• This record comes from PubMed

Photosynthesis-Inhibiting Activity of N-(Disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides

. 2021 Jul 17 ; 26 (14) : . [epub] 20210717

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-17-0373 Slovak Research and Development Agency
APVV-17-0318 Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/16_013/0001609 National Infrastructure CzeCOS ProCES
(CZ.02.1.01/0.0/0.0/16_019/0000797) SustES

Links

PubMed 34299611
PubMed Central PMC8306061
DOI 10.3390/molecules26144336
PII: molecules26144336
Knihovny.cz E-resources

A set of twenty-four 3-hydroxynaphthalene-2-carboxanilides, disubstituted on the anilide ring by combinations of methoxy/methyl/fluoro/chloro/bromo and ditrifluoromethyl groups at different positions, was prepared. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3,5-Difluorophenyl)-, N-(3,5-dimethylphenyl)-, N-(2,5-difluorophenyl)- and N-(2,5-dimethylphenyl)-3-hydroxynaphthalene-2-carboxamides showed the highest PET-inhibiting activity (IC50 ~ 10 µM) within the series. These compounds were able to inhibit PET in photosystem II. It has been found that PET-inhibiting activity strongly depends on the position of the individual substituents on the anilide ring and on the lipophilicity of the compounds. The electron-withdrawing properties of the substituents contribute towards the PET activity of these compounds.

See more in PubMed

CropLife International; Brussels, Belgium: 2020. [(accessed on 19 May 2021)]. Importance & Benefits of Pesticides. Available online: https://pesticidefacts.org/topics/necessity-of-pesticides/

Gianessi L.P. The increasing importance of herbicides in worldwide crop production. Pest. Manag. Sci. 2013;69:1099–1105. doi: 10.1002/ps.3598. PubMed DOI

Gianessi L., Williams A. The importance of herbicides for natural resource conservation in the USA. In: Songstad D., Hatfield J., Tomes D., editors. Convergence of Food Security, Energy Security and Sustainable Agriculture. Springer; Heidelberg, Germany: 2014. pp. 333–350.

Classification of Herbicides. Weed Management in Horticulture Crops. [(accessed on 19 May 2021)]; Available online: http://ecoursesonline.iasri.res.in/mod/page/view.php?id=12032.

Forouzesh A., Zand E., Soufizadeh S., Foroushani S.S. Classification of herbicides according to chemical family for weed resistance management strategies—An update. Weed Res. 2015;55:334–358. doi: 10.1111/wre.12153. DOI

Herbicide Resistance Action Committee HRAC Mode of Action Classification 2020 Map. [(accessed on 19 May 2021)]; Available online: https://hracglobal.com/tools/hrac-mode-of-action-classification-2020-map.

Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. 1991;3:1621–1633. doi: 10.1002/anie.199116211. DOI

Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI

Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.

Bowyer J.R., Camilleri P., Vermaas W.F.J. In: Herbicides, Topics in Photosynthesis. Baker N.R., Percival M.P., editors. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

Izawa S. Acceptors and donors for chloroplast electron transport. In: Part C., Colowick P., Kaplan N.O., editors. Methods in Enzymology. Academic Press; New York, NY, USA: London, UK: 1980. pp. 413–434.

Whitmarsh J. Electron transport and energy transduction. In: Raghavendra A.S., editor. Photosynthesis: A Comprehensive Treatise. Cambridge University Press; Cambridge, UK: 1998. pp. 87–110.

Jablonkai I. Molecular mechanism of action of herbicides. In: Abd El-Ghany Hasaneen M.N., editor. Herbicides—Mechanisms and Mode of Action. IntechOpen; Rijeka, Croatia: 2011. [(accessed on 19 May 2021)]. Chapter 1. Available online: https://www.intechopen.com/books/herbicides-physiology-of-action-and-safety/modes-of-action-of-different-classes-of-herbicides.

Sherwani S.I., Arif I.A., Khan H.A. Modes of action of different classes of herbicides. In: Price A., Kelton J., Sarunaite L., editors. Herbicides—Physiology of Action, and Safety. IntechOpen; Rijeka, Croatia: 2015. [(accessed on 19 May 2021)]. Chapter 8. Available online: https://www.intechopen.com/books/herbicides-physiology-of-action-and-safety/modes-of-action-of-different-classes-of-herbicides.

Huppatz J.L., McFadden H.G. Understanding the topography of the photosystem II herbicide binding niche: Does QSAR help? Z. Naturforsch. 1993;48:140–145. doi: 10.1515/znc-1993-3-405. DOI

Lambreva M.D., Russo D., Polticelli F., Scognamiglio V., Antonacci A., Zobnina V., Campi G., Rea G. Structure/function/dynamics of photosystem II plastoquinone binding sites. Curr. Protein Pept. Sci. 2014;15:285–295. doi: 10.2174/1389203715666140327104802. PubMed DOI PMC

Trebst A. Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth. Res. 2007;92:217–224. doi: 10.1007/s11120-007-9213-x. PubMed DOI

Teixeira R.R., de Andrade Barros M.V., Bressan G.C., Siqueira R.P., Dos Santos F.S., Bertazzini M., Kiralj R., Ferreira M.M.C., Forlani G. Synthesis, theoretical studies, and effect on the photosynthetic electron transport of trifluoromethyl arylamides. Pest. Manag. Sci. 2017;73:2360–2371. doi: 10.1002/ps.4623. PubMed DOI

Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., et al. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Gonec T., Kos J., Pesko M., Dohanosova J., Oravec M., Liptaj T., Kralova K., Jampilek J. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules. 2017;22:1709. doi: 10.3390/molecules22101709. PubMed DOI PMC

Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC

Pattabiraman V.R., Bode J.W. Rethinking amide bond synthesis. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI

Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and biological evaluation of N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC

Teixeira R.R., Pereira J.L., Pereira W.L. Photosynthetic inhibitors. In: Najafpour M., editor. Applied Photosynthesis. InTech; Rijeka, Croatia: 2012. pp. 3–22.

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC

Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-alkoxyphenylhydroxynaphthalene-carboxamides affecting photosystem II. Bioorg. Med. Chem. Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI

Jampilek J., Kralova K., Pesko M., Kos J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors. Bioorg. Med. Chem. Lett. 2016;26:3862–3865. doi: 10.1016/j.bmcl.2016.07.021. PubMed DOI

Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Similarity-driven pharmacophore mapping for series of N-(disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides. Int. J. Mol. Sci. 2020;21:6583. doi: 10.3390/ijms21186583. PubMed DOI PMC

Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.

Jampilek J. Potential of agricultural fungicides for antifungal drug discovery. Expert Opin. Drug Dis. 2016;11:1–9. doi: 10.1517/17460441.2016.1110142. PubMed DOI

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...