Towards Novel 3-Aminopyrazinamide-Based Prolyl-tRNA Synthetase Inhibitors: In Silico Modelling, Thermal Shift Assay and Structural Studies

. 2021 Jul 21 ; 22 (15) : . [epub] 20210721

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34360555

Grantová podpora
SVV 260 547 Ministry of Education, Youth and Sports of the Czech Republic
G077814N Research Foundation-Flanders
G0A4616N Research Foundation-Flanders
3M14022 KU Leuven Research Fund
17/046 CELSA grant

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.

Zobrazit více v PubMed

Ibba M., Soll D. Aminoacyl-TRNA Synthesis. Annu. Rev. Biochem. 2000;69:617–650. doi: 10.1146/annurev.biochem.69.1.617. PubMed DOI

Antonellis A., Green E.D. The Role of Aminoacyl-TRNA Synthetases in Genetic Diseases. Annu. Rev. Genomics Hum. Genet. 2008;9:87–107. doi: 10.1146/annurev.genom.9.081307.164204. PubMed DOI

Kim S., You S., Hwang D. Aminoacyl-TRNA Synthetases and Tumorigenesis: More than Housekeeping. Nat. Rev. Cancer. 2011;11:708–718. doi: 10.1038/nrc3124. PubMed DOI

Yao P., Fox P.L. Aminoacyl-TRNA Synthetases in Medicine and Disease. EMBO Mol. Med. 2013;5:332–343. doi: 10.1002/emmm.201100626. PubMed DOI PMC

Datt M., Sharma A. Evolutionary and Structural Annotation of Disease-Associated Mutations in Human Aminoacyl-TRNA Synthetases. BMC Genomics. 2014;15:1063. doi: 10.1186/1471-2164-15-1063. PubMed DOI PMC

Meyer-Schuman R., Antonellis A. Emerging Mechanisms of Aminoacyl-TRNA Synthetase Mutations in Recessive and Dominant Human Disease. Hum. Mol. Genet. 2017;26:R114–R127. doi: 10.1093/hmg/ddx231. PubMed DOI PMC

Guo M., Schimmel P. Essential Non-Translational Functions of TRNA Synthetases. Nat. Chem. Biol. 2013;9:145–153. doi: 10.1038/nchembio.1158. PubMed DOI PMC

Kim S.-H., Bae S., Song M. Recent Development of Aminoacyl-TRNA Synthetase Inhibitors for Human Diseases: A Future Perspective. Biomolecules. 2020;10:1625. doi: 10.3390/biom10121625. PubMed DOI PMC

Francklyn C.S., Mullen P. Progress and Challenges in Aminoacyl-TRNA Synthetase-Based Therapeutics. J. Biol. Chem. 2019;294:5365–5385. doi: 10.1074/jbc.REV118.002956. PubMed DOI PMC

Jain V., Yogavel M., Oshima Y., Kikuchi H., Touquet B., Hakimi M.-A., Sharma A. Structure of Prolyl-TRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis. Structure. 2015;23:819–829. doi: 10.1016/j.str.2015.02.011. PubMed DOI

Pines M., Nagler A. Halofuginone: A Novel Antifibrotic Therapy. Gen. Pharmacol. 1998;30:445–450. doi: 10.1016/S0306-3623(97)00307-8. PubMed DOI

Gavish Z., Pinthus J.H., Barak V., Ramon J., Nagler A., Eshhar Z., Pines M. Growth Inhibition of Prostate Cancer Xenografts by Halofuginone. Prostate. 2002;51:73–83. doi: 10.1002/pros.10059. PubMed DOI

Elkin M., Ariel I., Miao H.Q., Nagler A., Pines M., de-Groot N., Hochberg A., Vlodavsky I. Inhibition of Bladder Carcinoma Angiogenesis, Stromal Support, and Tumor Growth by Halofuginone. Cancer Res. 1999;59:4111–4118. PubMed

Leiba M., Jakubikova J., Klippel S., Mitsiades C.S., Hideshima T., Tai Y.-T., Leiba A., Pines M., Richardson P.G., Nagler A., et al. Halofuginone Inhibits Multiple Myeloma Growth in Vitro and in Vivo and Enhances Cytotoxicity of Conventional and Novel Agents. Br. J. Haematol. 2012;157:718–731. doi: 10.1111/j.1365-2141.2012.09120.x. PubMed DOI PMC

Jiang S., Zeng Q., Gettayacamin M., Tungtaeng A., Wannaying S., Lim A., Hansukjariya P., Okunji C.O., Zhu S., Fang D. Antimalarial Activities and Therapeutic Properties of Febrifugine Analogs. Antimicrob. Agents Chemother. 2005;49:1169–1176. doi: 10.1128/AAC.49.3.1169-1176.2005. PubMed DOI PMC

Adachi R., Okada K., Skene R., Ogawa K., Miwa M., Tsuchinaga K., Ohkubo S., Henta T., Kawamoto T. Discovery of a Novel Prolyl-TRNA Synthetase Inhibitor and Elucidation of Its Binding Mode to the ATP Site in Complex with l-Proline. Biochem. Biophys. Res. Commun. 2017;488:393–399. doi: 10.1016/j.bbrc.2017.05.064. PubMed DOI

Jandourek O., Tauchman M., Paterova P., Konecna K., Navratilova L., Kubicek V., Holas O., Zitko J., Dolezal M. Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-Carboxamide and Their Antimicrobial Evaluation. Molecules. 2017;22:223. doi: 10.3390/molecules22020223. PubMed DOI PMC

Semelková L., Janďourek O., Konečná K., Paterová P., Navrátilová L., Trejtnar F., Kubíček V., Kuneš J., Doležal M., Zitko J. 3-Substituted N-Benzylpyrazine-2-Carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules. 2017;22:495. doi: 10.3390/molecules22030495. PubMed DOI PMC

Fernandes J.P.-D.S., Pavan F.R., Leite C.Q.F., Felli V.M.A. Synthesis and Evaluation of a Pyrazinoic Acid Prodrug in Mycobacterium Tuberculosis. Saudi Pharm. J. 2014;22:376–380. doi: 10.1016/j.jsps.2013.12.005. PubMed DOI PMC

Zimhony O., Vilchèze C., Arai M., Welch J.T., Jacobs W.R. Pyrazinoic Acid and Its N-Propyl Ester Inhibit Fatty Acid Synthase Type I in Replicating Tubercle Bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC

Lima C.H.S., Henriques M.G.M.O., Candéa A.L.P., Lourenço M.C.S., Bezerra F.A.F.M., Ferreira M.L., Kaiser C.R., de Souza M.V.N. Synthesis and Antimycobacterial Evaluation of N′-(E)-Heteroaromaticpyrazine-2-Carbohydrazide Derivatives. Med. Chem. 2011;7:245–249. doi: 10.2174/157340611795564303. PubMed DOI

Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J., et al. Alkylamino Derivatives of N-Benzylpyrazine-2-Carboxamide: Synthesis and Antimycobacterial Evaluation. Med. Chem. Commun. 2015;6:1311–1317. doi: 10.1039/C5MD00178A. DOI

Kranz J.K., Schalk-Hihi C. Protein Thermal Shifts to Identify Low Molecular Weight Fragments. Methods Enzymol. 2011;493:277–298. doi: 10.1016/B978-0-12-381274-2.00011-X. PubMed DOI

Liebschner D., Afonine P.V., Moriarty N.W., Poon B.K., Sobolev O.V., Terwilliger T.C., Adams P.D. Polder Maps: Improving OMIT Maps by Excluding Bulk Solvent. Acta Crystallogr. D Struct. Biol. 2017;73:148–157. doi: 10.1107/S2059798316018210. PubMed DOI PMC

Carter C.W. Cognition, Mechanism, and Evolutionary Relationships in Aminoacyl-TRNA Synthetases. Annu. Rev. Biochem. 1993;62:715–748. doi: 10.1146/annurev.bi.62.070193.003435. PubMed DOI

Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.-W., Kapral G.J., Grosse-Kunstleve R.W., et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Cryst. D. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC

Delarue M., Moras D. The Aminoacyl-TRNA Synthetase Family: Modules at Work. Bioessays. 1993;15:675–687. doi: 10.1002/bies.950151007. PubMed DOI

Francklyn C., Musier-Forsyth K., Martinis S.A. Aminoacyl-TRNA Synthetases in Biology and Disease: New Evidence for Structural and Functional Diversity in an Ancient Family of Enzymes. RNA. 1997;3:954–960. PubMed PMC

Ribas de Pouplana L., Schimmel P. Two Classes of TRNA Synthetases Suggested by Sterically Compatible Dockings on TRNA Acceptor Stem. Cell. 2001;104:191–193. doi: 10.1016/S0092-8674(01)00204-5. PubMed DOI

Fang P., Han H., Wang J., Chen K., Chen X., Guo M. Structural Basis for Specific Inhibition of TRNA Synthetase by an ATP Competitive Inhibitor. Chem. Biol. 2015;22:734–744. doi: 10.1016/j.chembiol.2015.05.007. PubMed DOI PMC

Song Y., Zhou H., Vo M.-N., Shi Y., Nawaz M.H., Vargas-Rodriguez O., Diedrich J.K., Yates J.R., Kishi S., Musier-Forsyth K., et al. Double Mimicry Evades TRNA Synthetase Editing by Toxic Vegetable-Sourced Non-Proteinogenic Amino Acid. Nat. Commun. 2017;8:2281. doi: 10.1038/s41467-017-02201-z. PubMed DOI PMC

Vondenhoff G.H.M., Van Aerschot A. Aminoacyl-TRNA Synthetase Inhibitors as Potential Antibiotics. Eur. J. Med. Chem. 2011;46:5227–5236. doi: 10.1016/j.ejmech.2011.08.049. PubMed DOI

Pang L., Weeks S.D., Van Aerschot A. Aminoacyl-TRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int. J. Mol. Sci. 2021;22:1750. doi: 10.3390/ijms22041750. PubMed DOI PMC

Kwon N.H., Fox P.L., Kim S. Aminoacyl-TRNA Synthetases as Therapeutic Targets. Nat. Rev. Drug Discov. 2019;18:629–650. doi: 10.1038/s41573-019-0026-3. PubMed DOI

Hurdle J.G., O’Neill A.J., Chopra I. Prospects for Aminoacyl-TRNA Synthetase Inhibitors as New Antimicrobial Agents. Antimicrob. Agents Chemother. 2005;49:4821–4833. doi: 10.1128/AAC.49.12.4821-4833.2005. PubMed DOI PMC

Shibata A., Kuno M., Adachi R., Sato Y., Hattori H., Matsuda A., Okuzono Y., Igaki K., Tominari Y., Takagi T., et al. Discovery and Pharmacological Characterization of a New Class of Prolyl-TRNA Synthetase Inhibitor for Anti-Fibrosis Therapy. PLoS ONE. 2017;12:e0186587. doi: 10.1371/journal.pone.0186587. PubMed DOI PMC

Sundrud M.S., Koralov S.B., Feuerer M., Calado D.P., Kozhaya A.E., Rhule-Smith A., Lefebvre R.E., Unutmaz D., Mazitschek R., Waldner H., et al. Halofuginone Inhibits TH17 Cell Differentiation by Activating the Amino Acid Starvation Response. Science. 2009;324:1334–1338. doi: 10.1126/science.1172638. PubMed DOI PMC

Herman J.D., Rice D.P., Ribacke U., Silterra J., Deik A.A., Moss E.L., Broadbent K.M., Neafsey D.E., Desai M.M., Clish C.B., et al. A Genomic and Evolutionary Approach Reveals Non-Genetic Drug Resistance in Malaria. Genome Biol. 2014;15:511. doi: 10.1186/s13059-014-0511-2. PubMed DOI PMC

Kershenobich D., Fierro F.J., Rojkind M. The Relationship between the Free Pool of Proline and Collagen Content in Human Liver Cirrhosis. J. Clin. Investig. 1970;49:2246–2249. doi: 10.1172/JCI106443. PubMed DOI PMC

Weeks S.D., Drinker M., Loll P.J. Ligation Independent Cloning Vectors for Expression of SUMO Fusions. Protein Expr. Purif. 2007;53:40–50. doi: 10.1016/j.pep.2006.12.006. PubMed DOI PMC

Studier F.W. Protein Production by Auto-Induction in High Density Shaking Cultures. Protein Expr. Purif. 2005;41:207–234. doi: 10.1016/j.pep.2005.01.016. PubMed DOI

Vonrhein C., Flensburg C., Keller P., Sharff A., Smart O., Paciorek W., Womack T., Bricogne G. Data Processing and Analysis with the AutoPROC Toolbox. Acta Crystallogr. D Biol. Crystallogr. 2011;67:293–302. doi: 10.1107/S0907444911007773. PubMed DOI PMC

Emsley P., Cowtan K. Coot: Model-Building Tools for Molecular Graphics. Acta Cryst D. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI

Phillips J.C., Hardy D.J., Maia J.D.C., Stone J.E., Ribeiro J.V., Bernardi R.C., Buch R., Fiorin G., Hénin J., Jiang W., et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020;153:044130. doi: 10.1063/5.0014475. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace