Impaired development of a miltefosine-resistant Leishmania infantum strain in the sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31525614
PubMed Central
PMC6804374
DOI
10.1016/j.ijpddr.2019.09.003
PII: S2211-3207(19)30025-9
Knihovny.cz E-resources
- Keywords
- Fitness, Leishmania infantum, Lutzomyia longipalpis, Metacyclogenesis, Miltefosine-resistance, Phlebotomus perniciosus,
- MeSH
- Analysis of Variance MeSH
- Antiprotozoal Agents pharmacology MeSH
- Phosphorylcholine analogs & derivatives pharmacology MeSH
- Insect Vectors parasitology MeSH
- Inhibitory Concentration 50 MeSH
- Rabbits MeSH
- Leishmania infantum drug effects growth & development MeSH
- Leishmaniasis, Visceral drug therapy parasitology transmission MeSH
- Drug Resistance MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Phlebotomus parasitology MeSH
- Psychodidae parasitology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiprotozoal Agents MeSH
- Phosphorylcholine MeSH
- miltefosine MeSH Browser
OBJECTIVES: To gain insight into the propagation of miltefosine (MIL) resistance in visceral leishmaniasis, this laboratory study explored development of resistant parasites with a defective miltefosine transporter (MT) in sand flies. METHODS: Infectivity, colonization of stomodeal valve and metacyclogenesis of a MIL-resistant (MIL-R) Leishmania infantum LEM3323 line with a defective MT were assessed in the natural sand fly vectors Phlebotomus perniciosus and Lutzomyia longipalpis. Given our recent description of partial drug dependency of the MT-deficient line, the impact of MIL pre-exposure on sand fly infectivity was explored as well. RESULTS: A significant reduction in sand fly infection, stomodeal valve colonization and differentiation into metacyclics (determined by a lower flagellum/cell body length ratio) was observed in both vectors for MIL-R as compared to the isogenic parent MIL-susceptible line. Re-introduction of the wildtype MT gene into MIL-R tended to partially rescue the capacity to infect sand flies. Pre-exposure to MIL did not alter infectivity of the MIL-R line. CONCLUSION: The MIL resistant L. infantum LEM3323 line is significantly hampered in its development and transmissibility potential in two sand fly vector species. Additional studies are warranted to evaluate whether this applies to other visceral Leishmania parasites with acquired MIL-resistance.
See more in PubMed
Aslan H., Dey R., Meneses C., Castrovinci P., Jeronimo S.M., Oliva G., Fischer L., Duncan R.C., Nakhasi H.L., Valenzuela J.G., Kamhawi S. A new model of progressive visceral leishmaniasis in hamsters by natural transmission via bites of vector sand flies. J. Infect. Dis. 2013;207:1328–1338. PubMed PMC
Cojean S., Houze S., Haouchine D., Huteau F., Lariven S., Hubert V., Michard F., Bories C., Pratlong F., Le Bras J., Loiseau P.M., Matheron S. Leishmania resistance to miltefosine associated with genetic marker. Emerg. Infect. Dis. 2012;18:704–706. PubMed PMC
Dorlo T.P., Balasegaram M., Beijnen J.H., de Vries P.J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012;67:2576–2597. PubMed
Dvorak V., Shaw J., Volf P. Parasite biology: the vectors. In: Bruschi F., Gradoni L., editors. The Leishmaniases: Old Neglected Tropical Diseases. Springer; 2018. pp. 31–77.
Eberhardt E., Bulte D., Van Bockstal L., Van den Kerkhof M., Cos P., Delputte P., Hendrickx S., Maes L., Caljon G. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain. J Antimicrob. Chemother. 2019 Feb 1;74(2):395–406. PubMed
Fernandez-Prada C., Vincent I.M., Brotherton M.C., Roberts M., Roy G., Rivas L., Leprohon P., Smith T.K., Ouellette M. Different mutations in a P-type ATPase transporter in Leishmania parasites are associated with cross-resistance to two leading drugs by distinct mechanisms. PLoS Neglected Trop. Dis. 2016;10 PubMed PMC
Garcia-Sanchez S., Sanchez-Canete M.P., Gamarro F., Castanys S. Functional role of evolutionarily highly conserved residues, N-glycosylation level and domains of the Leishmania miltefosine transporter-Cdc50 subunit. Biochem. J. 2014;459:83–94. PubMed
Hendrickx S., Beyers J., Mondelaers A., Eberhardt E., Lachaud L., Delputte P., Cos P., Maes L. Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in Leishmania infantum. J. Antimicrob. Chemother. 2016;71:1914–1921. PubMed
Hendrickx S., Boulet G., Mondelaers A., Dujardin J.C., Rijal S., Lachaud L., Cos P., Delputte P., Maes L. Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitol. Res. 2014;113:1875–1881. PubMed
Hendrickx S., Mondelaers A., Eberhardt E., Lachaud L., Delputte P., Cos P., Maes L. Intracellular amastigote replication may not be required for successful in vitro selection of miltefosine resistance in Leishmania infantum. Parasitol. Res. 2015;114:2561–2565. PubMed
Kamhawi S. Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol. 2006;22:439–445. PubMed
Mondelaers A., Sanchez-Canete M.P., Hendrickx S., Eberhardt E., Garcia-Hernandez R., Lachaud L., Cotton J., Sanders M., Cuypers B., Imamura H., Dujardin J.C., Delputte P., Cos P., Caljon G., Gamarro F., Castanys S., Maes L. Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One. 2016;11 PubMed PMC
Pandey K., Ravidas V., Siddiqui N.A., Sinha S.K., Verma R.B., Singh T.P., Dhariwal A.C., Das Gupta R.K., Das P. Pharmacovigilance of miltefosine in treatment of visceral leishmaniasis in endemic areas of Bihar, India. Am. J. Trop. Med. Hyg. 2016;95:1100–1105. PubMed PMC
Perez-Victoria F.J., Sanchez-Canete M.P., Castanys S., Gamarro F. Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J. Biol. Chem. 2006;281:23766–23775. PubMed
Perez-Victoria F.J., Sanchez-Canete M.P., Seifert K., Croft S.L., Sundar S., Castanys S., Gamarro F. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist. Updates. 2006;9:26–39. PubMed
Rakotomanga M., Saint-Pierre-Chazalet M., Loiseau P.M. Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrob. Agents Chemother. 2005;49:2677–2686. PubMed PMC
Ready P.D. Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 2014;6:147–154. PubMed PMC
Rijal S., Ostyn B., Uranw S., Rai K., Bhattarai N.R., Dorlo T.P., Beijnen J.H., Vanaerschot M., Decuypere S., Dhakal S.S., Das M.L., Karki P., Singh R., Boelaert M., Dujardin J.C. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin. Infect. Dis. 2013;56:1530–1538. PubMed
Rogers M.E., Bates P.A. Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog. 2007;3 PubMed PMC
Rogers M.E., Hajmova M., Joshi M.B., Sadlova J., Dwyer D.M., Volf P., Bates P.A. Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice. Cell Microbiol. 2008;10:1363–1372. PubMed PMC
Sacks D., Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu. Rev. Microbiol. 2001;55:453–483. PubMed
Schneider C., Rasband W., Eliceiri K. NIH Image to ImageJ: 25 years of Image Analysis. Nat Methods. 2012;9(7):671–675. PubMed PMC
Secundino N.F., de Freitas V.C., Monteiro C.C., Pires A.C., David B.A., Pimenta P.F. The transmission of Leishmania infantum chagasi by the bite of the Lutzomyia longipalpis to two different vertebrates. Parasites Vectors. 2012;5:20. PubMed PMC
Serafim T.D., Coutinho-Abreu I.V., Oliveira F., Meneses C., Kamhawi S., Valenzuela J.G. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol. 2018 May;3(5):548–555. PubMed PMC
Srivastava S., Mishra J., Gupta A.K., Singh A., Shankar P., Singh S. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasites Vectors. 2017;10:49. PubMed PMC
Sundar S., Singh A., Rai M., Prajapati V.K., Singh A.K., Ostyn B., Boelaert M., Dujardin J.C., Chakravarty J. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin. Infect. Dis. 2012;55:543–550. PubMed
Vermeersch M., da Luz R.I., Tote K., Timmermans J.P., Cos P., Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob. Agents Chemother. 2009;53:3855–3859. PubMed PMC
Volf P., Hajmova M., Sadlova J., Votypka J. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int. J. Parasitol. 2004;34:1221–1227. PubMed
Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36(Suppl. 1):S1–9. PubMed
Zakai H.A., Chance M.L., Bates P.A. In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology. 1998;116(Pt 4):305–309. PubMed