 21595728. PubMed DOI
Kemnitz D, Chin KJ, Bodelier P, Conrad R (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6: 449-461. doi:10.1111/j.1462-2920.2004.00573.x. PubMed: 15049918. PubMed DOI
Milferstedt K, Youngblut ND, Whitaker RJ (2004) Spatial structure and persistence of methanogen populations in humic bog lakes. Environ Microbiol 6 (5): 449-461. doi:10.1111/j.1462-2920.2004.00573.x. PubMed: 15049918. PubMed DOI
Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75 (13): 4435-4442. doi:10.1128/AEM.02858-08. PubMed: 19447957. PubMed DOI PMC
Juottonen H, Hynninen A, Nieminen M, Tuomivirta TT, Tuittila ES et al. (2012) Methane-cycling microbial communities and methane emission in natural and restored peatlands. Appl Environ Microbiol 78 (17): 6386-6389. doi:10.1128/AEM.00261-12. PubMed: 22752167. PubMed DOI PMC
Kotsyurbenko OR, Friedrich MW, Simankova MV, Nozhevnikova AN, Golyshin PN et al. (2007) Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain Appl. Environ Microbiol 73 (7): 2344-2348. doi:10.1128/AEM.02413-06. PubMed DOI PMC
Rastogi G, Ranade DR, Yeole TY, Patole MS, Shouche YS (2008) Investigation of methanogen population structure in biogas reactor by molecular characterization of methyl-coenzyme M reductase A (mcrA) genes. Bioresour Technol 99 (13): 5317-5326. doi:10.1016/j.biortech.2007.11.024. PubMed: 18155901. PubMed DOI
Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40: 237–262. doi:10.2307/2333344. DOI
Rulík M, Bednařík A, Mach V, Brablcová L, Buriánková I et al. (2012) Methanogenic system of a small lowland stream Sitka, Czech Republic. In: Matovic MD, Biomass now – cultivation and utilization. Rijeka, Croatia: InTech; Available: 10.5772/3437 DOI
Hedderich R, Whitman WB (2005) Physiology and Biochemistry of the methane- producing Archaea. In Dworkin M, The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. New York: Springer-Verlag; pp. 1050–1079.
Schwarz JIK, Eckert W, Conrad R (2007) Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30: 239–254. doi:10.1016/j.syapm.2006.05.004. PubMed: 16857336. PubMed DOI
Rastogi G, Barua S, Sani RK, Peyton BM (2011) Investigation of Microbial Populations in the Extremely Metal-Contaminated Coeur d'Alene River Sediments. Microb Ecol 62: 1-13. doi:10.3354/ame01451. PubMed: 21331609. PubMed DOI
Chaudhary PP, Sirohi SK, Singh D, Saxena J (2011) Methyl Coenzyme M Reductase (mcrA) gene based phylogenetic analysis of methanogenspopulation in Murrah Buffaloes (Bubalus bubalis). J Microbiol 49(4): 558-561. doi:10.1007/s12275-011-1052-y. PubMed DOI
Chaudhary PP, Sirohi SK, Saxena J (2012) Diversity analysis of methanogens in rumen of Bubalus bubalis by 16S riboprinting and sequence analysis. Gene 493: 13–17. doi:10.1016/j.gene.2011.11.041. PubMed: 22155312. PubMed DOI
Chaudhary PP, Brablcová L, Buriánková I, Rulík M (2013) Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 97(17): 7553-7562. doi:10.1007/s00253-013-5102-8. PubMed: 23877581. PubMed DOI
Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157: 914–921. doi:10.1016/j.resmic.2006.08.006. PubMed: 17070673. PubMed DOI
Stolyar S, Costello AM, Lidstrom MA, Peeples TL (1999) Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 5: 1235-1244. PubMed
GENBANK
KC952027, KC952028, KC952029, KC952030, KC952031, KC952032, KC952033, KC952034, KC952035, KC952036, KC952039, KC952041, KC952042, KC952043, KC952044, KC952045, KC952046, KC952047, KC952048, KC952050, KC952051, KC952052, KF156778, KF156779, KF156780