Chalcones: Synthetic Chemistry Follows Where Nature Leads

. 2021 Aug 13 ; 11 (8) : . [epub] 20210813

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34439870

Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.

Zobrazit více v PubMed

Nahar L., Sarker S.D. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry. 2nd ed. Wiley and Sons; Chichester, UK: 2019.

Zhuang C., Zhang W., Sheng C., Zhang W., Xing C. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC

Valavanidis A., Vlachogianni T. Plant polyphenols: Recent advances in epidemiological research and other studies on cancer prevention. In: Atta-Ur-Rahman T.I., editor. Studies in Natural Products Chemistry. Volume 39. Elsevier; Amsterdam, The Netherlands: 2013. pp. 269–295.

Gupta D., Jain D., Trivedi P. Recent advances in chalcones as anti-infective agents. Int. J. Chem. Sci. 2010;8:649–654.

Mahapatra D.K., Bharti S.K., Asati V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. J. Med. Chem. Eur. J. Med. Chem. 2015;101:496–524. doi: 10.1016/j.ejmech.2015.06.052. PubMed DOI

Hutchins W.A., Wheeler T.S. Chalkones: A new synthesis of chrysin, apigenin and luteolin. J. Chem. Soc. 1939:91–94. doi: 10.1039/jr9390000091. DOI

Bohm B.A. Chalcones and aurones-7. Methods Plant. Biochem. 1989;1:237–282.

Cazarolli L.H., Kappel V.D., Zanatta A.P., Suzuki D.O.H., Yunes R.A., Nunes R.J., Pizzolatti M.G., Silva F.R.M.B. Natural and synthetic chalcones: Tools for the study of targets of action—Insulin secretagogue or insulin mimetic? In: Atta-Ur-Rahman T.I., editor. Studies in Natural Products Chemistry. Volume 39. Elsevier; Amsterdam, The Netherlands: 2013. pp. 47–89.

Watson R.R. Nutrition and Functional Foods for Healthy Aging. 1st ed. Elsevier Science; Amsterdam, The Netherlands: 2017. pp. 1–386.

Higgins L.G. Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Pharmacol. Toxicol. Appl. Pharmacol. 2008;226:328–337. doi: 10.1016/j.taap.2007.09.018. PubMed DOI

Bryan H.K., Olayanju A., Goldring C.E., Park B.K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol. 2013;85:705–717. doi: 10.1016/j.bcp.2012.11.016. PubMed DOI

Thurston D.E. Chemistry and Pharmacology of Anticancer Drugs. CRC Press Inc.; Boca Raton, FL, USA: 2006.

Zhang Y., Hou Y., Liu C., Li Y., Guo W., Wu J.-L., Xu D., You X., Pan Y., Chen Y. Identification of an adaptor protein that facilitates Nrf2-Keap1 complex formation and modulates antioxidant response. Free Radic. Biol. Med. 2016;97:38–49. doi: 10.1016/j.freeradbiomed.2016.05.017. PubMed DOI

Kim H.J., Jang B.K., Park J.-H., Choi J.W., Park S.J., Byeon S.R., Pae A.N., Lee Y.S., Cheong E., Park K.D. A novel chalcone derivatives as Nrf2 activator attenuates learning and memory impairment in a scopolamine-induced mouse model. J. Med. Chem. Eur. J. Med. Chem. 2020;185:111777. doi: 10.1016/j.ejmech.2019.111777. PubMed DOI

Egbujor M.C., Saha S., Buttari B., Profumo E., Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Opin. Clin. Pharmacol. 2021;14:465–480. doi: 10.1080/17512433.2021.1901578. PubMed DOI

Ajiboye T.O., Yakubu M.T., Oladiji A.T. Electrophilic and reactive oxygen species detoxification potentials of chalcone dimers is mediated by redox transcription factor Nrf-2. J. Biochem. Mol. Toxicol. 2014;28:11–22. doi: 10.1002/jbt.21517. PubMed DOI

Li N., Meng D., Pan Y., Cui Q., Li G., Ni H., Sun Y., Qing D., Jia X., Pan Y. Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. J. Funct. Foods. 2015;17:837–846. doi: 10.1016/j.jff.2015.06.027. DOI

Martinez R.M., Pinho-Ribeiro F.A., Vale D.L., Steffen V.S., Vicentini F.T.M.C., Vignoli J.A., Baracat M.M., Georgetti S.R., Verri W.A., Casagrande R. Trans.-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. J. Photochem. Photobiol. 2017;171:139–146. doi: 10.1016/j.jphotobiol.2017.05.002. PubMed DOI

Kachadourian R., Day B.J., Pugazhenti S., Franklin C.C., Genoux-Bastide E., Mahaffey G., Gauthier C., Di Pietro A., Boumendjel A.N. A synthetic chalcone as a potent inducer of glutathione biosynthesis. J. Med. Chem. 2012;55:1382–1388. doi: 10.1021/jm2016073. PubMed DOI PMC

Basar N., Nahar L., Oridupa O.A., Ritchie K.J., Talukdar A.D., Stafford A., Kushiev H., Kan A., Sarker S.D. Utilization of the ability to induce activation of the nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) to assess potential cancer chemopreventive activity of liquorice samples. Phytochem. Anal. 2016;27:233–238. doi: 10.1002/pca.2616. PubMed DOI

Plopper G., Sharp D., Sikorski E., Lewin B. In: Lewin’s Cells. 3rd ed. Plopper G., Sharp D., Sikorski E., editors. Jones & Bartlett Learning; Burlington, MA, USA: 2015.

Orlikova B., Schnekenburger M., Zloh M., Golais F., Diederich M., Tasdemir D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol. Rep. 2012;28:797–805. doi: 10.3892/or.2012.1870. PubMed DOI PMC

Lee Y.H., Jeon S.-H., Kim S.H., Kim C., Lee S.-J., Koh D., Lim Y., Ha K., Shin S.Y. A new synthetic chalcone derivative, 2-hydroxy-3′, 5, 5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med. 2012;44:369–377. doi: 10.3858/emm.2012.44.6.042. PubMed DOI PMC

Zhong P., Wu L., Qian Y., Fang Q., Liang D., Wang J., Zeng C., Wang Y., Liang G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. BBA Mol. Basis Dis. 2015;1852:1230–1241. doi: 10.1016/j.bbadis.2015.02.011. PubMed DOI

Rajajendram R., Tham C.L., Akhtar M.N., Sulaiman M.R., Israf D.A. Inhibition of epithelial CC-family chemokine synthesis by the synthetic chalcone DMPF-1 via disruption of NF-[kappa]B nuclear translocation and suppression of experimental asthma in mice. Mediat. Inflamm. 2015;2015:176926. doi: 10.1155/2015/176926. PubMed DOI PMC

Kuruc T., Kello M., Petrova K., Kudlickova Z., Kubatka P. The newly synthesized chalcone L1 is involved in the cell growth inhibition, induction of apoptosis and suppression of epithelial-to-mesenchymal transition of HeLa cells. Molecules. 2021;26:1356. doi: 10.3390/molecules26051356. PubMed DOI PMC

Bortolotto L.F.B., Barbosa F.R., Silva G., Bitencourt T.A., Beleboni R.O., Baek S.J., Marins M., Fachin A.L. Cytotoxicity of trans-chalcone and lichochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 2017;85:425–433. doi: 10.1016/j.biopha.2016.11.047. PubMed DOI

Qi Z., Liu M., Liu Y., Zhang M., Yang G. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, block cell cycle progression, and induces apoptosis of human ovarian cancer cells. PLoS ONE. 2014;9:e106206. doi: 10.1371/journal.pone.0106206. PubMed DOI PMC

Hseu Y.-C., Lee M.-S., Wu C.-R., Cho H.-J., Lin K.-Y., Lai G.-H., Wang S.-Y., Kuo Y.-H., Kumar K.J.S., Yang H.-L. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAOK signaling pathway. J. Agric. Food Chem. 2012;60:2385–2397. doi: 10.1021/jf205053r. PubMed DOI

Ko H., Kim Y., Park J., Amor E.C., Lee J.W., Yang H. Dimethyl cardamonin induces G(1)-phase cell cycle arrest, apoptosis, and autophagy in HCT116 cells. Cancer Res. 2010;70:780.

Maioral M.F., Gaspar P.C., Souza G.R.R., Mascarello A., Chiaradia L.D., Licínio M.A., Moraes A.C.R., Yunes R.A., Nunes R.J., Santos-Silva M.C. Apoptotic events induced by synthetic naphthylchalcones in human acute leukemia cell lines. Biochimie. 2013;95:866–874. doi: 10.1016/j.biochi.2012.12.001. PubMed DOI

Kello M., Drutovic D., Pilatova M.B., Tischlerova V., Perjesi P., Mojzis J. Chalcone derivatives cause accumulation of colon cancer cells in the G2/M phase and induce apoptosis. Life Sci. 2016;150:32–38. doi: 10.1016/j.lfs.2016.02.073. PubMed DOI

Novilla A., Astuti I., Suwito H. Molecular Mechanism of synthesized potential anticancer agent chalcone in leukemia cell line K562. J. Med. Sci. 2017;49:23–28.

Rao Y.K., Kao T.-Y., Ko J.-L., Tzeng Y.-M. Chalcone HTMC causes in vitro selective cytotoxicity, cell-cycle G 1 phase arrest through p53-dependent pathway in human lung adenocarcinoma A549 cells, and in vivo tumor growth suppression. Bioorg. Med. Chem. Lett. 2010;20:6508–6512. doi: 10.1016/j.bmcl.2010.09.056. PubMed DOI

Mohamed M.F., Hassaneen H.M., Abdelhamid I.A. Cytotoxicity, molecular modeling, cell cycle arrest, and apoptotic induction induced by novel tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcones. J. Med. Chem. Eur. J. Med. Chem. 2018;143:532–541. doi: 10.1016/j.ejmech.2017.11.045. PubMed DOI

Zhang B., Lai Y., Li Y., Shu N., Wang Z., Wang Y., Li Y., Chen Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur. J. Pharmacol. 2018;821:57–67. doi: 10.1016/j.ejphar.2017.12.053. PubMed DOI

Takac P., Kello M., Pilatova M.B., Kudlickova Z., Vilkova M., Slepcikova P., Petik P., Mojzis J. New chalcone derivative exhibits antiproliferative potential by inducing G2/M cell cycle arrest, mitochondrial-mediated apoptosis and modulation of MAPK signalling pathway. Chem. Interact. 2018;292:37–49. doi: 10.1016/j.cbi.2018.07.005. PubMed DOI

Wani Z.A., Pathania A.S., Mahajan G., Behl A., Mintoo M.J., Guru S.K., Viswanath A., Malik F., Kamal A., Mondhe D.M. Anticancer activity of a novel quinazolinone-chalcone derivative through cell cycle arrest in pancreatic cancer cell line. J. Solid Tumors. 2015;5:73–76. doi: 10.5430/jst.v5n2p73. DOI

Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC

Hsu Y., Kuo P., Tzeng W., Lin C. Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis. Food Chem. Toxicol. 2006;44:704–713. doi: 10.1016/j.fct.2005.10.003. PubMed DOI

Chen G., Zhou D., Li X.-Z., Jiang Z., Tan C., Wei X.-Y., Ling J., Jing J., Liu F., Li N. A natural chalcone induces apoptosis in lung cancer cells: 3D-QSAR, docking and an in vivo/vitro assay. Sci. Rep. 2017;7:10729. doi: 10.1038/s41598-017-11369-9. PubMed DOI PMC

Pedrini F.S., Licínio M.A., De Moraes A.C.R., Curta J.C., Costa A., Santos-Silva M.C., Chiaradia L.D., Mascarello A., Nunes R.J., Yunes R.A., et al. Induction of apoptosis and cell cycle arrest in L-1210 murine lymphoblastic leukaemia cells by (2E)-3-(2-naphthyl)-1-(3′-methoxy-4′-hydroxy- phenyl)-2-propen-1-one. J. Pharm. Pharmacol. 2010;62:1128–1136. doi: 10.1111/j.2042-7158.2010.01141.x. PubMed DOI

Zhang Y., Srinivasan B., Xing C., Lü J. A new chalcone derivative (E)-3-(4-methoxyphenyl)-2-methyl-1-(3,4,5-trimethoxyphenyl) prop-2-en-1-one suppresses prostate cancer involving p53-mediated cell cycle arrests and apoptosis. Anticancer Res. 2012;32:3689–3698. PubMed

Maggiolini M., Statti G., Vivacqua A., Gabriele S., Rago V., Loizzo M., Menichini F., Amdo S. Estrogenic and antiproliferative activities of isoliquiritigenin in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2002;82:315–322. doi: 10.1016/S0960-0760(02)00230-3. PubMed DOI

Mutchtaridi M., Syahidah H.N., Subarans A., Yusuf M., Bryant S.D., Langer T. Molecular docking and 3D-pharmacophore modeling to study the interactions of chalcone derivatives with estrogen receptor alpha. Pharmaceutical. 2017;10:81. PubMed PMC

Prasetiawati R., Zamri A., Barliana M.I., Mutchtaridi M. In silico predictive for modification of chalcone with pyrazole derivatives as a novel therapeutic compound for targeted breast cancer treatment. J. Appl. Pharm. Sci. 2019;9:20–28.

Herber C.B., Quirti J.G., Firestone G., Krois C. 2′,3′,4′-Trihydroxychalcone is an estrogen receptor ligand which modulates the activity of 17β-estradiol. bioRxiv. 2019:607275. doi: 10.1101/607275. DOI

Branham W.S., Dial S.L., Moland C.L., Hass B.S., Blair R.M., Fang H., Shi L., Tong W., Perkins R.G., Sheehan D.M. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr. 2002;132:658–664. doi: 10.1093/jn/132.4.658. PubMed DOI

Dube P.N., Thombare Y.B., Chatpalliwar V.A. Design and Synthesis of Novel chalcone-phenylpyranone derivatives as estrogen receptor modulators. Proceedings. 2018;9:30. doi: 10.3390/ecsoc-22-05874. DOI

Ghribia L., Ghouilaa H., Omrib A., Besbesb M., Janneta H.B. Antioxidant and anti–acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla. Asian Pac. J. Trop. Biomed. 2014;4:S417–S423. doi: 10.12980/APJTB.4.2014C1038. PubMed DOI PMC

Voon F.-L., Sulaiman M.R., Akhtar M.N., Idris M.F., Akira A., Perimal E.K., Israf D.A., Ming-Tatt L. Cardamonin (2′,4′-dihydroxy-6′-methoxychalcone) isolated from Boesenbergia rotunda (L.) Mansf. inhibits CFA-induced rheumatoid arthritis in rats. Eur. J. Pharmacol. 2017;794:127–134. doi: 10.1016/j.ejphar.2016.11.009. PubMed DOI

Choi H.S., Kim M.K., Choi Y.K., Shin Y.C., Cho S.-G., Ko S.-G. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement. Altern. Med. 2016;16:122. doi: 10.1186/s12906-016-1103-3. PubMed DOI PMC

Rozmer Z., Perjesi P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016;15:87–120. doi: 10.1007/s11101-014-9387-8. DOI

Akihisa T., Tokuda H., Hasegawa D., Ukiya M., Kimura Y., Enjo F., Suzuki T., Nishino H. Chalcones and other compounds from the exudates of Angelica keiskei and their cancer chemopreventive effects. Indian J. Nat. Prod. 2006;69:38–42. doi: 10.1021/np058080d. PubMed DOI

Memon A.H., Ismail Z., Aisha A.F., Al-Suede F.S.R., Hamil M.S.R., Hashim S., Saeed M.A.A., Laghari M., Majid A., Shah A.M. Isolation, characterization, crystal structure elucidation, and anticancer study of dimethyl cardamonin, isolated from Syzygium campanulatum Korth. Evid. Based Complement. Alternat. Med. 2014;2014:470179. doi: 10.1155/2014/470179. PubMed DOI PMC

Abu N., Akhtar M.N., Yeap S.K., Lim K.L., Ho W.Y., Abdullah M.P., Ho C.L., Omar A.R., Ismail J., Alitheen N.B. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement. Altern. Med. 2016;16:86. doi: 10.1186/s12906-016-1046-8. PubMed DOI PMC

Kuo Y.-F., Su Y.-Z., Tseng Y.-H., Wang S.-Y., Wang H.-M., Chueh P.J. Flavokawain B, a novel chalcone from Alpinia pricei Hayata with potent apoptotic activity: Involvement of ROS and GADD153 upstream of mitochondria-dependent apoptosis in HCT116 cells. Free Radic. Biol. Med. 2010;49:214–226. doi: 10.1016/j.freeradbiomed.2010.04.005. PubMed DOI

Yang L., Su L., Cao C., Xu L., Zhong D., Xu L., Liu X. The chalcone 2′-hydroxy-4′, 5′-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells. IUBMB Life. 2013;65:533–543. doi: 10.1002/iub.1161. PubMed DOI

Sumiyoshi M., Taniguchi M., Baba K., Kimura Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica keiskei roots through the inhibited activation and differentiation of M2 macrophages. Phytomedicine. 2015;22:759–767. doi: 10.1016/j.phymed.2015.05.005. PubMed DOI

Shi Y., Wu W.-Z., Huo A., Zhou W., Jin X.-H. Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcinoma cells. Oncol. Lett. 2017;14:2852–2858. doi: 10.3892/ol.2017.6517. PubMed DOI PMC

Yagura T., Motomiya T., Ito M., Honda G., Iida A., Kiuchi F., Tokuda H., Nishino H. Anticarcinogenic compounds in the Uzbek medicinal plant, Helichrysum maracandicum. J. Nat. Med. 2008;62:174–177. doi: 10.1007/s11418-007-0223-y. PubMed DOI

Ramirez-Tagle R., Escobar C.A., Romero V., Montorfano I., Armisén R., Borgna V., Jeldes E., Pizarro L., Simon F., Echeverria C. Chalcone-induced apoptosis through caspase-dependent intrinsic pathways in human hepatocellular carcinoma cells. Int. J. Mol. Sci. 2016;17:260–278. doi: 10.3390/ijms17020260. PubMed DOI PMC

Marques A., Pereira S., Paiva R., Cavalcante C., Sudo S., Tinoco L., Moreira D.L., Guimaraes E., Sudo R., Kaplan M., et al. Hypoglycemic effect of the methanol flower extract of piper claussenianum and the major constituent 2′,6′-dihydroxy-4′-methoxychalcone in streptozotocin diabetic rats. Indian J. Pharm. Sci. 2015;77:237–243. PubMed PMC

Enoki T., Ohnogi H., Nagamine K., Kudo Y., Sugiyama K., Tanabe M., Kobayashi E., Sagawa H., Kato I. Antidiabetic activities of chalcones isolated from a Japanese herb, Angelica keiskei. J. Agric. Food Chem. 2007;55:6013–6017. doi: 10.1021/jf070720q. PubMed DOI

Lin C.-T., Senthil Kumar K.J., Tseng Y.-H., Wang Z.-J., Pan M.-Y., Xiao J.-H., Chien S.-C., Wang S.-Y. Anti-inflammatory activity of flavokawain B from Alpinia pricei Hayata. J. Agric. Food Chem. 2009;57:6060–6065. doi: 10.1021/jf900517d. PubMed DOI

Lin Y., Kuang Y., Li K., Wang S., Song W., Qiao X., Sabir G., Ye M. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata. Bioorg. Med. Chem. 2017;25:3706–3713. doi: 10.1016/j.bmc.2017.05.009. PubMed DOI

Franceschelli S., Pesce M., Vinciguerra I., Ferrone A., Riccioni H., Patruno A., Grilli A., Felaco M., Speranza L. Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules. 2011;16:5720–5734. doi: 10.3390/molecules16075720. PubMed DOI PMC

Daikonya A., Kitanaka S., Katsuki S. Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae) Chem. Pharm. Bull. 2004;52:1326–1329. doi: 10.1248/cpb.52.1326. PubMed DOI

Zampini I.C., Vattuone M.A., Isla M.I. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts. J. Ethnopharmacol. 2005;102:450–456. doi: 10.1016/j.jep.2005.07.005. PubMed DOI

Costa G., Endo E.H., Cortez D., Nakamura T., Nakamura C., Filho B.D. Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus. J. Med. Mycol. 2016;26:217–226. doi: 10.1016/j.mycmed.2016.03.002. PubMed DOI

Oldoni T.L.C., Cabral I.S., d’Arce M.A.R., Rosalen P.L., Ikegaki M., Nascimento A.M., Alencar S.M. Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis. Sep. Purif. Technol. 2011;77:208–213. doi: 10.1016/j.seppur.2010.12.007. DOI

Kulkarni R.R., Tupe S.G., Gample S.P., Chandgude M.G., Sarkar D., Deshpande M.V., Joshi S.P. Antifungal dimeric chalcone derivative kamalachalcone E from Mallotus philippinensis. Nat. Prod. Res. 2014;28:245–250. doi: 10.1080/14786419.2013.843178. PubMed DOI

Jayasinghe L., Balasooriya B., Padmini W.C., Hara N., Fujimoto Y. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of Artocarpus nobilis. Phytochemistry. 2004;65:1287–1290. doi: 10.1016/j.phytochem.2004.03.033. PubMed DOI

Mohammed M.M., Hamdy A.-H.A., El-Fiky N.M., Mettwally W.S., El-Beih A.A., Kobayashi N. Anti-influenza A virus activity of a new dihydrochalcone diglycoside isolated from the Egyptian seagrass Thalassodendron ciliatum (Forsk.) den Hartog. Nat. Prod. Res. 2014;28:377–382. doi: 10.1080/14786419.2013.869694. PubMed DOI

Dao T.T., Nguyen P.H., Lee H.S., Kim E., Park J., Lim S.I., Oh W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett. 2011;21:294–298. doi: 10.1016/j.bmcl.2010.11.016. PubMed DOI

Uchiumi F., Hatano T., Ito H., Yoshida T., Tanuma S.-I. Transcriptional suppression of the HIV promoter by natural compounds. Antivir. Res. 2003;58:89–98. doi: 10.1016/S0166-3542(02)00186-9. PubMed DOI

Park J.-Y., Ko J.-A., Kim D.W., Kim Y.M., Kwon H.-J., Jeong H.J., Kim C.Y., Park K.H., Lee W.S., Ryu Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem. 2016;31:23–30. doi: 10.3109/14756366.2014.1003215. PubMed DOI

Borges-Argáez R., Balnbury L., Flowers A., Giménez-Turba A., Ruiz G., Waterman P.G., Peña-Rodríguez L.M. Cytotoxic and antiprotozoal activity of flavonoids from Lonchocarpus spp. Phytomedicine. 2007;14:530–533. doi: 10.1016/j.phymed.2006.11.027. PubMed DOI

Rodrigues D., Maniscalco D., Silva F., Chiari B., Castelli M., Isaac V., Cicarelli R., Lopez S. Trypanocidal activity of flavokawin B, a component of Polygonum ferrugineum Wedd. Planta Med. 2017;83:239–244. doi: 10.1055/s-0042-112031. PubMed DOI

Chen M., Theander T.G., Christensen S.B., Hviid L., Zhai L., Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob. Agents Chemother. 1994;38:1470–1476. doi: 10.1128/AAC.38.7.1470. PubMed DOI PMC

Yenesew A., Induli M., Derese S., Midiwo J.O., Heydenreich M., Peter M.G., Akala H., Wangui J., Liyala P., Waters N.C. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica. Phytochemistry. 2004;65:3029–3032. doi: 10.1016/j.phytochem.2004.08.050. PubMed DOI

Sakagami H., Masuda Y., Tomomura M., Yokose S., Uesawa Y., Ikezoe N., Asahara D., Takao K., Kanamoto T., Terakubo S. Quantitative structure–cytotoxicity relationship of chalcones. Anticancer Res. 2017;37:1091–1098. PubMed

da Silva Lima D.C., do Vale C.R., Véras J.H., Bernardes A., Pérez C.N., Chen-Chen L. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays. PLoS ONE. 2017;12:e0171224. PubMed PMC

Emayavaramban M., Santhi N., Gopi C., Manivannan C., Raguraman A. Synthesis, Characterization and anti-diabetic activity of 1, 3, 5-triaryl-2-pyrazolines in acetic acid solution under ultrasound irradiation. Int. Lett. Chem. Phys. Astron. 2003;9:172–185. doi: 10.18052/www.scipress.com/ILCPA.14.172. DOI

Chinthala Y., Thakur S., Tirunagari S., Chinde S., Domatti A.K., Arigari N.K., Srinivas K., Alam S., Jonnala K.K., Khan F. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. J. Med. Chem. Eur. 2015;93:564–573. doi: 10.1016/j.ejmech.2015.02.027. PubMed DOI

Hsieh H.-K., Tsao L.-T., Wang J.-P., Lin C.-N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharmacol. 2000;52:163–171. doi: 10.1211/0022357001773814. PubMed DOI

Won S.-J., Liu C.-T., Tsao L.-T., Weng J.-R., Ko H.-H., Wang J.-P., Lin C.-N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. J. Med. Chem. Eur. 2005;40:103–112. doi: 10.1016/j.ejmech.2004.09.006. PubMed DOI

Jantan I., Bukhari S.N.A., Adekoya O.A., Sylte I. Studies of synthetic chalcone derivatives as potential inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxyugenase and pro-inflammatory cytokines. Drug Des. Dev. Ther. 2014;8:1405–1418. doi: 10.2147/DDDT.S67370. PubMed DOI PMC

Chen Y.-F., Wu S.-N., Gao J.-M., Liao Z.-Y., Tseng Y.-T., Fulop F., Chang F.-R., Lo Y.-C. The antioxidant, anti-inflammatory, and neuroprotective properties of the synthetic chalcone derivative AN07. Molecules. 2020;25:2907. doi: 10.3390/molecules25122907. PubMed DOI PMC

Solankee A., Kapadia K., Ana Ćirić M., Soković I., Doytchinova A., Geronikaki A. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. J. Med. Chem. Eur. J. Med. Chem. 2010;45:510–518. doi: 10.1016/j.ejmech.2009.10.037. PubMed DOI

Chu W.-C., Bai P.-Y., Yang Z.-Q., Cui D.-Y., Hua Y.-G., Yang Y., Yang Q.-Q., Zhang E., Qin S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. J. Med. Chem. Eur. 2018;143:905–921. doi: 10.1016/j.ejmech.2017.12.009. PubMed DOI

Arif R., Rana M., Yasmeen S., Amaduddin M., Khan M.S., Abid M., Khan M.S., Rahisuddin M. Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J. Mol. Struct. 2020;1208:127905. doi: 10.1016/j.molstruc.2020.127905. DOI

Morao L.G., Lorenzoni A.S.G., Chakraborty P., Ayusso G.M., Cavalca L.B., Santos M.B., Marques B.C., Dilarri G., Zamuner C., Regasini L.O., et al. Investigating the modes of action of the antimicrobial chalcones BC1 and T9A. Molecules. 2020;25:4596. doi: 10.3390/molecules25204596. PubMed DOI PMC

Amole K.L., Bello I.A., Oyewale A.O. Synthesis, characterization and antibacterial activities of new fluorinated chalcones. Chem. Afr. 2019;2:47–55. doi: 10.1007/s42250-019-00043-4. DOI

Xu M., Wu P., Shen F., Ji J., Rakesh K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 2019;91:103133. doi: 10.1016/j.bioorg.2019.103133. PubMed DOI

Zhang M., Prior A.M., Maddox M.M., Shen W.-J., Hevener K.E., Bruhn D.F., Lee R.B., Singh A.P., Reinicke J., Simmons C.J., et al. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega. 2018;3:18343–18360. doi: 10.1021/acsomega.8b03174. PubMed DOI PMC

Sudhakar C., Suresj J., Valarmathi N., Sumathi S., Karthikeyan A., Arun A. Synthesis, characterization of acrylate polymer having chalcone moiety: Evaluation of antimicrobial, anticancer and drug release study. J. Biomater. Sci. Polym. Ed. 2020;32:438–453. doi: 10.1080/09205063.2020.1841364. PubMed DOI

Lopez S.N., Castelli M.V., Zacchino S.A., Domínguez J.N., Lobo G., Charris-Charris J., Cortés J.C., Ribas J.C., Devia C., Rodríguez A.M. In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem. 2001;9:1999–2013. doi: 10.1016/S0968-0896(01)00116-X. PubMed DOI

Tailor N.K. Synthesis and antifungal activity of certain chalcones and their reduction. Indo Glob. J. Pharm. Sci. 2014;4:25–28. doi: 10.35652/IGJPS.2014.120. DOI

Gupta D., Jain D.K. Chalcone derivatives as potential antifungal agents: Synthesis and antifungal activity. J. Adv. Pharm. Technol. Res. 2015;6:114–117. doi: 10.4103/2231-4040.161507. PubMed DOI PMC

Zheng Y., Wang X., Gao S., Ma M., Ren G., Liu H. Synthesis and antifungal activity of chalcone derivatives. Nat. Prod. Res. 2015;29:1804–1810. doi: 10.1080/14786419.2015.1007973. PubMed DOI

Mellado M., Espinoza L., Madrid A., Mella J., Chavez-Weisser E., Diaz K., Cuellar M. Design, synthesis, antifungal activity, and structure-activity relationship studies of chalcones and hybrid dihydrochromane-chalcones. Mol. Div. 2020;24:603–615. doi: 10.1007/s11030-019-09967-y. PubMed DOI

Andrade J.T., Santos F.R.S., Lima W.G., Sousa C.D.F., Oliveira L.S.F.M., Ribeiro R.I.M.A., Gomes A.J.P.S., Araujo M.G.F., Villar J.A.F.P., Ferreira J.M.S. Design, synthesis, biological activity and structure activity relationship studies of chalcone derivatives as potential anti-Candida agents. J. Antibiot. 2018;71:702–712. doi: 10.1038/s41429-018-0048-9. PubMed DOI

Lagu S.B., Yejella R.P., Bhandare R.R., Shaik A.B. Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals. 2020;13:375. doi: 10.3390/ph13110375. PubMed DOI PMC

Cole A.L., Hossain S., Cole A.M., Phanstiel O. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem. 2016;24:2768–2776. doi: 10.1016/j.bmc.2016.04.045. PubMed DOI

Mateeva N., Eyunni S.V., Redda K.K., Ononuju U., Hansberry II T.D., Aikens C., Nag A. Functional evaluation of synthetic flavonoids and chalcones for potential antiviral and anticancer properties. Bioorg. Med. Chem. Lett. 2017;27:2350–2356. doi: 10.1016/j.bmcl.2017.04.034. PubMed DOI PMC

Fu Y., Zeng L.H., Ren X., Song B., Hu D., Gan X. New chalcone derivatives: Synthesis, antiviral activity and mechanism of action. RSC Adv. 2020;10:24483. doi: 10.1039/D0RA03684F. PubMed DOI PMC

Elkhalifa D., Al-Hashimi I., Al Moustafa A.-E., Khalil A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 2021;29:403–419. doi: 10.1080/1061186X.2020.1853759. PubMed DOI

Marinov R., Markova N., Krumova S., Yotovska K., Zaharieva M.M., Genova-Kalou P. Antiviral properties of chalcones and their synthetic derivatives: A mini review. Pharmacia. 2020;67:325–337. doi: 10.3897/pharmacia.67.e53842. DOI

Zhou D., Xie D., He F., Song B., Hu D. Antiviral properties and interaction of novel chalcone derivatives containing a purine and benzenesulfonamide moiety. Bioorg. Med. Chem. Lett. 2018;28:2091–2097. doi: 10.1016/j.bmcl.2018.04.042. PubMed DOI

Wang J., Huang L., Cheng C., Li G., Xie J., Shen M., Chen Q., Li W., He W., Qiu P., et al. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B. 2019;9:335–350. doi: 10.1016/j.apsb.2019.01.003. PubMed DOI PMC

Stepanic V., Matijasic M., Horvat T., Verbanac D., Kucerova-Chlupacova M., Saso L., Zarkovic N. Antioxidant activities of alkyl substiyuted pyrazine derivatives of chalcones—In vitro and in silico study. Antioxidants. 2019;8:90. doi: 10.3390/antiox8040090. PubMed DOI PMC

Lahsasni A.S., Al Korbi F.H., Aljaber N.A.-A. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem. Cent. J. 2014;8:32. doi: 10.1186/1752-153X-8-32. PubMed DOI PMC

Al Zahrani N.A., El-Shishtawy R.M., Elaasser M.M., Asiri A.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules. 2020;25:4566. doi: 10.3390/molecules25194566. PubMed DOI PMC

Wu J.-Z., Cheng C.-C., Shen L.-L., Wang Z.-K., Wu S.-B., Li W.-L., Chen S.-H., Zhou R.-P., Qiu P.-H. Synthetic chalcones with potent antioxidant ability on H2O2-induced apoptosis in PC12 cells. Int. J. Mol. Sci. 2014;15:18525–18539. doi: 10.3390/ijms151018525. PubMed DOI PMC

Venkatachalam H., Nayak Y., Jayashree B.S. Synthesis, characterization and antioxidant activities of synthetic chalcones and flavones. APCBEE Procedia. 2012;3:209–213. doi: 10.1016/j.apcbee.2012.06.071. DOI

Padhye S., Ahmad A., Oswa N., Sarkar F.H. Emerging role of garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol. 2009;2:38. doi: 10.1186/1756-8722-2-38. PubMed DOI PMC

Iqbal H., Prabhakar V., Sangith A., Chandrika B., Balasubramanian R. Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med. Chem. Res. 2014;23:4383–4394. doi: 10.1007/s00044-014-1007-z. DOI

Ugwu D.I., Ezema B.E., Eze F.U., Onoabedje E.A., Ezema C.G., Ekoh O.C., Ayogu J.I. Synthesis and antimalarial activities of chalcone derivatives. Int. J. ChemTech Res. 2015;7:1966–1984.

Yadav N., Dixit S.K., Bhattacharya A., Mishra L.C., Sharma M., Awasthi S.K., Bhasin V.K. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem. Biol. Drug Des. 2012;80:340–347. doi: 10.1111/j.1747-0285.2012.01383.x. PubMed DOI

Dominguez J.N., de Dominguez N.G., Rodrigues J., Acosta E.M., Caraballo N., Leon C. Synthesis and antimalarial activity of uranyl Bis-chalcone in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 2013;28:1267–1273. doi: 10.3109/14756366.2012.733383. PubMed DOI

Roussaki M., Hall B., Lima S.C., da Silva A.C., Wilkinson S., Detsi A. Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series. Bioorg. Med. Chem. Lett. 2013;23:6436–6441. doi: 10.1016/j.bmcl.2013.09.047. PubMed DOI

Sinha S., Radotra B.D., Medhi B., Batovska D.I., Markova N., Sehgal R. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives. BMC Res. Notes. 2020;13:290. doi: 10.1186/s13104-020-05132-z. PubMed DOI PMC

Gonzalez L.A., Upegui Y.A., Rivas L., Echeverri F., Escobar G., Robledo S.M., Quinones W. Effect of substituents in the A and B rings of chalcones on antiparasitic activity. Arch. Pharm. 2020;353:2000157. doi: 10.1002/ardp.202000157. PubMed DOI

Bhoj P., Togre N., Bahekar S., Goswami K., Chandak H., Patil M. Immunomodulatory activity of sulfonamide chalcone compounds in mice infected with filarial parasite Brugia malayi. Indian J. Clin. Biochem. 2019;34:225–229. doi: 10.1007/s12291-017-0727-5. PubMed DOI PMC

Lee J.S., Bukhari S.N.A., Fauzi N.M. Effects of chalcone derivatives on players of the immune system. Drug Des. Dev. Ther. 2015;9:4761–4778. PubMed PMC

Arshad L., Jantan I., Bukhari S.N.A., Haque M.A. Immunosuppressive effects of natural α,β-unsaturated carbonyl-based compounds and their analogs and derivatives on immune cells: A review. Front. Pharmacol. 2017;8:22. doi: 10.3389/fphar.2017.00022. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...