Synthesis and antimycobacterial and photosynthesis-inhibiting evaluation of 2-[(E)-2-substituted-ethenyl]-1,3-benzoxazoles

. 2014 ; 2014 () : 705973. [epub] 20140813

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25197708

A series of twelve 2-[(E)-2-substituted-ethenyl]-1,3-benzoxazoles was designed. All the synthesized compounds were tested against three mycobacterial strains. The compounds were also evaluated for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1,3-benzoxazole, 2-[(E)-2-(2,3-dihydro-1-benzofuran-5-yl)ethenyl]-1,3-benzoxazole and 2-{(E)-2-[4-(methylsulfanyl)phenyl]ethenyl}-1,3-benzoxazole showed the highest activity against M. tuberculosis, M. kansasii, and M. avium, and they demonstrated significantly higher activity against M. avium and M. kansasii than isoniazid. The PET-inhibiting activity of the most active ortho-substituted compound 2-[(E)-2-(2-methoxyphenyl)ethenyl]-1,3-benzoxazole was IC₅₀ = 76.3 μmol/L, while the PET-inhibiting activity of para-substituted compounds was significantly lower. The site of inhibitory action of tested compounds is situated on the donor side of photosystem II. The structure-activity relationships are discussed.

Zobrazit více v PubMed

World Health Organization. Global Tuberculosis Report 2013. Geneva, Switzerland: WHO Press; 2013.

Wagner D, Young LS. Nontuberculous mycobacterial infections: a clinical review. Infection. 2004;32(5):257–270. PubMed

World Health Organization. WHO Global Strategy for Containment of Antimicrobial Resistance 2001. Geneva, Switzerland: WHO Press; 2001.

Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469(7331):483–490. PubMed

Padalkar VS, Borse BN, Gupta VD, et al. Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arabian Journal of Chemistry. 2011

Matveychuk A, Fuks L, Priess R, Hahim I, Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Respiratory Medicine. 2012;106(10):1472–1477. PubMed

Rauf A, Farshori NN. Benzimidazoles , benzothiazoles and benzoxazoles. In: Sharma SK, editor. Microwave-Induced Synthesis of Aromatic Heterocycles. Dordrecht, The Netherlands: Springer; 2012. pp. 75–93.

Okunade AL, Elvin-Lewis MPF, Lewis WH. Natural antimycobacterial metabolites: current status. Phytochemistry. 2004;65(8):1017–1032. PubMed

Vinsova J, Horak V, Buchta V, Kaustova J. Highly lipophilic benzoxazoles with potential antibacterial activity. Molecules. 2005;10(7):783–793. PubMed PMC

Vinsova J, Cermakova K, Tomeckova A, et al. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorganic and Medicinal Chemistry. 2006;14(17):5850–5865. PubMed

Braun S, Botzki A, Salmen S, et al. Design of benzimidazole- and benzoxazole-2-thione derivatives as inhibitors of bacterial hyaluronan lyase. European Journal of Medicinal Chemistry. 2011;46(9):4419–4429. PubMed

Kozic J, Novotna E, Volkova M, et al. Synthesis and in vitro antimycobacterial and isocitrate lyase inhibition properties of novel 2-methoxy-2′-hydroxybenzanilides, their thioxo analogues and benzoxazoles. European Journal of Medicinal Chemistry. 2012;56:108–119. PubMed

Kathiravan MK, Salake AB, Chothe AS, et al. The biology and chemistry of antifungal agents: a review. Bioorganic and Medicinal Chemistry. 2012;20(19):5678–5698. PubMed

Kablaoui N, Patel S, Shao J, et al. Novel benzoxazole inhibitors of mPGES-1. Bioorganic and Medicinal Chemistry Letters. 2013;23(3):907–911. PubMed

Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. European Journal of Medicinal Chemistry. 2013;62:410–415. PubMed

Kralova K, Sersen F, Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chemical Papers. 1992;46(5):348–350.

Kralova K, Sersen F, Sidoova E. Effects of 2-alkylthio-6-aminobenzothiazoles and their 6-N-substituted derivatives on photosynthesis inhibition in Chlorella vulgaris and spinach chloroplasts. General Physiology and Biophysics. 1993;12(5):421–427. PubMed

Kralova K, Loos D, Sersen F, Sidoova E. QSAR study concerning photosynthesis inhibition in algae and plant chloroplasts by 2-alkylthio-6-R-benzothiazoles. I. 2-alkylthio-6-aminobenzothiazoles, 3-(2-alkyltio-6-benzothiazolylaminomethyl)-2-benzothiazolinethiones, 3(2-alkylthio-6-benzothiazolyl-aminomethyl)-6-bromo-2-benzothiazolinones. Chemical Papers. 1994;48(6):198–202.

Kralova K, Bujdakova H, Kuchta T, Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49(6):460–461. PubMed

Sidoova E, Kralova K, Loos D. Synthesis of 2-(6-acetamidobenzothiazolethio)acetic acid esters as photosynthesis inhibitors. Molecules. 1998;3(4):135–140.

Sidoova E, Kralova K, Loos D. 3-(2-Alkylsulfanyl-6-benzothiazolylaminomethyl)-2-benzoxazolethiones - Synthesis and photosynthesis-inhibiting activity in spinach chloropasts. Molecules. 1999;4(3):73–80.

Youssef MA, Sherif SMA, Elkady AMA, Hamouda SES. Synthesis of some new benzoxazole acetonitrile derivatives and evaluation of their herbicidal efficiency. Journal of Animal Science. 2010;12(6):1080–1090.

Fenoxapropethyl. Compendium of pesticide common names. Alan Wood’s Web Site, 2014, http://www.alanwood.net/pesticides/derivatives/fenoxaprop-ethyl.html.

Kralova K, Sersen F, Pesko M, Klimesova V. Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chemical Papers. 2012;66(8):795–799.

Fajkusova D, Pesko M, Keltosova S, et al. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorganic and Medicinal Chemistry. 2012;20(24):7059–7068. PubMed

Kralova K, Mitterhauszerova L, Halgas J. Effect of some benzothiazolium salts on chlorophyll production in Chlorella vulgaris . Biologia Plantarum. 1994;36(3):477–479.

Bujdakova H, Kralova K, Sidoova E. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzo-thiazolylaminomethyl)-2-benzoxazolinethiones. Pharmazie. 1995;50(2):p. 156. PubMed

Oehlers L, Mazzitelli CL, Brodbelt JS, Rodriguez M, Kerwin S. Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry. 2004;15(11):1593–1603. PubMed

Weidner-Wells MA, Ohemeng KA, Nguyen VN, et al. Amidino benzimidazole inhibitors of bacterial two-component systems. Bioorganic and Medicinal Chemistry Letters. 2001;11(12):1545–1548. PubMed

Hlasta DJ, Demers JP, Foleno BD, et al. Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: pharmacophore identification based on the screening hit closantel. Bioorganic and Medicinal Chemistry Letters. 1998;8(14):1923–1928. PubMed

Macielag MJ, Demers JP, Fraga-Spano SA, et al. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. Journal of Medicinal Chemistry. 1998;41(16):2939–2945. PubMed

Draber W, Tietjen K, Kluth JF, Trebst A. Herbicides in photosynthesis research. Angewandte Chemie. 1991;30(12):1621–1633.

Tischer W, Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochimica et Biophysica Acta. 1977;460(1):113–125. PubMed

Trebst A, Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H, editor. Advances in Pesticide Science. Oxford, UK: Pergamon Press; 1979. pp. 223–234.

Bowyer JR, Camilleri P, Vermaas WFJ. Photosystem II and its interaction with herbicides. In: Baker NR, Percival MP, editors. Herbicides, Topics in Photosynthesis. Vol. 10. Amsterdam, The Netherlands: Elsevier; 1991. pp. 27–85.

Delaney J, Clarke E, Hughes D, Rice M. Modern agrochemical research: a missed opportunity for drug discovery? Drug Discovery Today. 2006;11(17-18):839–845. PubMed

Duke SO. Herbicide and pharmaceutical relationships. Weed Science. 2010;58(3):334–339.

Swanton CJ, Mashhadi HR, Solomon KR, Afifi MM, Duke SO. Similarities between the discovery and regulation of pharmaceuticals and pesticides: in support of a better understanding of the risks and benefits of each. Pest Management Science. 2011;67(7):790–797. PubMed

Otevrel J, Mandelova Z, Pesko M, et al. Investigating the spectrum of biological activity of ring- substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15(11):8122–8142. PubMed PMC

Imramovsky A, Pesko M, Kralova K, et al. Investigating spectrum of biological activity of 4- and 5-Chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16(3):2414–2430. PubMed PMC

Gonec T, Bobal P, Sujan J, et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17(1):613–644. PubMed PMC

Kos J, Zadrazilova I, Pesko M, et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18(7):7977–7997. PubMed PMC

Gonec T, Kos J, Zadrazilova I, et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18(8):9397–9419. PubMed PMC

Gonec T, Kos J, Zadrazilova I. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry. 2013;21(21):6531–6541. PubMed

Tengler J, Kapustikova I, Pesko M. Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates. The Scientific World Journal. 2013;2013:13 pages.274570 PubMed PMC

Bachhav HM, Bhagat SB, Telvekar VN. Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent. Tetrahedron Letters. 2011;52(43):5697–5701.

Park HJ, Park MS, Lee TH, Park KH. Synthesis of 2-styrylbenzoxazole derivatives by the reaction of styrylphenolic schiff bases with thianthrene cation radical. Journal of Heterocyclic Chemistry. 2013;50(3):663–667.

Sun J, Han Y, Liu DM, Yan CG. Catalytic synthesis of 2-styrylbenzoxazoles under microwave irradiation. Huaxue Shiji. 2002;24:52–54.

Kelarev VI, Koshelev VN. Synthesis and properties of furan derivatives. 5. Synthesis of 2-substituted benzoxazoles containing furan fragments. Chemistry of Heterocyclic Compounds. 1996;32(7):762–766.

Kaustova J. Quantitative micromethod for drug susceptibility testing of mycobacteria in Sula's medium. Klinicka Mikrobiologie a Infekcni Lekarstvi. 1997;3:115–117.

Masarovicova E, Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M, editor. Handbook of Photosynthesis. 2nd edition. Boca Raton, Fla, USA: Taylor & Francis; 2005. pp. 617–656.

Clarke BO, Smith SR. Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International. 2011;37(1):226–247. PubMed

Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environmental Science and Pollution Research. 2012;19(4):1044–1065. PubMed

Kralova K, Sersen F, Pesko M, Waisser K, Kubicova L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides—inhibitors of photosynthesis. Chemical Papers. 2014;68(1):46–52.

Servusova B, Eibinova D, Dolezal M, et al. Substituted N-benzylpyrazine-2-carboxamides: synthesis and biological evaluation. Molecules. 2012;17(11):13183–13198. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace