Adenosine-Mimicking Derivatives of 3-Aminopyrazine-2-Carboxamide: Towards Inhibitors of Prolyl-tRNA Synthetase with Antimycobacterial Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36358911
PubMed Central
PMC9687610
DOI
10.3390/biom12111561
PII: biom12111561
Knihovny.cz E-zdroje
- Klíčová slova
- 3-aminopyrazinamide, antibacterial, antimycobacterial, homology model, molecular dynamics, prolyl-tRNA synthetase, repurposing, tuberculosis,
- MeSH
- adenosin farmakologie MeSH
- aminoacyl-tRNA-synthetasy * MeSH
- antituberkulotika farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosin MeSH
- aminoacyl-tRNA-synthetasy * MeSH
- antituberkulotika MeSH
Multidrug-resistant tuberculosis (MDR-TB) poses a significant threat to mankind and as such earned its place on the WHO list of priority pathogens. New antimycobacterials with a mechanism of action different to currently used agents are highly required. This study presents the design, synthesis, and biological evaluation of 3-acylaminopyrazine-2-carboxamides derived from a previously reported inhibitor of human prolyl-tRNA synthetase. Compounds were evaluated in vitro against various strains of mycobacteria, pathogenic bacteria, and fungi of clinical significance. In general, high activity against mycobacteria was noted, while the antibacterial and antifungal activity was minimal. The most active compounds were 4'-substituted 3-(benzamido)pyrazine-2-carboxamides, exerting MIC (Minimum Inhibitory Concentration) from 1.95 to 31.25 µg/mL. Detailed structure-activity relationships were established and rationalized in silico with regard to mycobacterial ProRS as a probable target. The active compounds preserved their activity even against multidrug-resistant strains of Mycobacterium tuberculosis. At the same time, they were non-cytotoxic against HepG2 human hepatocellular carcinoma cells. This project is the first step in the successful repurposing of inhibitors of human ProRS to inhibitors of mycobacterial ProRS with antimycobacterial activity.
Zobrazit více v PubMed
Mullard A. Tackling antimicrobial drug resistance. Nat. Rev. Drug Discov. 2016;15:375–376. doi: 10.1038/nrd.2016.115. PubMed DOI
Algammal A.M., Hetta H.F., Elkelish A., Alkhalifah D.H.H., Hozzein W.N., Batiha G.E., El Nahhas N., Mabrok M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect. Drug Resist. 2020;13:3255–3265. doi: 10.2147/IDR.S272733. PubMed DOI PMC
Becker K., Heilmann C., Peters G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014;27:870–926. doi: 10.1128/CMR.00109-13. PubMed DOI PMC
Butler M.S., Gigante V., Sati H., Paulin S., Al-Sulaiman L., Rex J.H., Fernandes P., Arias C.A., Paul M., Thwaites G.E., et al. Analysis of the Clinical Pipeline of Treatments for Drug-Resistant Bacterial Infections: Despite Progress, More Action Is Needed. Antimicrob. Agents Chemother. 2022;66:e0199121. doi: 10.1128/aac.01991-21. PubMed DOI PMC
WHO . Global Tuberculosis Report 2020. World Health Organization; Geneva, Switzerland: 2020.
Ho J.M., Bakkalbasi E., Söll D., Miller C.A. Drugging tRNA aminoacylation. RNA Biol. 2018;15:667–677. doi: 10.1080/15476286.2018.1429879. PubMed DOI PMC
Pang L.P., Weeks S.D., Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int. J. Mol. Sci. 2021;22:34. doi: 10.3390/ijms22041750. PubMed DOI PMC
Bouz G., Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorgan. Chem. 2021;110:104806. doi: 10.1016/j.bioorg.2021.104806. PubMed DOI
Adachi R., Okada K., Skene R., Ogawa K., Miwa M., Tsuchinaga K., Ohkubo S., Henta T., Kawamoto T. Discovery of a novel prolyl-tRNA synthetase inhibitor and elucidation of its binding mode to the ATP site in complex with l-proline. Biochem. Biophys. Res. Commun. 2017;488:393–399. doi: 10.1016/j.bbrc.2017.05.064. PubMed DOI
Pang L., Weeks S.D., Juhás M., Strelkov S.V., Zitko J., Van Aerschot A. Towards Novel 3-Aminopyrazinamide-Based Prolyl-tRNA Synthetase Inhibitors: In Silico Modelling, Thermal Shift Assay and Structural Studies. Int. J. Mol. Sci. 2021;22:7793. doi: 10.3390/ijms22157793. PubMed DOI PMC
Jandourek O., Tauchman M., Paterova P., Konecna K., Navratilova L., Kubicek V., Holas O., Zitko J., Dolezal M. Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation. Molecules. 2017;22:223. doi: 10.3390/molecules22020223. PubMed DOI PMC
Wamhoff H., Kroth E. Dihalogentriphenylphosphorane in der Heterocyclensynthese, 29. Eine einfache Synthese von Pteridin-4-onen aus 3-Amino-2-pyrazincarbonsäuremethylester und Pyrazino[3,1]oxazin-4-onen. Synthesis. 1994;1994:405–410. doi: 10.1055/s-1994-25487. DOI
Phillips J.C., Hardy D.J., Maia J.D.C., Stone J.E., Ribeiro J.V., Bernardi R.C., Buch R., Fiorin G., Hénin J., Jiang W., et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020;153:044130. doi: 10.1063/5.0014475. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC
Juhás M., Pallabothula V.S.K., Grabrijan K., Šimovičová M., Jan’ourek O., Konečná K., Bárta P., Paterová P., Gobec S., Sosič I., et al. Design, synthesis and biological evaluation of substituted 3-amino-N-(thiazol-2-yl)pyrazine-2-carboxamides as inhibitors of mycobacterial methionine aminopeptidase 1. Bioorgan. Chem. 2022;118:105489. doi: 10.1016/j.bioorg.2021.105489. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Stumpe M.C., Blinov N., Wishart D., Kovalenko A., Pande V.S. Calculation of Local Water Densities in Biological Systems: A Comparison of Molecular Dynamics Simulations and the 3D-RISM-KH Molecular Theory of Solvation. J. Phys. Chem. B. 2011;115:319–328. doi: 10.1021/jp102587q. PubMed DOI PMC
Wilcken R., Zimmermann M.O., Lange A., Joerger A.C., Boeckler F.M. Principles and Applications of Halogen Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem. 2013;56:1363–1388. doi: 10.1021/jm3012068. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) EUCAST Discussion Document E. Dis 5.1: Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. [(accessed on 11 December 2019)];Clin. Microbiol. Infec. 2003 9:1–7. Available online: http://www.eucast.org/documents/publications_in_journals/ PubMed
EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. 2017. [(accessed on 11 December 2019)]. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/
EUCAST DEFINITIVE DOCUMENT E.DEF 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. 2017. [(accessed on 11 December 2019)]. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/