Chalcones: Synthetic Chemistry Follows Where Nature Leads
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34439870
PubMed Central
PMC8392591
DOI
10.3390/biom11081203
PII: biom11081203
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer, antimicrobial, bioactivities, biomolecular interactions, chalcones, mechanisms, natural products, phenolics, synthesis,
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- antiflogistika * chemie farmakologie MeSH
- antioxidancia * chemie farmakologie MeSH
- biologické přípravky * chemie farmakologie MeSH
- buněčné linie MeSH
- chalkonoidy * chemie farmakologie MeSH
- lidé MeSH
- objevování léků MeSH
- protinádorové látky * chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antiflogistika * MeSH
- antioxidancia * MeSH
- biologické přípravky * MeSH
- chalkonoidy * MeSH
- protinádorové látky * MeSH
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Department of Biology College of Education for Pure Sciences University of Anbar Al Anbar 10081 Iraq
Department of Biology College of Education for Women University of Anbar Al Anbar 10081 Iraq
Faculty of Science and Engineering University of Wolverhampton Wolverhampton WV1 1LY UK
Zobrazit více v PubMed
Nahar L., Sarker S.D. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry. 2nd ed. Wiley and Sons; Chichester, UK: 2019.
Zhuang C., Zhang W., Sheng C., Zhang W., Xing C. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC
Valavanidis A., Vlachogianni T. Plant polyphenols: Recent advances in epidemiological research and other studies on cancer prevention. In: Atta-Ur-Rahman T.I., editor. Studies in Natural Products Chemistry. Volume 39. Elsevier; Amsterdam, The Netherlands: 2013. pp. 269–295.
Gupta D., Jain D., Trivedi P. Recent advances in chalcones as anti-infective agents. Int. J. Chem. Sci. 2010;8:649–654.
Mahapatra D.K., Bharti S.K., Asati V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. J. Med. Chem. Eur. J. Med. Chem. 2015;101:496–524. doi: 10.1016/j.ejmech.2015.06.052. PubMed DOI
Hutchins W.A., Wheeler T.S. Chalkones: A new synthesis of chrysin, apigenin and luteolin. J. Chem. Soc. 1939:91–94. doi: 10.1039/jr9390000091. DOI
Bohm B.A. Chalcones and aurones-7. Methods Plant. Biochem. 1989;1:237–282.
Cazarolli L.H., Kappel V.D., Zanatta A.P., Suzuki D.O.H., Yunes R.A., Nunes R.J., Pizzolatti M.G., Silva F.R.M.B. Natural and synthetic chalcones: Tools for the study of targets of action—Insulin secretagogue or insulin mimetic? In: Atta-Ur-Rahman T.I., editor. Studies in Natural Products Chemistry. Volume 39. Elsevier; Amsterdam, The Netherlands: 2013. pp. 47–89.
Watson R.R. Nutrition and Functional Foods for Healthy Aging. 1st ed. Elsevier Science; Amsterdam, The Netherlands: 2017. pp. 1–386.
Higgins L.G. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Pharmacol. Toxicol. Appl. Pharmacol. 2008;226:328–337. doi: 10.1016/j.taap.2007.09.018. PubMed DOI
Bryan H.K., Olayanju A., Goldring C.E., Park B.K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol. 2013;85:705–717. doi: 10.1016/j.bcp.2012.11.016. PubMed DOI
Thurston D.E. Chemistry and Pharmacology of Anticancer Drugs. CRC Press Inc.; Boca Raton, FL, USA: 2006.
Zhang Y., Hou Y., Liu C., Li Y., Guo W., Wu J.-L., Xu D., You X., Pan Y., Chen Y. Identification of an adaptor protein that facilitates Nrf2-Keap1 complex formation and modulates antioxidant response. Free Radic. Biol. Med. 2016;97:38–49. doi: 10.1016/j.freeradbiomed.2016.05.017. PubMed DOI
Kim H.J., Jang B.K., Park J.-H., Choi J.W., Park S.J., Byeon S.R., Pae A.N., Lee Y.S., Cheong E., Park K.D. A novel chalcone derivatives as Nrf2 activator attenuates learning and memory impairment in a scopolamine-induced mouse model. J. Med. Chem. Eur. J. Med. Chem. 2020;185:111777. doi: 10.1016/j.ejmech.2019.111777. PubMed DOI
Egbujor M.C., Saha S., Buttari B., Profumo E., Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Opin. Clin. Pharmacol. 2021;14:465–480. doi: 10.1080/17512433.2021.1901578. PubMed DOI
Ajiboye T.O., Yakubu M.T., Oladiji A.T. Electrophilic and reactive oxygen species detoxification potentials of chalcone dimers is mediated by redox transcription factor Nrf-2. J. Biochem. Mol. Toxicol. 2014;28:11–22. doi: 10.1002/jbt.21517. PubMed DOI
Li N., Meng D., Pan Y., Cui Q., Li G., Ni H., Sun Y., Qing D., Jia X., Pan Y. Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. J. Funct. Foods. 2015;17:837–846. doi: 10.1016/j.jff.2015.06.027. DOI
Martinez R.M., Pinho-Ribeiro F.A., Vale D.L., Steffen V.S., Vicentini F.T.M.C., Vignoli J.A., Baracat M.M., Georgetti S.R., Verri W.A., Casagrande R. Trans.-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. J. Photochem. Photobiol. 2017;171:139–146. doi: 10.1016/j.jphotobiol.2017.05.002. PubMed DOI
Kachadourian R., Day B.J., Pugazhenti S., Franklin C.C., Genoux-Bastide E., Mahaffey G., Gauthier C., Di Pietro A., Boumendjel A.N. A synthetic chalcone as a potent inducer of glutathione biosynthesis. J. Med. Chem. 2012;55:1382–1388. doi: 10.1021/jm2016073. PubMed DOI PMC
Basar N., Nahar L., Oridupa O.A., Ritchie K.J., Talukdar A.D., Stafford A., Kushiev H., Kan A., Sarker S.D. Utilization of the ability to induce activation of the nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) to assess potential cancer chemopreventive activity of liquorice samples. Phytochem. Anal. 2016;27:233–238. doi: 10.1002/pca.2616. PubMed DOI
Plopper G., Sharp D., Sikorski E., Lewin B. In: Lewin’s Cells. 3rd ed. Plopper G., Sharp D., Sikorski E., editors. Jones & Bartlett Learning; Burlington, MA, USA: 2015.
Orlikova B., Schnekenburger M., Zloh M., Golais F., Diederich M., Tasdemir D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol. Rep. 2012;28:797–805. doi: 10.3892/or.2012.1870. PubMed DOI PMC
Lee Y.H., Jeon S.-H., Kim S.H., Kim C., Lee S.-J., Koh D., Lim Y., Ha K., Shin S.Y. A new synthetic chalcone derivative, 2-hydroxy-3′, 5, 5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med. 2012;44:369–377. doi: 10.3858/emm.2012.44.6.042. PubMed DOI PMC
Zhong P., Wu L., Qian Y., Fang Q., Liang D., Wang J., Zeng C., Wang Y., Liang G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. BBA Mol. Basis Dis. 2015;1852:1230–1241. doi: 10.1016/j.bbadis.2015.02.011. PubMed DOI
Rajajendram R., Tham C.L., Akhtar M.N., Sulaiman M.R., Israf D.A. Inhibition of epithelial CC-family chemokine synthesis by the synthetic chalcone DMPF-1 via disruption of NF-[kappa]B nuclear translocation and suppression of experimental asthma in mice. Mediat. Inflamm. 2015;2015:176926. doi: 10.1155/2015/176926. PubMed DOI PMC
Kuruc T., Kello M., Petrova K., Kudlickova Z., Kubatka P. The newly synthesized chalcone L1 is involved in the cell growth inhibition, induction of apoptosis and suppression of epithelial-to-mesenchymal transition of HeLa cells. Molecules. 2021;26:1356. doi: 10.3390/molecules26051356. PubMed DOI PMC
Bortolotto L.F.B., Barbosa F.R., Silva G., Bitencourt T.A., Beleboni R.O., Baek S.J., Marins M., Fachin A.L. Cytotoxicity of trans-chalcone and lichochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 2017;85:425–433. doi: 10.1016/j.biopha.2016.11.047. PubMed DOI
Qi Z., Liu M., Liu Y., Zhang M., Yang G. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, block cell cycle progression, and induces apoptosis of human ovarian cancer cells. PLoS ONE. 2014;9:e106206. doi: 10.1371/journal.pone.0106206. PubMed DOI PMC
Hseu Y.-C., Lee M.-S., Wu C.-R., Cho H.-J., Lin K.-Y., Lai G.-H., Wang S.-Y., Kuo Y.-H., Kumar K.J.S., Yang H.-L. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAOK signaling pathway. J. Agric. Food Chem. 2012;60:2385–2397. doi: 10.1021/jf205053r. PubMed DOI
Ko H., Kim Y., Park J., Amor E.C., Lee J.W., Yang H. Dimethyl cardamonin induces G(1)-phase cell cycle arrest, apoptosis, and autophagy in HCT116 cells. Cancer Res. 2010;70:780.
Maioral M.F., Gaspar P.C., Souza G.R.R., Mascarello A., Chiaradia L.D., Licínio M.A., Moraes A.C.R., Yunes R.A., Nunes R.J., Santos-Silva M.C. Apoptotic events induced by synthetic naphthylchalcones in human acute leukemia cell lines. Biochimie. 2013;95:866–874. doi: 10.1016/j.biochi.2012.12.001. PubMed DOI
Kello M., Drutovic D., Pilatova M.B., Tischlerova V., Perjesi P., Mojzis J. Chalcone derivatives cause accumulation of colon cancer cells in the G2/M phase and induce apoptosis. Life Sci. 2016;150:32–38. doi: 10.1016/j.lfs.2016.02.073. PubMed DOI
Novilla A., Astuti I., Suwito H. Molecular Mechanism of synthesized potential anticancer agent chalcone in leukemia cell line K562. J. Med. Sci. 2017;49:23–28.
Rao Y.K., Kao T.-Y., Ko J.-L., Tzeng Y.-M. Chalcone HTMC causes in vitro selective cytotoxicity, cell-cycle G 1 phase arrest through p53-dependent pathway in human lung adenocarcinoma A549 cells, and in vivo tumor growth suppression. Bioorg. Med. Chem. Lett. 2010;20:6508–6512. doi: 10.1016/j.bmcl.2010.09.056. PubMed DOI
Mohamed M.F., Hassaneen H.M., Abdelhamid I.A. Cytotoxicity, molecular modeling, cell cycle arrest, and apoptotic induction induced by novel tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcones. J. Med. Chem. Eur. J. Med. Chem. 2018;143:532–541. doi: 10.1016/j.ejmech.2017.11.045. PubMed DOI
Zhang B., Lai Y., Li Y., Shu N., Wang Z., Wang Y., Li Y., Chen Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol. 2018;821:57–67. doi: 10.1016/j.ejphar.2017.12.053. PubMed DOI
Takac P., Kello M., Pilatova M.B., Kudlickova Z., Vilkova M., Slepcikova P., Petik P., Mojzis J. New chalcone derivative exhibits antiproliferative potential by inducing G2/M cell cycle arrest, mitochondrial-mediated apoptosis and modulation of MAPK signalling pathway. Chem. Interact. 2018;292:37–49. doi: 10.1016/j.cbi.2018.07.005. PubMed DOI
Wani Z.A., Pathania A.S., Mahajan G., Behl A., Mintoo M.J., Guru S.K., Viswanath A., Malik F., Kamal A., Mondhe D.M. Anticancer activity of a novel quinazolinone-chalcone derivative through cell cycle arrest in pancreatic cancer cell line. J. Solid Tumors. 2015;5:73–76. doi: 10.5430/jst.v5n2p73. DOI
Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC
Hsu Y., Kuo P., Tzeng W., Lin C. Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis. Food Chem. Toxicol. 2006;44:704–713. doi: 10.1016/j.fct.2005.10.003. PubMed DOI
Chen G., Zhou D., Li X.-Z., Jiang Z., Tan C., Wei X.-Y., Ling J., Jing J., Liu F., Li N. A natural chalcone induces apoptosis in lung cancer cells: 3D-QSAR, docking and an in vivo/vitro assay. Sci. Rep. 2017;7:10729. doi: 10.1038/s41598-017-11369-9. PubMed DOI PMC
Pedrini F.S., Licínio M.A., De Moraes A.C.R., Curta J.C., Costa A., Santos-Silva M.C., Chiaradia L.D., Mascarello A., Nunes R.J., Yunes R.A., et al. Induction of apoptosis and cell cycle arrest in L-1210 murine lymphoblastic leukaemia cells by (2E)-3-(2-naphthyl)-1-(3′-methoxy-4′-hydroxy- phenyl)-2-propen-1-one. J. Pharm. Pharmacol. 2010;62:1128–1136. doi: 10.1111/j.2042-7158.2010.01141.x. PubMed DOI
Zhang Y., Srinivasan B., Xing C., Lü J. A new chalcone derivative (E)-3-(4-methoxyphenyl)-2-methyl-1-(3,4,5-trimethoxyphenyl) prop-2-en-1-one suppresses prostate cancer involving p53-mediated cell cycle arrests and apoptosis. Anticancer Res. 2012;32:3689–3698. PubMed
Maggiolini M., Statti G., Vivacqua A., Gabriele S., Rago V., Loizzo M., Menichini F., Amdo S. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2002;82:315–322. doi: 10.1016/S0960-0760(02)00230-3. PubMed DOI
Mutchtaridi M., Syahidah H.N., Subarans A., Yusuf M., Bryant S.D., Langer T. Molecular docking and 3D-pharmacophore modeling to study the interactions of chalcone derivatives with estrogen receptor alpha. Pharmaceutical. 2017;10:81. PubMed PMC
Prasetiawati R., Zamri A., Barliana M.I., Mutchtaridi M. In silico predictive for modification of chalcone with pyrazole derivatives as a novel therapeutic compound for targeted breast cancer treatment. J. Appl. Pharm. Sci. 2019;9:20–28.
Herber C.B., Quirti J.G., Firestone G., Krois C. 2′,3′,4′-Trihydroxychalcone is an estrogen receptor ligand which modulates the activity of 17β-estradiol. bioRxiv. 2019:607275. doi: 10.1101/607275. DOI
Branham W.S., Dial S.L., Moland C.L., Hass B.S., Blair R.M., Fang H., Shi L., Tong W., Perkins R.G., Sheehan D.M. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr. 2002;132:658–664. doi: 10.1093/jn/132.4.658. PubMed DOI
Dube P.N., Thombare Y.B., Chatpalliwar V.A. Design and Synthesis of Novel chalcone-phenylpyranone derivatives as estrogen receptor modulators. Proceedings. 2018;9:30. doi: 10.3390/ecsoc-22-05874. DOI
Ghribia L., Ghouilaa H., Omrib A., Besbesb M., Janneta H.B. Antioxidant and anti–acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla. Asian Pac. J. Trop. Biomed. 2014;4:S417–S423. doi: 10.12980/APJTB.4.2014C1038. PubMed DOI PMC
Voon F.-L., Sulaiman M.R., Akhtar M.N., Idris M.F., Akira A., Perimal E.K., Israf D.A., Ming-Tatt L. Cardamonin (2′,4′-dihydroxy-6′-methoxychalcone) isolated from Boesenbergia rotunda (L.) Mansf. inhibits CFA-induced rheumatoid arthritis in rats. Eur. J. Pharmacol. 2017;794:127–134. doi: 10.1016/j.ejphar.2016.11.009. PubMed DOI
Choi H.S., Kim M.K., Choi Y.K., Shin Y.C., Cho S.-G., Ko S.-G. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement. Altern. Med. 2016;16:122. doi: 10.1186/s12906-016-1103-3. PubMed DOI PMC
Rozmer Z., Perjesi P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016;15:87–120. doi: 10.1007/s11101-014-9387-8. DOI
Akihisa T., Tokuda H., Hasegawa D., Ukiya M., Kimura Y., Enjo F., Suzuki T., Nishino H. Chalcones and other compounds from the exudates of Angelica keiskei and their cancer chemopreventive effects. Indian J. Nat. Prod. 2006;69:38–42. doi: 10.1021/np058080d. PubMed DOI
Memon A.H., Ismail Z., Aisha A.F., Al-Suede F.S.R., Hamil M.S.R., Hashim S., Saeed M.A.A., Laghari M., Majid A., Shah A.M. Isolation, characterization, crystal structure elucidation, and anticancer study of dimethyl cardamonin, isolated from Syzygium campanulatum Korth. Evid. Based Complement. Alternat. Med. 2014;2014:470179. doi: 10.1155/2014/470179. PubMed DOI PMC
Abu N., Akhtar M.N., Yeap S.K., Lim K.L., Ho W.Y., Abdullah M.P., Ho C.L., Omar A.R., Ismail J., Alitheen N.B. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement. Altern. Med. 2016;16:86. doi: 10.1186/s12906-016-1046-8. PubMed DOI PMC
Kuo Y.-F., Su Y.-Z., Tseng Y.-H., Wang S.-Y., Wang H.-M., Chueh P.J. Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells. Free Radic. Biol. Med. 2010;49:214–226. doi: 10.1016/j.freeradbiomed.2010.04.005. PubMed DOI
Yang L., Su L., Cao C., Xu L., Zhong D., Xu L., Liu X. The chalcone 2′-hydroxy-4′, 5′-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells. IUBMB Life. 2013;65:533–543. doi: 10.1002/iub.1161. PubMed DOI
Sumiyoshi M., Taniguchi M., Baba K., Kimura Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica keiskei roots through the inhibited activation and differentiation of M2 macrophages. Phytomedicine. 2015;22:759–767. doi: 10.1016/j.phymed.2015.05.005. PubMed DOI
Shi Y., Wu W.-Z., Huo A., Zhou W., Jin X.-H. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcinoma cells. Oncol. Lett. 2017;14:2852–2858. doi: 10.3892/ol.2017.6517. PubMed DOI PMC
Yagura T., Motomiya T., Ito M., Honda G., Iida A., Kiuchi F., Tokuda H., Nishino H. Anticarcinogenic compounds in the Uzbek medicinal plant, Helichrysum maracandicum. J. Nat. Med. 2008;62:174–177. doi: 10.1007/s11418-007-0223-y. PubMed DOI
Ramirez-Tagle R., Escobar C.A., Romero V., Montorfano I., Armisén R., Borgna V., Jeldes E., Pizarro L., Simon F., Echeverria C. Chalcone-induced apoptosis through caspase-dependent intrinsic pathways in human hepatocellular carcinoma cells. Int. J. Mol. Sci. 2016;17:260–278. doi: 10.3390/ijms17020260. PubMed DOI PMC
Marques A., Pereira S., Paiva R., Cavalcante C., Sudo S., Tinoco L., Moreira D.L., Guimaraes E., Sudo R., Kaplan M., et al. Hypoglycemic effect of the methanol flower extract of piper claussenianum and the major constituent 2′,6′-dihydroxy-4′-methoxychalcone in streptozotocin diabetic rats. Indian J. Pharm. Sci. 2015;77:237–243. PubMed PMC
Enoki T., Ohnogi H., Nagamine K., Kudo Y., Sugiyama K., Tanabe M., Kobayashi E., Sagawa H., Kato I. Antidiabetic activities of chalcones isolated from a Japanese herb, Angelica keiskei. J. Agric. Food Chem. 2007;55:6013–6017. doi: 10.1021/jf070720q. PubMed DOI
Lin C.-T., Senthil Kumar K.J., Tseng Y.-H., Wang Z.-J., Pan M.-Y., Xiao J.-H., Chien S.-C., Wang S.-Y. Anti-inflammatory activity of flavokawain B from Alpinia pricei Hayata. J. Agric. Food Chem. 2009;57:6060–6065. doi: 10.1021/jf900517d. PubMed DOI
Lin Y., Kuang Y., Li K., Wang S., Song W., Qiao X., Sabir G., Ye M. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorg. Med. Chem. 2017;25:3706–3713. doi: 10.1016/j.bmc.2017.05.009. PubMed DOI
Franceschelli S., Pesce M., Vinciguerra I., Ferrone A., Riccioni H., Patruno A., Grilli A., Felaco M., Speranza L. Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules. 2011;16:5720–5734. doi: 10.3390/molecules16075720. PubMed DOI PMC
Daikonya A., Kitanaka S., Katsuki S. Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae) Chem. Pharm. Bull. 2004;52:1326–1329. doi: 10.1248/cpb.52.1326. PubMed DOI
Zampini I.C., Vattuone M.A., Isla M.I. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts. J. Ethnopharmacol. 2005;102:450–456. doi: 10.1016/j.jep.2005.07.005. PubMed DOI
Costa G., Endo E.H., Cortez D., Nakamura T., Nakamura C., Filho B.D. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. J. Med. Mycol. 2016;26:217–226. doi: 10.1016/j.mycmed.2016.03.002. PubMed DOI
Oldoni T.L.C., Cabral I.S., d’Arce M.A.R., Rosalen P.L., Ikegaki M., Nascimento A.M., Alencar S.M. Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis. Sep. Purif. Technol. 2011;77:208–213. doi: 10.1016/j.seppur.2010.12.007. DOI
Kulkarni R.R., Tupe S.G., Gample S.P., Chandgude M.G., Sarkar D., Deshpande M.V., Joshi S.P. Antifungal dimeric chalcone derivative kamalachalcone E from Mallotus philippinensis. Nat. Prod. Res. 2014;28:245–250. doi: 10.1080/14786419.2013.843178. PubMed DOI
Jayasinghe L., Balasooriya B., Padmini W.C., Hara N., Fujimoto Y. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of Artocarpus nobilis. Phytochemistry. 2004;65:1287–1290. doi: 10.1016/j.phytochem.2004.03.033. PubMed DOI
Mohammed M.M., Hamdy A.-H.A., El-Fiky N.M., Mettwally W.S., El-Beih A.A., Kobayashi N. Anti-influenza A virus activity of a new dihydrochalcone diglycoside isolated from the Egyptian seagrass Thalassodendron ciliatum (Forsk.) den Hartog. Nat. Prod. Res. 2014;28:377–382. doi: 10.1080/14786419.2013.869694. PubMed DOI
Dao T.T., Nguyen P.H., Lee H.S., Kim E., Park J., Lim S.I., Oh W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett. 2011;21:294–298. doi: 10.1016/j.bmcl.2010.11.016. PubMed DOI
Uchiumi F., Hatano T., Ito H., Yoshida T., Tanuma S.-I. Transcriptional suppression of the HIV promoter by natural compounds. Antivir. Res. 2003;58:89–98. doi: 10.1016/S0166-3542(02)00186-9. PubMed DOI
Park J.-Y., Ko J.-A., Kim D.W., Kim Y.M., Kwon H.-J., Jeong H.J., Kim C.Y., Park K.H., Lee W.S., Ryu Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem. 2016;31:23–30. doi: 10.3109/14756366.2014.1003215. PubMed DOI
Borges-Argáez R., Balnbury L., Flowers A., Giménez-Turba A., Ruiz G., Waterman P.G., Peña-Rodríguez L.M. Cytotoxic and antiprotozoal activity of flavonoids from Lonchocarpus spp. Phytomedicine. 2007;14:530–533. doi: 10.1016/j.phymed.2006.11.027. PubMed DOI
Rodrigues D., Maniscalco D., Silva F., Chiari B., Castelli M., Isaac V., Cicarelli R., Lopez S. Trypanocidal activity of flavokawin B, a component of Polygonum ferrugineum Wedd. Planta Med. 2017;83:239–244. doi: 10.1055/s-0042-112031. PubMed DOI
Chen M., Theander T.G., Christensen S.B., Hviid L., Zhai L., Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob. Agents Chemother. 1994;38:1470–1476. doi: 10.1128/AAC.38.7.1470. PubMed DOI PMC
Yenesew A., Induli M., Derese S., Midiwo J.O., Heydenreich M., Peter M.G., Akala H., Wangui J., Liyala P., Waters N.C. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65:3029–3032. doi: 10.1016/j.phytochem.2004.08.050. PubMed DOI
Sakagami H., Masuda Y., Tomomura M., Yokose S., Uesawa Y., Ikezoe N., Asahara D., Takao K., Kanamoto T., Terakubo S. Quantitative structure–cytotoxicity relationship of chalcones. Anticancer Res. 2017;37:1091–1098. PubMed
da Silva Lima D.C., do Vale C.R., Véras J.H., Bernardes A., Pérez C.N., Chen-Chen L. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS ONE. 2017;12:e0171224. PubMed PMC
Emayavaramban M., Santhi N., Gopi C., Manivannan C., Raguraman A. Synthesis, Characterization and anti-diabetic activity of 1, 3, 5-triaryl-2-pyrazolines in acetic acid solution under ultrasound irradiation. Int. Lett. Chem. Phys. Astron. 2003;9:172–185. doi: 10.18052/www.scipress.com/ILCPA.14.172. DOI
Chinthala Y., Thakur S., Tirunagari S., Chinde S., Domatti A.K., Arigari N.K., Srinivas K., Alam S., Jonnala K.K., Khan F. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. J. Med. Chem. Eur. 2015;93:564–573. doi: 10.1016/j.ejmech.2015.02.027. PubMed DOI
Hsieh H.-K., Tsao L.-T., Wang J.-P., Lin C.-N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharmacol. 2000;52:163–171. doi: 10.1211/0022357001773814. PubMed DOI
Won S.-J., Liu C.-T., Tsao L.-T., Weng J.-R., Ko H.-H., Wang J.-P., Lin C.-N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. J. Med. Chem. Eur. 2005;40:103–112. doi: 10.1016/j.ejmech.2004.09.006. PubMed DOI
Jantan I., Bukhari S.N.A., Adekoya O.A., Sylte I. Studies of synthetic chalcone derivatives as potential inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxyugenase and pro-inflammatory cytokines. Drug Des. Dev. Ther. 2014;8:1405–1418. doi: 10.2147/DDDT.S67370. PubMed DOI PMC
Chen Y.-F., Wu S.-N., Gao J.-M., Liao Z.-Y., Tseng Y.-T., Fulop F., Chang F.-R., Lo Y.-C. The antioxidant, anti-inflammatory, and neuroprotective properties of the synthetic chalcone derivative AN07. Molecules. 2020;25:2907. doi: 10.3390/molecules25122907. PubMed DOI PMC
Solankee A., Kapadia K., Ana Ćirić M., Soković I., Doytchinova A., Geronikaki A. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. J. Med. Chem. Eur. J. Med. Chem. 2010;45:510–518. doi: 10.1016/j.ejmech.2009.10.037. PubMed DOI
Chu W.-C., Bai P.-Y., Yang Z.-Q., Cui D.-Y., Hua Y.-G., Yang Y., Yang Q.-Q., Zhang E., Qin S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. J. Med. Chem. Eur. 2018;143:905–921. doi: 10.1016/j.ejmech.2017.12.009. PubMed DOI
Arif R., Rana M., Yasmeen S., Amaduddin M., Khan M.S., Abid M., Khan M.S., Rahisuddin M. Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J. Mol. Struct. 2020;1208:127905. doi: 10.1016/j.molstruc.2020.127905. DOI
Morao L.G., Lorenzoni A.S.G., Chakraborty P., Ayusso G.M., Cavalca L.B., Santos M.B., Marques B.C., Dilarri G., Zamuner C., Regasini L.O., et al. Investigating the modes of action of the antimicrobial chalcones BC1 and T9A. Molecules. 2020;25:4596. doi: 10.3390/molecules25204596. PubMed DOI PMC
Amole K.L., Bello I.A., Oyewale A.O. Synthesis, characterization and antibacterial activities of new fluorinated chalcones. Chem. Afr. 2019;2:47–55. doi: 10.1007/s42250-019-00043-4. DOI
Xu M., Wu P., Shen F., Ji J., Rakesh K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 2019;91:103133. doi: 10.1016/j.bioorg.2019.103133. PubMed DOI
Zhang M., Prior A.M., Maddox M.M., Shen W.-J., Hevener K.E., Bruhn D.F., Lee R.B., Singh A.P., Reinicke J., Simmons C.J., et al. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega. 2018;3:18343–18360. doi: 10.1021/acsomega.8b03174. PubMed DOI PMC
Sudhakar C., Suresj J., Valarmathi N., Sumathi S., Karthikeyan A., Arun A. Synthesis, characterization of acrylate polymer having chalcone moiety: Evaluation of antimicrobial, anticancer and drug release study. J. Biomater. Sci. Polym. Ed. 2020;32:438–453. doi: 10.1080/09205063.2020.1841364. PubMed DOI
Lopez S.N., Castelli M.V., Zacchino S.A., Domínguez J.N., Lobo G., Charris-Charris J., Cortés J.C., Ribas J.C., Devia C., Rodríguez A.M. In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem. 2001;9:1999–2013. doi: 10.1016/S0968-0896(01)00116-X. PubMed DOI
Tailor N.K. Synthesis and antifungal activity of certain chalcones and their reduction. Indo Glob. J. Pharm. Sci. 2014;4:25–28. doi: 10.35652/IGJPS.2014.120. DOI
Gupta D., Jain D.K. Chalcone derivatives as potential antifungal agents: Synthesis and antifungal activity. J. Adv. Pharm. Technol. Res. 2015;6:114–117. doi: 10.4103/2231-4040.161507. PubMed DOI PMC
Zheng Y., Wang X., Gao S., Ma M., Ren G., Liu H. Synthesis and antifungal activity of chalcone derivatives. Nat. Prod. Res. 2015;29:1804–1810. doi: 10.1080/14786419.2015.1007973. PubMed DOI
Mellado M., Espinoza L., Madrid A., Mella J., Chavez-Weisser E., Diaz K., Cuellar M. Design, synthesis, antifungal activity, and structure-activity relationship studies of chalcones and hybrid dihydrochromane-chalcones. Mol. Div. 2020;24:603–615. doi: 10.1007/s11030-019-09967-y. PubMed DOI
Andrade J.T., Santos F.R.S., Lima W.G., Sousa C.D.F., Oliveira L.S.F.M., Ribeiro R.I.M.A., Gomes A.J.P.S., Araujo M.G.F., Villar J.A.F.P., Ferreira J.M.S. Design, synthesis, biological activity and structure activity relationship studies of chalcone derivatives as potential anti-Candida agents. J. Antibiot. 2018;71:702–712. doi: 10.1038/s41429-018-0048-9. PubMed DOI
Lagu S.B., Yejella R.P., Bhandare R.R., Shaik A.B. Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals. 2020;13:375. doi: 10.3390/ph13110375. PubMed DOI PMC
Cole A.L., Hossain S., Cole A.M., Phanstiel O. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem. 2016;24:2768–2776. doi: 10.1016/j.bmc.2016.04.045. PubMed DOI
Mateeva N., Eyunni S.V., Redda K.K., Ononuju U., Hansberry II T.D., Aikens C., Nag A. Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties. Bioorg. Med. Chem. Lett. 2017;27:2350–2356. doi: 10.1016/j.bmcl.2017.04.034. PubMed DOI PMC
Fu Y., Zeng L.H., Ren X., Song B., Hu D., Gan X. New chalcone derivatives: Synthesis, antiviral activity and mechanism of action. RSC Adv. 2020;10:24483. doi: 10.1039/D0RA03684F. PubMed DOI PMC
Elkhalifa D., Al-Hashimi I., Al Moustafa A.-E., Khalil A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 2021;29:403–419. doi: 10.1080/1061186X.2020.1853759. PubMed DOI
Marinov R., Markova N., Krumova S., Yotovska K., Zaharieva M.M., Genova-Kalou P. Antiviral properties of chalcones and their synthetic derivatives: A mini review. Pharmacia. 2020;67:325–337. doi: 10.3897/pharmacia.67.e53842. DOI
Zhou D., Xie D., He F., Song B., Hu D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg. Med. Chem. Lett. 2018;28:2091–2097. doi: 10.1016/j.bmcl.2018.04.042. PubMed DOI
Wang J., Huang L., Cheng C., Li G., Xie J., Shen M., Chen Q., Li W., He W., Qiu P., et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B. 2019;9:335–350. doi: 10.1016/j.apsb.2019.01.003. PubMed DOI PMC
Stepanic V., Matijasic M., Horvat T., Verbanac D., Kucerova-Chlupacova M., Saso L., Zarkovic N. Antioxidant activities of alkyl substiyuted pyrazine derivatives of chalcones—In vitro and in silico study. Antioxidants. 2019;8:90. doi: 10.3390/antiox8040090. PubMed DOI PMC
Lahsasni A.S., Al Korbi F.H., Aljaber N.A.-A. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem. Cent. J. 2014;8:32. doi: 10.1186/1752-153X-8-32. PubMed DOI PMC
Al Zahrani N.A., El-Shishtawy R.M., Elaasser M.M., Asiri A.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules. 2020;25:4566. doi: 10.3390/molecules25194566. PubMed DOI PMC
Wu J.-Z., Cheng C.-C., Shen L.-L., Wang Z.-K., Wu S.-B., Li W.-L., Chen S.-H., Zhou R.-P., Qiu P.-H. Synthetic chalcones with potent antioxidant ability on H2O2-induced apoptosis in PC12 cells. Int. J. Mol. Sci. 2014;15:18525–18539. doi: 10.3390/ijms151018525. PubMed DOI PMC
Venkatachalam H., Nayak Y., Jayashree B.S. Synthesis, characterization and antioxidant activities of synthetic chalcones and flavones. APCBEE Procedia. 2012;3:209–213. doi: 10.1016/j.apcbee.2012.06.071. DOI
Padhye S., Ahmad A., Oswa N., Sarkar F.H. Emerging role of garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol. 2009;2:38. doi: 10.1186/1756-8722-2-38. PubMed DOI PMC
Iqbal H., Prabhakar V., Sangith A., Chandrika B., Balasubramanian R. Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med. Chem. Res. 2014;23:4383–4394. doi: 10.1007/s00044-014-1007-z. DOI
Ugwu D.I., Ezema B.E., Eze F.U., Onoabedje E.A., Ezema C.G., Ekoh O.C., Ayogu J.I. Synthesis and antimalarial activities of chalcone derivatives. Int. J. ChemTech Res. 2015;7:1966–1984.
Yadav N., Dixit S.K., Bhattacharya A., Mishra L.C., Sharma M., Awasthi S.K., Bhasin V.K. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem. Biol. Drug Des. 2012;80:340–347. doi: 10.1111/j.1747-0285.2012.01383.x. PubMed DOI
Dominguez J.N., de Dominguez N.G., Rodrigues J., Acosta E.M., Caraballo N., Leon C. Synthesis and antimalarial activity of uranyl Bis-chalcone in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 2013;28:1267–1273. doi: 10.3109/14756366.2012.733383. PubMed DOI
Roussaki M., Hall B., Lima S.C., da Silva A.C., Wilkinson S., Detsi A. Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series. Bioorg. Med. Chem. Lett. 2013;23:6436–6441. doi: 10.1016/j.bmcl.2013.09.047. PubMed DOI
Sinha S., Radotra B.D., Medhi B., Batovska D.I., Markova N., Sehgal R. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives. BMC Res. Notes. 2020;13:290. doi: 10.1186/s13104-020-05132-z. PubMed DOI PMC
Gonzalez L.A., Upegui Y.A., Rivas L., Echeverri F., Escobar G., Robledo S.M., Quinones W. Effect of substituents in the A and B rings of chalcones on antiparasitic activity. Arch. Pharm. 2020;353:2000157. doi: 10.1002/ardp.202000157. PubMed DOI
Bhoj P., Togre N., Bahekar S., Goswami K., Chandak H., Patil M. Immunomodulatory activity of sulfonamide chalcone compounds in mice infected with filarial parasite Brugia malayi. Indian J. Clin. Biochem. 2019;34:225–229. doi: 10.1007/s12291-017-0727-5. PubMed DOI PMC
Lee J.S., Bukhari S.N.A., Fauzi N.M. Effects of chalcone derivatives on players of the immune system. Drug Des. Dev. Ther. 2015;9:4761–4778. PubMed PMC
Arshad L., Jantan I., Bukhari S.N.A., Haque M.A. Immunosuppressive effects of natural α,β-unsaturated carbonyl-based compounds and their analogs and derivatives on immune cells: A review. Front. Pharmacol. 2017;8:22. doi: 10.3389/fphar.2017.00022. PubMed DOI PMC