Antioxidant Activities of Alkyl Substituted Pyrazine Derivatives of Chalcones-In Vitro and In Silico Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30959820
PubMed Central
PMC6523444
DOI
10.3390/antiox8040090
PII: antiox8040090
Knihovny.cz E-zdroje
- Klíčová slova
- DFT, antioxidant, chalcone-like, in silico, in vitro, pyrazine, radical scavenging,
- Publikační typ
- časopisecké články MeSH
Chalcones are polyphenolic secondary metabolites of plants, many of which have antioxidant activity. Herein, a set of 26 synthetic chalcone derivatives with alkyl substituted pyrazine heterocycle A and four types of the monophenolic ring B, were evaluated for the potential radical scavenging and antioxidant cellular capacity influencing the growth of cells exposed to H₂O₂. Before that, compounds were screened for cytotoxicity on THP-1 and HepG2 cell lines. Most of them were not cytotoxic in an overnight MTS assay. However, three of them, 4a, 4c and 4e showed 1,1-diphenyl-2-picrylhydrazyl (DPPH●) radical scavenging activity, through single electron transfer followed by a proton transfer (SET-PT) mechanism as revealed by density functional theory (DFT) modeling. DFT modeling of radical scavenging mechanisms was done at the SMD//(U)M052X/6-311++G** level. The in vitro effects of 4a, 4c and 4e on the growth of THP-1 cells during four days pre- or post-treatment with H₂O₂ were examined daily with the trypan blue exclusion assay. Their various cellular effects reflect differences in their radical scavenging capacity and molecular lipophilicity (clogP) and depend upon the cellular redox status. The applied simple in vitro-in silico screening cascade enables fast identification and initial characterization of potent radical scavengers.
Zobrazit více v PubMed
Sahu N.K., Balbhadra S.S., Choudhary J., Kohli D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012;19:209–225. doi: 10.2174/092986712803414132. PubMed DOI
Gomes M.N., Muratov E.N., Pereira M., Peixoto J.C., Rosseto L.P., Cravo P.V.L., Andrade C.H., Neves B.J. Chalcone Derivatives: Promising starting points for drug design. Molecules. 2017;22:1210. doi: 10.3390/molecules22081210. PubMed DOI PMC
Ritter M., Martins R.M., Dias D., Pereira C.M.P. Recent advances on the synthesis of chalcone with antimicrobial activities: A brief review. Lett. Org. Chem. 2014;11:498–508. doi: 10.2174/1570178611666140218004421. DOI
Mahapatra D.K., Bharti S.K., Asati V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017;17:3146–3169. doi: 10.2174/1568026617666170914160446. PubMed DOI
Sharma R., Kumar R., Kodwani R., Kapoor S., Khar A., Bansal R., Khurana S., Singh S., Thomas J., Roy B., et al. A review on mechanism of anti-tumor activity of chalcones. Anticancer Agents Med. Chem. 2016;16:200–211. doi: 10.2174/1871520615666150518093144. PubMed DOI
Opletalová V., Hartl J., Patel A., Palát K., Buchta V. Ring substituted 3-phenyl-1-(2-pyrazinyl)-2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. Farmaco. 2002;57:135–144. doi: 10.1016/S0014-827X(01)01187-9. PubMed DOI
Chlupáčová M., Opletalová V., Kuneš J., Silva L., Buchta V., Dušková L., Kráľová K. Synthesis and biological evaluation of some ring-substituted (E)-3-aryl-1-pyrazin-2-ylprop-2-en-1-ones. Folia Pharm. Univ. Carol. 2005;32:31–43.
Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. Novel pyrazine analogs of chalcone: Synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules. 2015;20:1104–1117. doi: 10.3390/molecules20011104. PubMed DOI PMC
Syam S., Abdelwahab S.I., Al-Mamary M.A., Mohan S. Synthesis of chalcones with anticancer activities. Molecules. 2012;17:6179–6195. doi: 10.3390/molecules17066179. PubMed DOI PMC
Karthikeyan C., Narayana Moorthy N.S.H., Ramasamy S., Vanam U., Manivannan E., Karunagaran D., Trivedi P. Advances in chalcones with anticancer activity. Recent Pat. Anticancer Drug Discov. 2015;10:97–115. doi: 10.2174/1574892809666140819153902. PubMed DOI
Mahapatra D.K., Bharti S.K., Asati V. Anti-cancer chalcone: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015;98:69–114. doi: 10.1016/j.ejmech.2015.05.004. PubMed DOI
Katsori A.M., Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat. 2011;21:1575–1596. doi: 10.1517/13543776.2011.596529. PubMed DOI
Forejtníková H., Lunerová K., Kubínová R., Jankovská D., Marek R., Kareš R., Suchý V., Vondráček J., Machala M. Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Toxicology. 2005;208:81–93. doi: 10.1016/j.tox.2004.11.011. PubMed DOI
Gerhäuser C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Med. Chem. 2005;41:1941–1954. doi: 10.1016/j.ejca.2005.04.012. PubMed DOI
Batovska D.I., Todorova I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010;5:1–29. doi: 10.2174/157488410790410579. PubMed DOI
Dimmock J.R., Elias D.W., Beazely M.A., Kandepu N.M. Bioactivities of chalcones. Curr. Med. Chem. 1999;6:1125–1149. PubMed
Sander T., Freyss J., von Korff M., Rufener C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015;55:460–473. doi: 10.1021/ci500588j. PubMed DOI
Machala M., Kubínová R., Hořavová P., Suchý V. Chemoprotective potentials of homoisoflavonoids and chalcones of Dracaena cinnabari: Modulations of drug-metabolizing enzymes and antioxidant activity. Phytother. Res. 2001;15:114–118. doi: 10.1002/ptr.697. PubMed DOI
Kucerova-Chlupacova M., Dosedel M., Kunes J., Soltesova-Prnova M., Majekova M., Stefek M. Chalcones and their pyrazine analogs: Synthesis, inhibition of aldose reductase, antioxidant activity, and molecular docking study. Mon. Chem. 2018;149:921–929. doi: 10.1007/s00706-018-2146-6. DOI
Srivastava S.K., Ramana K.V., Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev. 2005;26:380–392. doi: 10.1210/er.2004-0028. PubMed DOI
Go M.L., Wu X., Liu X.L. Chalcones: An update on cytotoxic and chemopreventive properties. Curr. Med. Chem. 2005;12:481–499. doi: 10.2174/0929867053363153. PubMed DOI
Rossi M., Caruso F., Crespi E.J., Pedersen J.Z., Nakano G., Duong M., McKee C., Lee S., Jiwrajka M., Caldwell C., et al. Probing antioxidant activity of 2’-hydroxychalcones: Crystal and molecular structures, in vitro antiproliferative studies and in vivo effects on glucose regulation. Biochimie. 2013;95:1954–1963. doi: 10.1016/j.biochi.2013.07.002. PubMed DOI
Cheng Z.J., Kuo S.C., Chan S.C., Ko F.N., Teng C.M. Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim. Biphys. Acta. 1998;1392:291–299. doi: 10.1016/S0005-2760(98)00043-5. PubMed DOI
Hatano T., Takagi M., Ito H., Yoshida T. Phenolic constituents of liquorice. VII. A new chalcone with potent radical scavenging activity and accompanying phenolics from liquorice. Chem. Pharm. Bull. 1997;45:1485–1492. doi: 10.1248/cpb.45.1485. DOI
Ni L., Meng C.Q., Sikorski J. Recent advance in therapeutic chalcones. Expert Opin. Ther. Pat. 2004;14:1669–1691. doi: 10.1517/13543776.14.12.1669. DOI
Rubelj I., Stepanić V., Jelić D., Škrobot Vidaček N., Ćukušić Kalajžić A., Ivanković M., Nujić K., Matijašić M., Verbanac D. Tebrophen—An old polyphenol drug with anticancer potential. Molecules. 2012;17:7864–7886. doi: 10.3390/molecules17077864. PubMed DOI PMC
Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0. DOI
Cesar V., Jozić I., Begović L., Vuković T., Mlinarić S., Lepeduš H., Borović Šunjić S., Žarković N. Cell-type-specific modulation of hydrogen peroxide cytotoxicity and 4-hydroxynonenal binding to human cellular proteins in vitro by antioxidant Aloe vera extract. Antioxidants. 2018;7:125. doi: 10.3390/antiox7100125. PubMed DOI PMC
Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC
The R Project for Statistical Computing. [(accessed on 28 January 2019)]; Available online: https://www.r-project.org/
Durant J.L., Leland B.A., Henry D.R., Nourse J.G. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 2002;42:1273–1280. doi: 10.1021/ci010132r. PubMed DOI
Stepanić V., Gall Trošelj K., Lučić B., Marković Z., Amić D. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem. 2013;141:1562–1570. doi: 10.1016/j.foodchem.2013.03.072. PubMed DOI
Zhao Y., Schultz N.E., Truhlar D.G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2006;2:364–382. doi: 10.1021/ct0502763. PubMed DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G., et al. Gaussian 09 Revision D.01. Gaussian, Inc.; Wallingford, CT, USA: 2013.
Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Dinkova-Kostova A.T., Massiah M.A., Bozak R.E., Hicks R.J., Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA. 2001;98:3404–3409. doi: 10.1073/pnas.051632198. PubMed DOI PMC
Ohkatsu Y., Satoh T. Antioxidant and photo-antioxidant activities of chalcone derivatives. J. Jpn. Petrol. Inst. 2008;51:298–308. doi: 10.1627/jpi.51.298. DOI
Qian A.P., Shang Y.J., Teng Q.F., Chang J., Fan G.J., Wei X., Li R.R., Li H.P., Yao X.J., Dai F., et al. Hydroxychalxones as potent antioxidants: Structure-activity relationship analysis and mechanism considerations. Food Chem. 2011;126:214–248. doi: 10.1016/j.foodchem.2010.11.011. DOI
Cai Y.Z., Sun M., Xing J., Luo Q., Corke H. Structure-RS activity relationship of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006;78:2872–2888. doi: 10.1016/j.lfs.2005.11.004. PubMed DOI
Nenadis N., Wang L.F., Tsimidou M.Z., Zhang H.Y. Radical scavenging potential of phenolic compounds encountered in O. europaea products as indicated by calculation of bond dissociation enthalpy and ionization potential values. J. Agric. Food Chem. 2005;53:295–299. doi: 10.1021/jf048776x. PubMed DOI
Milkovic L., Vukovic T., Zarkovic N., Tatzber F., Bisenieks E., Kalme Z., Bruvere I., Ogle Z., Poikans J., Velena A., et al. Antioxidative 1,4-dihydropyridine derivatives modulate oxidative stress and growth of human osteoblast-like cells in vitro. Antioxidants. 2018;7:123. doi: 10.3390/antiox7090123. PubMed DOI PMC
Kraljević Gazivoda T., Harej A., Sedić M., Pavelić Kraljević S., Stepanić V., Drenjančević D., Talapko J., Raić-Malić S. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur. J. Med. Chem. 2016;124:794–808. doi: 10.1016/j.ejmech.2016.08.062. PubMed DOI
De Freitas Silva M., Pruccoli L., Morroni F., Sita G., Seghetti F., Viegas C., Tarozzi A. The Keap1/Nrf2-ARE pathway as a pharmacological target for chalcones. Molecules. 2018;23:1803. doi: 10.3390/molecules23071803. PubMed DOI PMC
Lounsbury N., Mateo G., Jones B., Papaiahgari S., Thimmulappa R.K., Teijaro C., Gordon J., Korzekwa K., Ye M., Allaway G., et al. Heterocyclic chalcone activators of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) with improved in vivo efficacy. Bioorg. Med. Chem. 2015;23:5352–5359. doi: 10.1016/j.bmc.2015.07.056. PubMed DOI