New potentially active pyrazinamide derivatives synthesized under microwave conditions

. 2014 Jul 03 ; 19 (7) : 9318-38. [epub] 20140703

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24995919

A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 μmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well.

Zobrazit více v PubMed

World Health Organization . Global Tuberculosis Report 2013. World Health Organization; Lyon, France: 2013. pp. 1–27.

Zhang Y., Chiu Chang K., Leung C., Yew W.W., Gicquel B., Fallows D., Kaplan G., Chaisson R.E., Zhang W. “ZS-MDR-TB” versus “ZR-MDR-TB”: Improving treatment of MDR-TB by identifying pyrazinamide susceptibility. Emerg. Microbes Infect. 2012;1:e5. doi: 10.1038/emi.2012.18. PubMed DOI PMC

Velayati A.A., Masjedi M.R., Farnia P., Tabarsi P., Ghanavi J., Ziazarifi A.H., Hoffner S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest. 2009;136:420–425. doi: 10.1378/chest.08-2427. PubMed DOI

Lima C.H.S., Bispo M.L.F., de Souza M.V.N. Pirazinamida: Um fàrmaco essencial no tratamento da tuberculose. Rev. Virtual Quim. 2011;3:159–180.

Zhang Y., Wade M.M., Scorpio A. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52:790–795. doi: 10.1093/jac/dkg446. PubMed DOI

Konno K., Feldmann F.M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 1967;95:461–469. PubMed

Zhang Y., Scorpio A., Nikaido H., Sun Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 1999;181:2044–2049. PubMed PMC

Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 1996;2:662–667. doi: 10.1038/nm0696-662. PubMed DOI

Boshoff H.I., Mizrahi V., Barry C.E., III Effects of pyrazinamide on fatty acid synthesis by Whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 2002;184:2167–2172. doi: 10.1128/JB.184.8.2167-2172.2002. PubMed DOI PMC

Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FAS-I) of Mycobacterium tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI

Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC

Ngo S.C., Zimhony O., Chung W.J., Sayahi H., Jacobs W.R., Jr., Welch J.T. Inhibition of isolated mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51:2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC

Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC

Dolezal M., Hartl J., Miletin M., Machacek M., Kralova K. Synthesis and photosynthesis-inhibiting activity of some anilides of substituted pyrazine-2-carboxylic acids. Chem. Pap. 1999;53:126–130.

Dolezal M. Biologically active pyrazines of natural and synthetic origin. Chem. Listy. 2006;100:959–966.

Chaluvaraju K.C., Ishwar B.K. Synthesis and antimicrobial activities of amino benzylated mannich bases of pyrazinamide. Int. J. ChemTech Res. 2010;2:1368–1371.

Dolezal M., Zitko J., Osicka Z., Kunes J., Buchta V., Vejsova M., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Whitehead R.P., Unger J.M., Flaherty L.E., Kraut E.H., Mills G.M., Klein C.E., Chapman R.A., Doolittle G.C., Hammond N., Sondak V.K. A phase II trial of pyrazine diazohydroxide in patients with disseminated malignant melanoma and no prior chemotherapy—Southwest Oncology Group Study. Invest. New Drugs. 2002;20:105–111. PubMed

Furuta Y., Takahashi K., Fukuda Y., Kuno M., Kamiyama T., Kozaki K., Nomura N., Egawa H., Minami S., Watanabe Y., et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother. 2002;46:977–981. doi: 10.1128/AAC.46.4.977-981.2002. PubMed DOI PMC

A-Rahim Y.I., Beyer K.H., Jr., Vesell E.S. Studies on pyrazinoylguanidine. 3. Downregulation of lipolysis in isolated adipocytes. Pharmacology. 1996;53:197–210. doi: 10.1159/000139431. PubMed DOI

Dolezal M., Kralova K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity. In: Soloneski S., Larramendy M.L., editors. Herbicides, Theory and Applications. InTech; Vienna, Austria: 2011. pp. 581–610.

Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC

Jandourek O., Dolezal M., Paterova P., Kubicek V., Pesko M., Kunes J., Coffey A., Guo J., Kralova K. N-Substituted 5-amino-6-methylpyrazine-2,3-dicarbonitriles: Microwave-assisted synthesis and biological properties. Molecules. 2014;19:651–671. doi: 10.3390/molecules19010651. PubMed DOI PMC

Dolezal M., Kralova K., Sersen F., Miletin M. The site of action of pyrazine-2-carboxylic acids in the photosynthetic apparatus. Folia Pharm. Univ. Carol. 2001;26:13–20.

Kralova K., Sersen F., Miletin M., Dolezal M. Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chem. Pap. 2002;56:214–217.

Kralova K., Sersen F., Klimesova V., Waisser K. Effect of 2-alkylthio-4-pyridinecarbothioamides on photosynthetic electron transport in spinach chloroplasts. Collect. Czechoslov. Chem. Commun. 1997;62:516–520. doi: 10.1135/cccc19970516. DOI

Kralova K., Sersen F., Kubicova L., Waisser K. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1997;53:328–331.

Tamai R., Ito M., Kobayashi M., Mitsunari T., Nakano Y. Oxopyrazine Derivative and Herbicide. 2013/0137577. U.S. Patent Application. 2013 May 30;

Reingruber R., Kraus H., Hutzler. J., Newton T.W., Witschel M., Moberg W.K., Rapado L.P., Besong G, Rack N., van der Kloet A., et al. Substituted pyrazines having herbicidal activity. 2013/0274109BA1. U.S. Patent Application. 2013 Oct 17;

Nakamura A., Ataka T., Segawa H., Takeuchi Y., Takematsu T. Studies on herbicidal 2,3-dicyanopyrazines. 2. Structure-activity relationships of herbicidal 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines. Agric. Biol. Chem. 1983;47:1561–1567. doi: 10.1271/bbb1961.47.1561. DOI

Hayes B.L. Microwave Synthesis: Chemistry at the Speed of Light. CEM Pub.; Matthews, NC, USA: 2002.

De La Hoz A., Diaz-Ortiz A., Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005;34:164–178. doi: 10.1039/b411438h. PubMed DOI

Albert A., Brown D.J., Wood H.C.S. 406. Pteridine studies. Part VIII. The degradation of pteridine. Methylation of the hydroxypteridines and degradation of the products. J. Chem. Soc. 1956 doi: 10.1039/JR9560002066. DOI

Dlabal K., Palat K., Lycka A., Odlerova Z. Synthesis and 1H- and 13C-NMR spectra of sulfur derivatives of pyrazine derived from amidation product of 2-chloropyrazine and 6-chloro-2-pyrazinecarbonitrile. Tuberculostatic activity. Collect. Czechoslov. Chem. Commun. 1990;55:2493–2500. doi: 10.1135/cccc19902493. DOI

Osdene T.S., Taylor E.C. A new synthetic approach to pteridines*. J. Am. Chem. Soc. 1956;78:5451–5452. doi: 10.1021/ja01601a084. DOI

Keir W.F., MacLennan A.H., Wood H.C. Amidinoacetamides in the synthesis of pyrazines and pteridines. J. Chem. Soc. 1977;11:1321–1325.

Izawa S. Acceptors and donors for chloroplast electron transport. In: Part C., Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; New York, NY, USA: London, UK: 1980. pp. 413–434.

Kralova K., Sersen F., Pesko M., Klimesova V., Waisser K. Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chem. Pap. 2012;66:795–799. doi: 10.2478/s11696-012-0192-9. DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. PubMed

Kralova K., Sersen F., Pesko M., Waisser K., Kubicova L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides - inhibitors of photosynthesis. Chem. Pap. 2014;68:46–52. doi: 10.2478/s11696-013-0416-7. DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Jampilek J., Dolezal M., Kunes J., Satinsky D., Raich I. Novel regioselective preparation of 5-chloropyrazine-2-carbonitrile, pyrazine-2-carboxamide and coupling study of substituted phenylsulfanylpyrazine-2-carboxylic acid derivatives. Curr. Org. Chem. 2005;9:49–60.

Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC

National Committee for Clinical Laboratory Standards . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Proposed Standard M 27-P. National Committee for Clinical Laboratory Standards; Villanova, PA, USA: 1992.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...