Towards Novel 3-Aminopyrazinamide-Based Prolyl-tRNA Synthetase Inhibitors: In Silico Modelling, Thermal Shift Assay and Structural Studies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 547
Ministry of Education, Youth and Sports of the Czech Republic
G077814N
Research Foundation-Flanders
G0A4616N
Research Foundation-Flanders
3M14022
KU Leuven Research Fund
17/046
CELSA grant
PubMed
34360555
PubMed Central
PMC8346053
DOI
10.3390/ijms22157793
PII: ijms22157793
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray crystallographic studies, in silico modelling, inhibitor, prolyl-tRNA synthetase, thermal shift assay,
- MeSH
- adenosintrifosfát metabolismus MeSH
- aminoacyl-tRNA-synthetasy antagonisté a inhibitory MeSH
- biotest metody MeSH
- inhibitory enzymů chemie izolace a purifikace farmakologie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- počítačová simulace * MeSH
- pyrazinamid chemie MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- aminoacyl-tRNA-synthetasy MeSH
- inhibitory enzymů MeSH
- ligandy MeSH
- prolyl T RNA synthetase MeSH Prohlížeč
- pyrazinamid MeSH
Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.
Zobrazit více v PubMed
Ibba M., Soll D. Aminoacyl-TRNA Synthesis. Annu. Rev. Biochem. 2000;69:617–650. doi: 10.1146/annurev.biochem.69.1.617. PubMed DOI
Antonellis A., Green E.D. The Role of Aminoacyl-TRNA Synthetases in Genetic Diseases. Annu. Rev. Genomics Hum. Genet. 2008;9:87–107. doi: 10.1146/annurev.genom.9.081307.164204. PubMed DOI
Kim S., You S., Hwang D. Aminoacyl-TRNA Synthetases and Tumorigenesis: More than Housekeeping. Nat. Rev. Cancer. 2011;11:708–718. doi: 10.1038/nrc3124. PubMed DOI
Yao P., Fox P.L. Aminoacyl-TRNA Synthetases in Medicine and Disease. EMBO Mol. Med. 2013;5:332–343. doi: 10.1002/emmm.201100626. PubMed DOI PMC
Datt M., Sharma A. Evolutionary and Structural Annotation of Disease-Associated Mutations in Human Aminoacyl-TRNA Synthetases. BMC Genomics. 2014;15:1063. doi: 10.1186/1471-2164-15-1063. PubMed DOI PMC
Meyer-Schuman R., Antonellis A. Emerging Mechanisms of Aminoacyl-TRNA Synthetase Mutations in Recessive and Dominant Human Disease. Hum. Mol. Genet. 2017;26:R114–R127. doi: 10.1093/hmg/ddx231. PubMed DOI PMC
Guo M., Schimmel P. Essential Non-Translational Functions of TRNA Synthetases. Nat. Chem. Biol. 2013;9:145–153. doi: 10.1038/nchembio.1158. PubMed DOI PMC
Kim S.-H., Bae S., Song M. Recent Development of Aminoacyl-TRNA Synthetase Inhibitors for Human Diseases: A Future Perspective. Biomolecules. 2020;10:1625. doi: 10.3390/biom10121625. PubMed DOI PMC
Francklyn C.S., Mullen P. Progress and Challenges in Aminoacyl-TRNA Synthetase-Based Therapeutics. J. Biol. Chem. 2019;294:5365–5385. doi: 10.1074/jbc.REV118.002956. PubMed DOI PMC
Jain V., Yogavel M., Oshima Y., Kikuchi H., Touquet B., Hakimi M.-A., Sharma A. Structure of Prolyl-TRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis. Structure. 2015;23:819–829. doi: 10.1016/j.str.2015.02.011. PubMed DOI
Pines M., Nagler A. Halofuginone: A Novel Antifibrotic Therapy. Gen. Pharmacol. 1998;30:445–450. doi: 10.1016/S0306-3623(97)00307-8. PubMed DOI
Gavish Z., Pinthus J.H., Barak V., Ramon J., Nagler A., Eshhar Z., Pines M. Growth Inhibition of Prostate Cancer Xenografts by Halofuginone. Prostate. 2002;51:73–83. doi: 10.1002/pros.10059. PubMed DOI
Elkin M., Ariel I., Miao H.Q., Nagler A., Pines M., de-Groot N., Hochberg A., Vlodavsky I. Inhibition of Bladder Carcinoma Angiogenesis, Stromal Support, and Tumor Growth by Halofuginone. Cancer Res. 1999;59:4111–4118. PubMed
Leiba M., Jakubikova J., Klippel S., Mitsiades C.S., Hideshima T., Tai Y.-T., Leiba A., Pines M., Richardson P.G., Nagler A., et al. Halofuginone Inhibits Multiple Myeloma Growth in Vitro and in Vivo and Enhances Cytotoxicity of Conventional and Novel Agents. Br. J. Haematol. 2012;157:718–731. doi: 10.1111/j.1365-2141.2012.09120.x. PubMed DOI PMC
Jiang S., Zeng Q., Gettayacamin M., Tungtaeng A., Wannaying S., Lim A., Hansukjariya P., Okunji C.O., Zhu S., Fang D. Antimalarial Activities and Therapeutic Properties of Febrifugine Analogs. Antimicrob. Agents Chemother. 2005;49:1169–1176. doi: 10.1128/AAC.49.3.1169-1176.2005. PubMed DOI PMC
Adachi R., Okada K., Skene R., Ogawa K., Miwa M., Tsuchinaga K., Ohkubo S., Henta T., Kawamoto T. Discovery of a Novel Prolyl-TRNA Synthetase Inhibitor and Elucidation of Its Binding Mode to the ATP Site in Complex with l-Proline. Biochem. Biophys. Res. Commun. 2017;488:393–399. doi: 10.1016/j.bbrc.2017.05.064. PubMed DOI
Jandourek O., Tauchman M., Paterova P., Konecna K., Navratilova L., Kubicek V., Holas O., Zitko J., Dolezal M. Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-Carboxamide and Their Antimicrobial Evaluation. Molecules. 2017;22:223. doi: 10.3390/molecules22020223. PubMed DOI PMC
Semelková L., Janďourek O., Konečná K., Paterová P., Navrátilová L., Trejtnar F., Kubíček V., Kuneš J., Doležal M., Zitko J. 3-Substituted N-Benzylpyrazine-2-Carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules. 2017;22:495. doi: 10.3390/molecules22030495. PubMed DOI PMC
Fernandes J.P.-D.S., Pavan F.R., Leite C.Q.F., Felli V.M.A. Synthesis and Evaluation of a Pyrazinoic Acid Prodrug in Mycobacterium Tuberculosis. Saudi Pharm. J. 2014;22:376–380. doi: 10.1016/j.jsps.2013.12.005. PubMed DOI PMC
Zimhony O., Vilchèze C., Arai M., Welch J.T., Jacobs W.R. Pyrazinoic Acid and Its N-Propyl Ester Inhibit Fatty Acid Synthase Type I in Replicating Tubercle Bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC
Lima C.H.S., Henriques M.G.M.O., Candéa A.L.P., Lourenço M.C.S., Bezerra F.A.F.M., Ferreira M.L., Kaiser C.R., de Souza M.V.N. Synthesis and Antimycobacterial Evaluation of N′-(E)-Heteroaromaticpyrazine-2-Carbohydrazide Derivatives. Med. Chem. 2011;7:245–249. doi: 10.2174/157340611795564303. PubMed DOI
Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J., et al. Alkylamino Derivatives of N-Benzylpyrazine-2-Carboxamide: Synthesis and Antimycobacterial Evaluation. Med. Chem. Commun. 2015;6:1311–1317. doi: 10.1039/C5MD00178A. DOI
Kranz J.K., Schalk-Hihi C. Protein Thermal Shifts to Identify Low Molecular Weight Fragments. Methods Enzymol. 2011;493:277–298. doi: 10.1016/B978-0-12-381274-2.00011-X. PubMed DOI
Liebschner D., Afonine P.V., Moriarty N.W., Poon B.K., Sobolev O.V., Terwilliger T.C., Adams P.D. Polder Maps: Improving OMIT Maps by Excluding Bulk Solvent. Acta Crystallogr. D Struct. Biol. 2017;73:148–157. doi: 10.1107/S2059798316018210. PubMed DOI PMC
Carter C.W. Cognition, Mechanism, and Evolutionary Relationships in Aminoacyl-TRNA Synthetases. Annu. Rev. Biochem. 1993;62:715–748. doi: 10.1146/annurev.bi.62.070193.003435. PubMed DOI
Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.-W., Kapral G.J., Grosse-Kunstleve R.W., et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Cryst. D. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Delarue M., Moras D. The Aminoacyl-TRNA Synthetase Family: Modules at Work. Bioessays. 1993;15:675–687. doi: 10.1002/bies.950151007. PubMed DOI
Francklyn C., Musier-Forsyth K., Martinis S.A. Aminoacyl-TRNA Synthetases in Biology and Disease: New Evidence for Structural and Functional Diversity in an Ancient Family of Enzymes. RNA. 1997;3:954–960. PubMed PMC
Ribas de Pouplana L., Schimmel P. Two Classes of TRNA Synthetases Suggested by Sterically Compatible Dockings on TRNA Acceptor Stem. Cell. 2001;104:191–193. doi: 10.1016/S0092-8674(01)00204-5. PubMed DOI
Fang P., Han H., Wang J., Chen K., Chen X., Guo M. Structural Basis for Specific Inhibition of TRNA Synthetase by an ATP Competitive Inhibitor. Chem. Biol. 2015;22:734–744. doi: 10.1016/j.chembiol.2015.05.007. PubMed DOI PMC
Song Y., Zhou H., Vo M.-N., Shi Y., Nawaz M.H., Vargas-Rodriguez O., Diedrich J.K., Yates J.R., Kishi S., Musier-Forsyth K., et al. Double Mimicry Evades TRNA Synthetase Editing by Toxic Vegetable-Sourced Non-Proteinogenic Amino Acid. Nat. Commun. 2017;8:2281. doi: 10.1038/s41467-017-02201-z. PubMed DOI PMC
Vondenhoff G.H.M., Van Aerschot A. Aminoacyl-TRNA Synthetase Inhibitors as Potential Antibiotics. Eur. J. Med. Chem. 2011;46:5227–5236. doi: 10.1016/j.ejmech.2011.08.049. PubMed DOI
Pang L., Weeks S.D., Van Aerschot A. Aminoacyl-TRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int. J. Mol. Sci. 2021;22:1750. doi: 10.3390/ijms22041750. PubMed DOI PMC
Kwon N.H., Fox P.L., Kim S. Aminoacyl-TRNA Synthetases as Therapeutic Targets. Nat. Rev. Drug Discov. 2019;18:629–650. doi: 10.1038/s41573-019-0026-3. PubMed DOI
Hurdle J.G., O’Neill A.J., Chopra I. Prospects for Aminoacyl-TRNA Synthetase Inhibitors as New Antimicrobial Agents. Antimicrob. Agents Chemother. 2005;49:4821–4833. doi: 10.1128/AAC.49.12.4821-4833.2005. PubMed DOI PMC
Shibata A., Kuno M., Adachi R., Sato Y., Hattori H., Matsuda A., Okuzono Y., Igaki K., Tominari Y., Takagi T., et al. Discovery and Pharmacological Characterization of a New Class of Prolyl-TRNA Synthetase Inhibitor for Anti-Fibrosis Therapy. PLoS ONE. 2017;12:e0186587. doi: 10.1371/journal.pone.0186587. PubMed DOI PMC
Sundrud M.S., Koralov S.B., Feuerer M., Calado D.P., Kozhaya A.E., Rhule-Smith A., Lefebvre R.E., Unutmaz D., Mazitschek R., Waldner H., et al. Halofuginone Inhibits TH17 Cell Differentiation by Activating the Amino Acid Starvation Response. Science. 2009;324:1334–1338. doi: 10.1126/science.1172638. PubMed DOI PMC
Herman J.D., Rice D.P., Ribacke U., Silterra J., Deik A.A., Moss E.L., Broadbent K.M., Neafsey D.E., Desai M.M., Clish C.B., et al. A Genomic and Evolutionary Approach Reveals Non-Genetic Drug Resistance in Malaria. Genome Biol. 2014;15:511. doi: 10.1186/s13059-014-0511-2. PubMed DOI PMC
Kershenobich D., Fierro F.J., Rojkind M. The Relationship between the Free Pool of Proline and Collagen Content in Human Liver Cirrhosis. J. Clin. Investig. 1970;49:2246–2249. doi: 10.1172/JCI106443. PubMed DOI PMC
Weeks S.D., Drinker M., Loll P.J. Ligation Independent Cloning Vectors for Expression of SUMO Fusions. Protein Expr. Purif. 2007;53:40–50. doi: 10.1016/j.pep.2006.12.006. PubMed DOI PMC
Studier F.W. Protein Production by Auto-Induction in High Density Shaking Cultures. Protein Expr. Purif. 2005;41:207–234. doi: 10.1016/j.pep.2005.01.016. PubMed DOI
Vonrhein C., Flensburg C., Keller P., Sharff A., Smart O., Paciorek W., Womack T., Bricogne G. Data Processing and Analysis with the AutoPROC Toolbox. Acta Crystallogr. D Biol. Crystallogr. 2011;67:293–302. doi: 10.1107/S0907444911007773. PubMed DOI PMC
Emsley P., Cowtan K. Coot: Model-Building Tools for Molecular Graphics. Acta Cryst D. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Phillips J.C., Hardy D.J., Maia J.D.C., Stone J.E., Ribeiro J.V., Bernardi R.C., Buch R., Fiorin G., Hénin J., Jiang W., et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020;153:044130. doi: 10.1063/5.0014475. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI